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Abstract

Conservation interventions often aim to change people’s behaviour by discouraging actions
which damage species or ecosystems. An important tool for achieving this goal is the
creation and enforcement of rules. To date, however, the role of enforcement has been
neglected as a subject of study in conservation. This thesis outlines a theoretical framework
for understanding rule-breaking behaviour and highlights practical issues which must be
addressed to improve the effectiveness of conservation strategies.

Understanding illegal behaviour requires understanding the factors which motivate po-
tential rule-breakers’ decisions. I begin by reviewing economic models of crime and their
application to natural resource management. In general, these models assume that rules
are perfectly understood. I demonstrate that this need not be true using a case study
of knowledge of wildlife laws in Madagascar. Knowledge was generally poor and varied
between individuals. Encouragingly, improvements in understanding were associated with
involvement with local conservation initiatives.

Previous analyses have often focused on top-down approaches and on the effects of
certainty and severity of punishment. I extend these models, using an individual-based sim-
ulation of community-based wildlife management to explore the effects of strategic decision-
making and individual heterogeneity. Their importance varies according to the manager’s
choice of policy levers, with changes to the fine level producing more robust outcomes than
changes to the fees paid to monitors.

For effective deterrence it is also necessary to understand spatio-temporal patterns of
rule-breaking. Patrol data are commonly used for this, but are difficult to interpret. Using
a ‘Virtual Ranger’ model, I demonstrate that both rule-breakers’ and enforcement agents’
behaviour can introduce bias into analyses of patrol data based on catch-per-unit-effort
measures. Finally, I review the use of encounter data, a class of data which includes patrol
data, and highlight how sharing lessons learned with other fields could bring mutual benefits.
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Chapter 1

Introduction

1.1 Background

Rules and regulations are essential components of many conservation interventions, includ-

ing contracts promising payment in return for the provision of ecosystem services (e.g.,

Pagiola, 2008), quotas regulating the exploitation of natural resources (e.g., Hatcher and

Gordon, 2005), and laws protecting habitats and species (e.g., Rowcliffe et al., 2004). These

rules might be agreed at any scale from the international (e.g., EU fishing quotas) or national

(e.g., National Parks) right down to the local (e.g., community reserves), can involve a range

of institutions, from governments to rural communities, and may be externally imposed or

have evolved in situ. The purpose of rules is to change people’s behaviour, discouraging ac-

tions that are harmful to species or ecosystems and encouraging those which are beneficial,

and they are just as necessary in participatory, community-based projects as they are in the

top-down management of protected areas. However, the mere existence of rules does not

guarantee that they will be followed (Rowcliffe et al., 2004), so the success of conservation

interventions often depends upon their ability to secure the compliance of key stakeholders.

Understanding why rule-breaking occurs and how it can be prevented should therefore be

a central concern in conservation, but to date the topic has been under-researched.

Gavin et al. (2010) identified four broad questions that research into rule-breaking should

seek to answer. These asked (1) which rules are broken, (2) where rule-breaking occurs,

(3) who breaks rules, and (4) why rules are broken. Two further questions that could

fruitfully be added to this list are (5) what impact rule-breaking has on conservation, and

(6) how rule-breaking can be reduced efficiently and fairly. In many cases such questions

have proved difficult to answer because the threat of punishment creates incentives for rule-
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breakers to conceal evidence of illicit behaviours (Blank and Gavin, 2009; St. John et al.,

2010). Furthermore, few factors which are thought to influence rule-breaking decisions,

such as the level of resources devoted to enforcing rules and the availability of alternative

livelihood opportunities (Skonhoft and Solstad, 1996; Damania et al., 2005), are amenable

to experimental manipulation, due to ethical concerns and practical limitations.

Empirical studies of rule-breaking in conservation have relied largely on data derived

from the patrol reports of protected area guards (e.g., Holmern et al., 2007), survey tech-

niques specially adapted to preserve the anonymity of respondents (e.g., the randomised

response and nominative techniques; St. John et al., 2010) and inferences from indirect

measures of illegal activity (e.g., analyses of illegal goods reaching markets; Lee et al., 2005;

Clarke et al., 2006). However, the potential of these methods for generating data suitable

for monitoring rule-breaking and for assessing strategies to improve compliance has yet to

be fully explored (Gavin et al., 2010).

Modelling approaches have also been important, allowing researchers to predict the likely

outcomes of different conservation strategies on levels of compliance (e.g., Milner-Gulland

and Leader-Williams, 1992), but the theory underpinning models of rule enforcement in

conservation is underdeveloped. For example, the effects of enforcement on compliance in

fisheries have been explored using simple bioeconomic models (e.g., Sutinen and Andersen,

1985) and household utility models have been used to explore the effects of different en-

forcement strategies on decisions about whether or not to poach at the local scale (e.g.,

Damania et al., 2005). However, decisions about whether or not to break rules are likely to

be complex and vary between individuals and situations. For example, in many conservation

settings an individual’s decision about whether or not to break the rules will depend on the

behaviour of others around them, but only a few studies have incorporated the effects of

strategic decision-making on compliance with rules (e.g., Mesterton-Gibbons and Milner-

Gulland, 1998; Byers and Noonburg, 2007). Similarly, models of enforcement have tended

to ignore the heterogeneity that occurs between different individuals in terms of their skills,

personalities and opportunities, and assume that this does not affect their decision-making.

The lack of a well-developed theoretical framework to guide the development of models of

enforcement and compliance means it is often difficult to translate the findings from existing

models into practical advice for managers and policy makers that are applicable to the sit-

uations faced in conservation projects. Consequently, there is considerable scope for further

work to strengthen the theoretical underpinnings and enhance the practical relevance of
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modelling approaches to understanding rule-breaking and compliance in conservation.

Perhaps the most difficult questions to address are why rule-breaking occurs, and how

rule-breaking can be reduced, but these issues are crucial to planning and implementing

effective conservation action. A prerequisite for rules to bring about changes in behaviour is

that they are well known and understood (Page and Radomski, 2006; Nkonya et al., 2008)

but there has been no attempt to identify factors which predict knowledge of important rules

in conservation. Even well known and understood rules may not change behaviour if there

are no incentives for individuals to follow them. Managers have many different tools at their

disposal which are intended to create incentives for conservation. Although enforcement has

remained widely used and a crucial component of many conservation interventions, research

in the last two decades has focused more on other methods (Oates, 1999). For example,

Integrated Conservation and Development Projects and Community Based Conservation

approaches have been promoted as a means of improving compliance while encouraging local

development (Brandon and Wells, 1992; Barrett and Arcese, 1995; Wells, 1999). Others have

argued that by making positive incentives conditional on conservation performance, direct

payment schemes are an efficient way of achieving conservation (Ferraro, 2001; 2002). The

way in which these approaches work has been well explored, both in theory (e.g., Agrawal

and Gibson, 1999; Berkes, 2004; Wunder, 2007; Sommerville et al., 2009) and in practice

(e.g., Flintan and Hughes, 2001; Engel et al., 2008; Wunder et al., 2008), but compliance

with rules has received little attention.

1.2 Aims & Objectives

The aim of this thesis is to improve the study of rule-breaking in conservation, drawing upon

the lessons that have been learned in other fields to develop a theoretical basis for under-

standing the incentives that rule-breakers face, and to develop methods for collecting and

using field data in a way that informs decision-making for more effective law enforcement.

I address a number of gaps in the literature concerning local people’s understanding

of conservation rules, the role of individual incentives in promoting or undermining com-

pliance, understanding how law enforcement activities can change rule-breaking incentives,

and assessing the usefulness of patrol data as a source of information about rule-breaking.
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Specific objectives contributing to the thesis’s aim included

• to review work from other fields which has dealt with the causes of rule-breaking in

order to draw lessons for conservation

• to test which factors are associated with higher awareness of conservation rules

• to examine how the decision making of potential rule-breakers and enforcement agents

influences the effectiveness of enforcement strategies

• to test the suitability of patrol data as a source of information for learning about the

effectiveness of enforcement as a deterrent to rule-breaking

• to compare patrol data with other forms of encounter data in order to improve their

analysis

1.3 Thesis outline

The thesis is structured as follows:

Chapter 2 reviews work from other fields which has asked why people choose to break

rules and how enforcement measures can best be used to increase levels of compliance.

Economic models of decision-making have played a key role in understanding rule-breaking,

but there have been relatively few attempts to apply these approaches to conservation.

Models will continue to be useful tools for studying compliance, but improvements are

needed in the realism with which they reflect key aspects of human behaviour.

Chapter 3 examines levels of understanding of an important set of wildlife conserva-

tion laws among rural villagers living close to Madagascar’s eastern rainforests. I show

that, although awareness of these laws is generally low, there is considerable variation be-

tween individuals, with higher levels of education and involvement with community resource

management and tourism associated with greater understanding.

Chapter 4 uses an individual-based simulation model to explore the effects of differ-

ences in the incentives faced by individuals, be they rule-breakers or enforcement agents, in

determining the effectiveness of enforcement measures. Novel factors considered within this

model are the effects of individual heterogeneity, avoidance measures taken by rule-breakers

and the incentives for enforcement agents to monitor effectively.
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Chapter 5 uses a “Virtual Ranger” simulation model to explore the properties of

encounters-per-unit-effort indices as a measure of rule-breaking, and asks whether analyses

of patrol data based upon these indices can provide useful information about the effective-

ness of enforcement for policy-makers and managers in the face of biases caused by the

behaviour of rule-breakers and patrols.

Chapter 6 takes a broader look at patrol data as a sub-class of encounter data, shar-

ing many properties with fisheries catch data and bushmeat offtake data, as well as with

encounter data generated during ecological surveys. I argue that a recognition of the sim-

ilarities between these types of data, and of the biases that are common to all, as well as

exchange of ideas concerning methods to counter these biases, could help to improve the

analysis of encounter-based data in all of these areas.

Chapter 7 offers a discussion of the thesis’s key findings and conclusions and suggests

useful avenues along which future research might proceed.
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Chapter 2

The Sleeping Policeman:

Understanding issues of

enforcement and compliance in

conservation

Published as:

A. Keane, J.P.G. Jones, G. Edwards-Jones and E.J. Milner-Gulland (2008). The sleeping

policeman: understanding issues of enforcement and compliance in conservation. Animal

Conservation, 11:75-82.

2.1 Introduction: Rules in Conservation

Managing biological resources requires that rules of behaviour are followed. These rules

might be agreed at any scale, from the international (e.g., EU fishing quotas) or national

(e.g., National Parks) right down to the local (e.g., community reserves). They can involve

a range of institutions, from governments to rural communities, and may be externally

imposed or have evolved in situ. Whatever their provenance, rules, and the management

systems which depend on them, are worthless without compliance. However compliance

with the rules of resource management systems cannot be taken for granted. Resistance to

conservation measures can arise because of differences in the spatial and temporal distri-

butions of the resulting costs and benefits (Wells, 1992). For example, significant costs are
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often borne by local individuals who depend heavily on the resource, while the benefits aris-

ing from conservation may be less immediate and accrue to society as a whole (Balmford and

Whitten, 2003; Chan et al., 2007). Successful management of natural resources therefore

requires consideration of how rule-breaking behaviour can be discouraged in resource users.

Despite its importance, this issue has not received sufficient attention in the conservation

literature.

Enforcement—monitoring adherence to rules and agreements and punishing infractions

when they are detected—is an essential part of successful conservation and natural resource

management (NRM) (Ostrom, 1990; Gezelius, 2002; Walsh et al., 2003; Rowcliffe et al.,

2004; Gibson et al., 2005). Punishments may take various forms, from fines and prison

terms to social sanctioning, depending on the enforcement system. Several studies of il-

legal hunting have shown that reducing the effort devoted to enforcement (e.g., lowering

investment in equipment and training, or patrolling less frequently) increases the number of

poaching incidents and can harm wildlife populations (Arcese et al., 1995; Jachmann and

Billiouw, 1997; de Merode et al., 2007). For example, investment in enforcement has been

an important determinant of changes in the buffalo, elephant and black rhino populations in

the Serengeti National Park, Tanzania (Hilborn et al., 2006). Similar effects have been seen

in marine systems where effective enforcement of marine protected areas has been shown

to reduce poaching-driven changes to reef fish communities (Walmsley and White, 2003;

Floeter et al., 2006; Samoilys et al., 2007).

Enforcement is costly, however, requiring investment in training, equipment and salaries.

It may also have other costs. For example enforcement activities can erode trust between

local people and conservation authorities (Infield and Namara, 2001) and undermine tradi-

tional systems of resource management (Wilshusen et al., 2002; Horning, 2006; Gelcich et al.,

2006). With limited resources available to conservation, particularly in the developing world

(Balmford et al., 2002), enforcement at a level which produces no infractions can be pro-

hibitively expensive. Techniques for optimizing enforcement strategies—maximising benefit

while minimising cost—should therefore be of great interest to practical conservation.

Directly studying compliance and its determinants is problematic since rule-breakers

are usually unwilling to reveal themselves or to discuss their motivations freely for fear of

punishment. Data on illegal activity are therefore potentially prone to unquantifiable bi-

ases. Consequently, much of our understanding of this topic stems from modelling studies

which provide powerful methods for explicitly addressing these uncertainties and help man-
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agers and policy makers to predict the impacts of future changes to enforcement regimes.

We review models of compliance with rules, focusing on those that have been applied to

conservation and NRM. We structure our review according to the scale at which decisions

are analysed, moving from the individual to the group and institutional levels. African

elephants are used as a case study to illustrate how such approaches have been applied in

practice. Finally, we highlight several areas where we feel modelling can contribute more to

our understanding of rule-breaking behaviour by resource users.

2.2 Individual level models

Many theories attempt to explain why non-compliant behaviour occurs and how it can be

discouraged. Psychological theories of compliance with rules and social norms often as-

sume that the decision-making processes of rule-breakers differ from those of other people.

Cognitive theories of compliance argue that these behaviours stem from differences in per-

sonal moral development (e.g., Goslin, 1973; Tapp et al., 1977; Kohlberg, 1981). Another

important group, the social learning theories (e.g., Burgess and Akers, 1966; Akers, 1985;

Sutherland et al., 1992), suggest that individuals decision-making processes are conditioned

by interactions with their environment.

By contrast, sociological and economic theories of compliance assume that the decision-

making process in rule-breakers is not fundamentally different from that in other people.

Normative theories argue that an individuals perceptions of the legitimacy and fairness of

rules are crucial to decision-making (Tyler, 2006). Instrumental theories, on the other hand,

hold that acts of non-compliance occur because the benefits anticipated by the decision-

maker outweigh the costs (Becker, 1968).

2.2.1 Economic incentives

The study of optimal enforcement has largely focussed on instrumental approaches, using

economic models to answer the question of how best to modify individual incentives in

favour of compliance. An individuals supply of offences may be modelled as a decreasing

function of two factors of enforcement: the probability of an act of non-compliance being

detected and punished and the severity of punishment that results (Becker, 1968). The

process of detection is inherently costly, requiring law enforcers to be paid and equipped,

whereas punishments may take the form of fines (assumed to be a costless transaction). This
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suggests that the optimal enforcement strategy is to reduce the amount of costly monitoring

while increasing the size of penalty, thereby maintaining offences at an acceptable level with

lower enforcement costs.

There are, however, several reasons why severe penalties may be undesirable. Extensions

to Beckers model suggest that if sanctions are socially costly (Kaplow, 1990) or if corruption

is present (Becker and Stigler, 1974), the optimal fine level may not be the highest possible.

Similarly, if individuals are risk averse (Polinsky and Shavell, 1979), are imperfectly informed

about their probability of being caught (Bebchuk and Kaplow, 1992), respond to penalties by

trying to avoid detection (Malik, 1990), or vary in their wealth (Polinsky and Shavell, 1991)

the optimal level of fines may be reduced. Severe penalties are also morally questionable

and can lead to an increase in serious crimes relative to less damaging offences due to the

loss of marginal deterrence (Stigler, 1970).

A large number of studies have attempted to empirically test the deterrence effect of

enforcement measures upon crime rates in developed countries, with mixed results (see

Cameron 1988 for a review). Ehrlich (1996) argues that there is such an effect and that

the probability of detection may be more influential than severity of punishment. However,

issues such as the use of data at different levels of aggregation, uncertainty about the

level of private protection and the difficulty in separating the influence of deterrence and

incapacitation leave many studies open to criticism (Cameron, 1988; Ehrlich, 1996).

Early bioeconomic models of NRM assumed enforcement was costless and produced

perfect compliance (e.g., Clark, 1990). The implications of imperfect enforcement in NRM

were first explored in commercial fisheries. In quota-restricted single-species fisheries, for

example, enforcement costs may be modelled as an increasing function of the stock size

and the legal quota. Consequently, the larger the desired stock size (above the open-access

equilibrium) the greater the necessary expenditure on enforcement (Sutinen and Andersen,

1985). More generally, the optimal level of enforcement is attained when the marginal cost

of enforcement is equal to its marginal benefit (Becker, 1968; Sutinen and Andersen, 1985;

Hallwood, 2004). Other models of fisheries enforcement have considered differences between

input controls (e.g., time at sea, equipment) and output controls (e.g., landing quotas;

Mazany et al. 1989), and shown that avoidance behaviour affects the socially optimal level

of enforcement (Anderson and Lee, 1986; Anderson, 1987).

Several studies have attempted to empirically test the predictions of fisheries enforcement

models. Survey data from the Massachusetts lobster fishery show an increasing rate of
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compliance as the perceived probability of being caught increases (Sutinen and Gauvin,

1989). Similarly, data from Quebec fisheries show a greater influence of the probability

of detection than severity of punishment on offences (Furlong, 1991). Data from federally

managed US groundfish fisheries, on the other hand, suggest that a decline in compliance

from 1982 to 1988 was best explained by poor stock conditions and high market prices, with

enforcement having a negligible effect (Sutinen et al., 1990).

The effects of the design of enforcement on poaching decisions have also been explored.

Using a model of multi-species bushmeat hunting as a component of the household econ-

omy, measures targeting bushmeat sales were shown to be more effective than those targeting

hunting directly (Damania et al., 2005). The benefits for different hunted species are com-

plicated by technology switching (e.g., between snaring and gun-hunting), however, and are

therefore ambiguous. Clayton et al. (1997) investigated economic deterrents to hunting two

wild pig species in Indonesia, only one of which can be legally hunted. A fine on market

dealers for selling the illegal species was shown to be most effective, and more equitable than

other approaches considered since it does not affect the welfare of individuals who hunt the

legal species.

2.2.2 Morality, equity and justice

Alternative models of compliance with regulations emphasise the role of normative factors,

such as moral obligation and perceptions of fairness and justice. Normative factors have been

incorporated into economic frameworks by assuming that an individuals utility is increased

by performing actions that are socially acceptable or beneficial (Sutinen and Kuperan, 1999;

Nielsen, 2003b). The perceived legitimacy of rules, related to both the fairness and efficiency

of the regulatory process and the justice and effectiveness of its outcomes, also affects their

acceptance by resource users (Hønneland, 1999; Sutinen and Kuperan, 1999).

In Norway and Newfoundland, some small fisheries achieve high levels of compliance

despite low levels of formal enforcement. Gezelius (2002; 2004) suggests that this results

from informal sanctions based upon collective moral judgements. Non-compliant individuals

are subjected to social opprobrium if their actions are perceived to confer unfair advantages

or to be carried out for monetary gain, but not if they are necessary to secure an adequate

basic income.

Quantitative empirical evidence on the influence of normative influences on compliance

is, however, weak. Nielsen (2003a) identify factors which have a major influence on com-

10



pliance in small Danish fisheries. The most important factors were instrumental: economic

gains and deterrence measures, but normative considerations such as the fairness of rules

were also represented. Hatcher et al. (2000) similarly reported a significant positive rela-

tionship between perceptions of fairness and participation and levels of compliance in the

UK fishery, but Hatcher and Gordon (2005) failed to reproduce this result, finding instead

that economic incentives dominate.

2.3 Group level models

In many situations an individuals costs and benefits are affected by the behaviour of oth-

ers. Understanding decision-making then requires a strategic perspective which has been

modelled using game theory. For example, game theoretic approaches have been applied

to study the interaction between an enforcement officer and a resource user. In inspection

games one player chooses whether or not to monitor the behaviour of another, who chooses

whether or not to commit an offence (Tsebelis, 1989). Enforcers are treated as rational,

utility-maximising entities. If players interact only once, increasing the severity of penalty

does not reduce the number of offences, but instead lowers the (costly) effort devoted to

detection by enforcers (Andreozzi, 2004; Tsebelis, 1989). With repeated interactions, in-

creasing the reward enforcers receive for catching criminals does not reduce the number

of offences, and might increase it since enforcers can maximise their profit by monitoring

less, reducing their costs and encouraging a greater number of offences and bonuses (An-

dreozzi, 2004). That these results are sensitive to the precise formulation of the game (see

Weissing and Ostrom, 1991) highlights the complexity of modelling strategic behaviour in

enforcement problems.

Game theoretic approaches have also been used to study common-pool resources (CPR)

where monitoring and enforcement are not the preserve of specific individuals or designated

agencies but are instead carried out by the resource-users themselves as part of a cooperative

effort to manage a natural resource (see Heckathorn 1996 for a review of games which

display the properties of cooperative systems). Early paradigms in the analysis of CPR (e.g.,

Hardin, 1968; Olson, 1971) were formalised as a prisoners dilemma game (Dawes, 1973) and

dealt with open access situations where there is little incentive for rational, self-interested

individuals to moderate their exploitation in anticipation of future benefits since others

may not follow suit. Cooperation can be achieved in the prisoners dilemma under certain
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conditions (e.g., relatively small group sizes) by allowing repeated interactions (Axelrod and

Hamilton, 1981). As described above in small fisheries (Gezelius, 2002; 2004), cooperation

can also emerge and persist under less restrictive circumstances if, despite incurring a cost,

individuals enforce rules by voluntarily punishing non-cooperators: the strategy of altruistic

punishment (Fehr and Gachter, 2002; Fowler, 2005).

Game theoretic models also allow the long-term stability of cooperative agreements to be

assessed. Mesterton-Gibbons and Milner-Gulland (1998) model a cooperative NRM system

to identify conditions under which a community who do not poach and monitor each others

compliance can be stable against invasion by individuals who poach and do not monitor.

They find that people must be paid to monitor, even in the absence of poaching. Shared

benefits are not sufficient to motivate protection of a communal resource without incentives

for enforcement. Furthermore, cooperation breaks down at small community sizes because

the likelihood of an infraction being detected becomes too low.

2.4 Institution level models

Some aspects of enforcement are better explored from the point of view of an institution,

rather than individuals. For example, the ability of a private authority with legal harvest-

ing rights to prevent poaching has been modelled under different property structures and

economic environments (Skonhoft and Solstad, 1996). With well defined but imperfectly

enforced rights, the effective property structure and long term stock levels are affected by

economic variables such as the profitability of alternatives, cost of enforcement, owners dis-

count rate and the resources market price and non-consumptive value. Some effects are

surprising. For example, Skonhoft and Solstad’s model predicts that a government inter-

vention to lower enforcement costs would not raise the optimal wildlife stock but allows the

owner increase legal harvest since the illegal harvest can be further reduced for the same

expenditure.

In many cases, management agencies may be required to cover a proportion of their

operating costs. Where non-consumptive uses of wildlife such as tourism are not viable,

revenue might be generated by selling permits to hunt common species and fining unlicensed

exploitation. A model of a Western African wildlife department suggests that this approach

could indeed benefit endangered species (Robinson, 2008). However, hunters using non-

selective technologies (e.g., snares) may not be able to restrict their catch to legal species
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(Bowen Jones et al., 2003). Punishing the capture of rare species therefore risks causing

significant waste by encouraging hunters to discard animals that were killed illegally rather

than risk sanctions (cf. bycatch in quota-limited fisheries).

2.5 A case study: Elephants

In the 1970s and 1980s high levels of poaching, stimulated by high ivory prices, threatened

the survival of the African elephant (Loxodonta africana) and prompted much debate about

how illegal hunting should be controlled given the resource-constraints of governments in

the elephants range states. The species therefore provides an illustration of how models of

enforcement and compliance have been used to inform conservation policy.

The elephant population of the Luangwa Valley, Zambia, has been particularly well

studied. From 1972 to the mid-1980s the area lost approximately 75% of its 100,000-strong

population (Leader-Williams and Albon, 1988). Although anti-poaching patrols received

significant investment from 1979 they largely failed to prevent further decline (Leader-

Williams and Albon, 1988). Data from 1979–1985 suggest that although these patrols were

well motivated and effective, they were not sufficiently numerous to control illegal hunting

over the entire area (Leader-Williams et al., 1990).

Bioeconomic modelling of individual behaviour provides a means of predicting how effec-

tive different approaches to tackling poaching in the Luangwa Valley would have been. One

such model shows that a fine which increases according to the number of trophies in a poach-

ers possession is a more effective deterrent than a fixed fine, but that increasing the severity

of punishment is less effective than increasing the effort devoted to detecting and prosecuting

poachers (Milner-Gulland and Leader-Williams, 1992; Leader-Williams and Milner-Gulland,

1993). However, sensitivity analyses suggest that the returns to hunting were so high dur-

ing this period that unrealistic increases in enforcement effort would have been necessary

to reduce poaching to an acceptable level (Milner-Gulland and Leader-Williams, 1992).

By 1989 continuing elephant declines across the continent (Stiles, 2004) led to the species

being listed on Appendix 1 of the Convention on the International Trade in Endangered

Species of Wild Flora and Fauna (CITES). Banning the international trade in ivory was

intended to depress demand at a global scale, reducing the incentives to hunt illegally and

thereby facilitating the enforcement of national anti-poaching laws. However the success of

the ban is unclear. A series of models intended to assess the ban’s effects on incentives to
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poach have produced ambiguous results, varying according to their particular assumptions

and parameterisations (Stiles, 2004).

For example, Jachmann and Billiouw (1997) compare a set of institution-level models

of investment in enforcement, arguing that the variation in elephant mortality observed

in the Luangwa Valley between 1988–1995 can be explained by changes in enforcement,

without any need to invoke the effect of the ban. Bulte and van Kooten (1999), on the

other hand, argue that within the range of parameter values estimated for the period 1979–

1985, and assuming a discount rate greater than 5%, the ivory ban should have increased

elephant numbers. Their analysis also suggests that the response of elephant populations

to changing enforcement levels is greater if trade is allowed than if it is not.

Expectation of future management policies can affect current prices and therefore influ-

ence incentives to poach. Kremer and Morcom (2000) warned that anti-poaching policies

that are expected to reduce the future supply of ivory could raise incentives to poach by

creating the expectation of price rises. Using a dynamic institution-level model Kremer and

Morcom (2000) argued that if managers can credibly commit to tough enforcement should

elephant populations fall, the incentives to poach caused by anticipated higher ivory prices

may be reduced. Where tough enforcement is not credible, creating stockpiles of ivory and

threatening to sell this should populations fall, may also be effective at reducing poaching.

Bulte (2003) counter that the CITES ban might create incentives for governments to harvest

their elephant populations to extinction if the prices for stored ivory are sufficiently high and

if extinction is expected to precipitate the lifting of the trade-ban. Although limited by the

availability of suitable data, an attempt to assess the effects of a one-off sale of stockpiled

ivory in 1999 using mortality data from Kenya and Zimbabwe suggests that it had little

effect on overall elephant poaching levels (Bulte et al., 2007).

2.6 Challenges for future studies of enforcement and compli-

ance

The preceding sections have highlighted the strengths of modelling approaches as tools to

inform debate about the design and implementation of enforcement measures. However, we

feel there are several ways in which models of enforcement and compliance can be further

improved. Our review demonstrates that models of enforcement have tended to focus on

economic factors influencing decision making, with less emphasis on research from the fields
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of psychology and sociology. Below we discuss the scope for creating richer models of human

behaviour, relaxing common assumptions about rationality, uncertainty and intertemporal

trade-offs by rule breakers. Both our review and the case study of elephant conservation

highlight the sensitivity of model outputs to their precise specification. Models must there-

fore be developed with a good understanding of the realities of the system being studied

and parameterised with appropriate data. We briefly discuss the challenges of collecting

such data below.

2.6.1 Rationality and uncertainty

Decisions under uncertainty, such as whether to break an imperfectly enforced rule, have

traditionally been modelled using the expected utility framework. Utility is a measure of

relative satisfaction and expected utility is defined as the mean utility received under risk.

However, the use of the expected utility framework to explain decision-making under risk is

undermined by experimental evidence that its core assumptions are frequently violated in

practice (Schoemaker, 1982). For example, people have been shown to evaluate losses and

gains differently, to make decisions based on reference points rather than absolute values

and to be influenced by the framing of choices as well as their anticipated values (Kahneman

and Tversky, 1979; Tversky and Kahneman, 1992).

Indeed, although economic models of human decision-making generally assume that in-

dividuals are rational and act to maximise their utility, much of the psychological research

into decision-making suggests that these assumptions are not realistic (McFadden, 1999).

Instead individuals may have bounded rationality, limited by cognitive resources, and em-

ploy a variety of heuristic procedures to achieve outcomes that are good enough rather than

truly optimal (Conlisk, 1996). Differences in the decision-making processes employed by dif-

ferent individuals might arise from their previous experiences, as suggested by psychological

theories of compliance, and render some more likely to break rules than others.

The significance of deviations from rationality assumptions for models of enforcement

and compliance is currently unknown. Future research in this area could focus on identifying

and testing the “rules of thumb” used for decision-making in specific situations. Work

is also needed to assess how adopting alternatives to expected utility, such as prospect

theory (Kahneman and Tversky, 1979; Tversky and Kahneman, 1992), could affect model

predictions.
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2.6.2 Intertemporal choice

Many choices made by individuals depend on how they trade-off costs and benefits at dif-

ferent points in time (Frederick et al., 2002). Models of NRM have generally dealt with

intertemporal issues in a simplistic manner, with individuals having a single, fixed discount

rate for all situations. Such models have suggested that slowly reproducing populations are

more likely to be harvested to extinction if hunters have high discount rates (Clark, 1973).

High discount rates may also affect the perceived severity of punishments, with future con-

sequences (e.g., the later portions of long prison terms) devalued relative to more immediate

sanctions (Leader-Williams and Milner-Gulland, 1993).

In reality discount rates, as well as other factors influencing an individuals decision-

making, may change through their life and with their circumstances (Edwards-Jones, 2006)

and are likely to vary between individuals. Currently, however, factors affecting intertem-

poral choices are poorly understood. For example, it has been claimed that poverty forces

individuals to make decisions on a short term basis, neglecting resource conservation, but

there is evidence of desperately poor people choosing long term gains (or long term stability)

despite a short-term cost (Moseley, 2001). Further work is needed in this area to study the

determinants of discount rates in order to better predict how intertemporal trade-offs will

affect rule-breaking behaviour.

2.6.3 Information requirements

Ultimately, models can only take us so far. Our case-study of elephant conservation il-

lustrates that while models can be powerful aids to decision-making, the details of their

implementation and parameterisation are crucial to their interpretation. The development

of a theoretical framework for enforcement must therefore be underpinned by good data if it

is to provide a solid basis for action. Many attempts to validate theories of enforcement with

empirical evidence have been unconvincing, often because suitable data are simply not avail-

able (Cameron, 1988; Ehrlich, 1996). In conservation settings, data on non-compliance are

frequently a by-product of attempts to deter rule-breaking, limiting their quality. However

collecting more detailed data, such as spatial patterns of non-compliance and enforcement

effort, poses serious logistical challenges and may not be justified under local conservation

budgets.

In order to ensure research into rule-breaking can be used in practical conservation, a
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close reciprocal relationship between models and data is needed. Models can guide data

collection and help to determine the minimal data requirements for robust decision-making.

Salafsky et al. (2001) have promoted an adaptive management approach to ecological mon-

itoring and project appraisal. Such an approach could be taken with enforcement to allow

data to be collected in a more targeted and systematic manner. Future research should

also explore other potential avenues for the collection of data about rule-breaking including

novel interview methods for the collection of sensitive information, such as the randomized

response technique (Solomon et al., 2007).

Ultimately, as models become more complex, their data requirements might render them

impractical as tools for management decision-making. Although this trade-off between

complexity and reality is common to all modelling approaches, the paucity of data for many

exploited species amplifies the problem in NRM (e.g., Smith, 1993) and good data are rarely

available for threatened species. In some cases, therefore, it may be desirable to identify

situations where rules of thumb can adequately inform day-to-day decision-making.

2.7 Conclusions

Rules, whether implicit or explicit, are at the heart of every conservation and NRM system

but compliance cannot be taken for granted. Success depends on the ability of managers

to influence the behaviour of resource users, and enforcement therefore has a vital role to

play in the conservation of natural resources. To date the literature on this issue has been

scattered among a number of disciplines, and theoretical insights from other fields have not

been fully and consistently applied to NRM. We believe there is a need to develop a new

field of robust theory and practice for enforcement and compliance in conservation, building

on the experience of others. Models of enforcement have been important in predicting how

individual incentives can be modified to improve compliance with rules but further work

is urgently required to broaden our understanding, to validate models with empirical data

and ultimately to produce practical guidelines for the optimal use of enforcement measures

in conservation. If conservationists are caught napping on issues of enforcement, both the

natural resources that we set out to manage and those who depend on them may suffer.
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Chapter 3

Evidence for the effects of

environmental engagement and

education on knowledge of wildlife

laws in Madagascar

Submitted for publication as:

A. Keane, A.A. Ramarolahy, J.P.G. Jones and E.J. Milner-Gulland. Evidence for the

effects of environmental engagement and education on knowledge of wildlife laws in Mada-

gascar. Conservation Letters.

3.1 Introduction

Rules and regulations are of central importance to conservation, underpinning a whole spec-

trum of approaches from community-based wildlife management and payments for ecosys-

tem services to fishing quotas and protected areas (Chapter 2). However, the existence of

a rule does not guarantee that it will be respected (Rowcliffe et al., 2004). Various fac-

tors influence compliance with rules (Chapter 2), but if they are not widely known, rules

cannot change behaviour. For example, studies of anglers in the USA (Page and Radom-

ski, 2006) and community-based natural resource management in Uganda (Nkonya et al.,

2008) have shown that compliance is higher in groups with better awareness of the rules.

It is therefore important for conservationists to understand which factors most strongly in-
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fluence awareness of rules, but the topic has been neglected. Nkonya et al. (2008) found

that, at the community level, awareness of locally-enacted regulations protecting privately

owned natural resources was lower among isolated groups, but was improved by the pres-

ence of environmental organisations. However, there has been no attempt to identify factors

which improve awareness of rules at the individual level, where decisions about hunting and

persecution are made.

Madagascar is recognised as one of the hottest biodiversity hotspots (Mittermeier et al.,

2004). Much of the islands diverse and highly endemic flora and fauna is threatened by

habitat destruction (Green and Sussman, 1990), overhunting (O’Brien et al., 2003; Golden,

2009), persecution (Hawkins, 2006) and collection for the pet trade (Andreone et al., 2005).

Recent political difficulties have further exacerbated the situation (Barrett and Ratsim-

bazafy, 2009). This year it is 50 years since the first Malagasy wildlife law was passed

(which made lemur hunting illegal). Malagasy wildlife law (principally Law 60–126 and De-

cree 2006–400) now divides species into three categories: protected (may not be hunted or

killed); game (may be hunted only during specific periods and with a permit); and nuisance

(not subject to any controls). There is considerable evidence that these laws are not well

respected (Garćıa and Goodman, 2003; Goodman, 2006; Jenkins and Racey, 2008; Golden,

2009) but there has been no investigation of how well they are known and understood.

This study quantifies the effects of various factors on individuals awareness of species

conservation laws among rural people in the eastern rainforest area of Madagascar. The

involvement of local communities in tourism (Durbin and Ratrimoarisaona, 1996) and, more

recently, in the management of forests and their resources (Antona et al., 2004; Raik and

Decker, 2007) are key components of Madagascars environmental policy, intended to improve

conservation and resource management through a variety of mechanisms. We therefore

ask whether involvement with these activities increases awareness of Madagascars species

protection laws. Formal education is often cited as a key determinant of environmental

awareness (Howe, 2009). We therefore also test whether having a higher level of education

improves knowledge of the law. Finally we examine the effect of these factors on knowledge

of the law among a key target group for rule enforcement, those most likely to have the

inclination and opportunity to hunt; young adult males (Kümpel et al., 2010) who have

previously encountered the species in question.
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Figure 3.1: Map showing the location of each interview relative to the forest corridor and
the commune centre. In order to preserve the anonymity of respondents, the names of
fokontany and settlements are not given. Isolation is not clearly related to distance from
the main town or the forest edge due to the shape of the forest and the proximity of other
towns.

3.2 Methods

3.2.1 Study area

Our study was carried out in a rural area of Madagascar, adjacent to the forest corridor

which runs along the country’s eastern escarpment (Figure 3.1). Livelihoods in the region

are based on small scale farming with collection of forest products and hunting to supplement

income and protein (Ferraro and Kiss, 2002; Jones et al., 2006). Between December 2007

and April 2008 interviews were conducted with 602 individuals from 7 small administrative

units known as fokontany within one commune.
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In four fokontany, management of natural resources within defined areas of forest has

been devolved to community-based forest management organisations (Antona et al., 2004;

Raik and Decker, 2007). Individuals may choose whether or not to participate in the ac-

tivities of the forest management organisations, although membership is subject to a fee.

Some respondents were also members of the forest management committees.

The area receives a small but increasing number of tourists, with local environmental and

development NGOs helping the commune to develop the eco- and ethno-tourism potential

of the area, specifically its primary rainforest and picturesque sacred mountain. The main

livelihood activity of all respondents was farming, but some also engaged with the tourism

industry, acting as tourist guides or hosting tourists. The commune has no protected areas

or major conservation interventions.

3.2.2 Data collection and analysis

Interviews were conducted in Malagasy, primarily by AAR with the help of a research

assistant and a local guide. JPGJ (fluent in spoken Malagasy) and AK attended some

interviews. Participants were selected at random and questioned about 23 animal species

found in the area (Table 3.1). First, participants were shown a photograph and asked to

name it. If they were unable to identify the species correctly, they were given a hint and

allowed to try again. The interviewees were then asked if they had ever seen the species

and, finally, to indicate whether it was a protected, nuisance or game species by placing the

photograph into one of three piles. This procedure was repeated for each species. After the

interview, the respondents demographic characteristics were recorded (Table 3.2).

Before analysis, we discarded responses where a species was not correctly identified from

the photograph and the hint (30.2% of the total) and those with missing data, leaving a

sample of 8,059 responses from 542 individuals. The percentage of discarded responses was

similar for each category (protected = 8.4%, game = 8.8%, nuisance = 6.8%). A series

of multilevel logistic models were fitted to the data. The response was binary, indicating

whether the respondent was able to place the species in the correct legal category.
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Table 3.1: Names, legal categories and IUCN Red List status of species included in study. Red List status is denoted using abbreviations, LC = least
concern, NT = near threatened, VU = vulnerable, EN = endangered.

Scientific name English name Malagasy name at study site Legal category Red List status

Centropus toulou Madagascar coucal Toloho Game LC
Cuculus rochii Madagascar cuckoo Kakafotra Game LC
Foudia madagascariensis Madagascar red fody Fody Game LC
Mantidactylus pulcher Sahona maintso Game LC
Pteropus rufus Madagascar flying fox Fanihy Game LC
Tenrec ecaudatus Tenrec Trandraka Game VU
Acridotheres tristis Common myna Martin Nuisance LC
Potamochoerus larvatus Bush pig Lambo Nuisance LC
Rattus rattus Black rat Voalavo Nuisance LC
Alectroenas madagascariensis Madagascar blue-pigeon Finengo manga Protected LC
Cryptoprocta ferox Fossa Fosa Protected VU
Daubentonia madagascariensis Aye-Aye Hay-Hay Protected VU
Fossa fossana Malagasy civet Fanaloka Protected NT
Furcifer lateralis Jewelled chameleon Tanalahy Protected —
Hapalemur griseus Eastern lesser bamboo lemur Bokombolo Protected VU
Leptopterus chabert Chaberts Vanga Tsramaso Protected LC
Limnogale mergulus Aquatic tenrec Voalvorano Protected VU
Lophotibis cristata Madagascar Crested Ibis Akoholahinala Protected NT
Mantella madagascariensis Painted mantella Sahona mivolomiaramila menafe Protected VU
Microcebus rufus Gray mouse lemur Tsidy Protected LC
Propithecus edwardsii Diademed sifaka Simpona Protected EN
Sanzinia madagascariensis Madagascar ground boa Mandotra Protected VU
Setifer setosus Spiny tenrec Sora Protected LC
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3.2.3 Statistical modelling

Eleven explanatory variables were grouped into six functional groups. The first was the

species’ legal category. The remaining five described differences in the respondents’ indi-

vidual characteristics; their education (highest level of education attained), involvement

with natural resource management or tourism activities (whether they pursue other liveli-

hood activities in addition to farming, such as guiding tourists; whether they belong to a

household which hosts tourists; whether they belong to a forest management organisation),

demographic characteristics (age; sex), familiarity with the species (whether they have ever

seen the species), and their location (the fokontany to which they belong; distance from the

forest edge; distance from the commune centre). Due to the geographic characteristics of

the study site (Figure 3.1), it was not possible to test specific hypotheses regarding location

(such as the potential effects of isolation), so this group of variables was included to account

for spatial dependency in the data.

Differences between species were modelled through the inclusion of a random effect

because we were primarily interested in social rather than species-specific factors influencing

awareness of conservation rules. This allowed us to quantify the variation between species

without the need to estimate large numbers of parameters. Differences between species

were examined informally by disaggregating the random effect. A second random effect,

for individual, was included to account for the grouping structure of the data since every

respondent answered questions about each species.

A candidate set of models was chosen a priori. Each model included species category with

varying combinations of the remaining groups of explanatory variables and their interactions

with species category. The full set of 61 models was fitted in R 2.10.0 (R Development Core

Team, 2009) using the glmer function from the lme4 package, version 0.999375-32 (Bates and

Maechler, 2009). AIC was used to rank the fitted models and construct a 99% confidence

set. Model weightings were calculated based on this confidence set (Burnham et al., 2002).

Parameter estimates derived from these models are difficult to interpret directly because

of the presence of interactions and non-linearity. We therefore present average predictive

comparisons, calculating the means and confidence intervals of responses simulated from

the fitted models to evaluate their predictions at different values of one or more focal vari-

ables, holding all others constant (Gelman and Hill, 2007). Both parameter uncertainty

and model selection uncertainty were incorporated in these comparisons. Uncertainty in
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Table 3.2: Summary of the predictor variables considered for inclusion in the models.

Continuous variables
Variable Unit Median

Age Years 37.5
Distance from forest edge Kilometers 1.90
Distance from commune centre Kilometers 4.83

Categorical variables
Variable Level Count

Sex Male 310
Female 232

Level of education Primary school (EPP) 431
Secondary school (CEG) 92
Lycée 19

Main occupation Farmer 327
Crafts 85
Tourist guide 4
Official 12
Other 114

Forest management involvement None 123
Organisation member 380
Committee member 50

Tourist host Yes 21
No 521

Has seen the species? Yes 510
No 32

Fokontany A 23
B 160
C 20
D 119
E 112
F 86
G 22

parameter estimates was incorporated by simulating every scenario 1000 times, each time

drawing parameter values at random from Normal distributions whose means and standard

deviations equalled the means and standard errors of the fitted models’ parameter esti-

mates (Gelman and Hill, 2007). Model selection uncertainty was incorporated by repeating

this process for each of the models in the 99% confidence set, averaging their predictions

weighted by their Aikaike weights (Burnham et al., 2002).

3.3 Results

The respondents’ ability to classify species into their legal categories was poor, with only

42.9% (n = 8059) correct responses in the raw data (cf. the expectation of 33.3% for unin-
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Table 3.3: Summary of the 99% confidence set of models selected based on AIC. The
inclusion of different functional groups of predictor variables in each model is indicated
by M (the main effects for these variables were included) and I (the interactions of these
variables with species legal category were included). RE:species and RE:individual indicate
the standard deviation of the random effects terms for species and individuals respectively.
∆AIC is the difference in AIC between the model in question and the AIC-best model
(Model 1). w is the Aikaike weight of the model.

Model 1 Model 2 Model 3 Model 4 Model 5 Model 6 Model 7

Demographic M + I M + I M + I M + I M + I M + I M + I
Education M + I M + I M + I M M
NRM/Tourism M + I M + I M + I M + I M + I M + I M + I
Familiarity M + I M M + I M M + I
Location M + I M + I M + I M + I M + I M + I M + I

RE:species 1.06 1.06 1.05 1.06 1.06 1.06 1.05
RE:individual 0.54 0.55 0.55 0.54 0.55 0.55 0.56

AIC 7603.34 7603.67 7604.27 7606.18 7606.79 7606.83 7607.91
∆AIC 0 0.32 0.93 2.84 3.44 3.49 4.57
w 0.31 0.27 0.20 0.08 0.06 0.06 0.03

formed guesses). However, there were substantial differences between the three categories.

Nuisance species were correctly identified most often (63.8% of 1428 responses), followed by

protected species (56.5% of 3137 responses), with game species rarely placed in the correct

category (9.2% of 2494 responses).

Model selection resulted in a 99% confidence set of 7 models (Table 3.3). The AIC-

best model included all explanatory variables and their interactions with legal category,

but this model only received a weighting of 0.31 reflecting a high degree of model selection

uncertainty (Burnham et al., 2002). Other selected models dropped groups of variables

representing the respondents education and familiarity with the species. Model-averaged

predictions generated from the confidence set correspond well with the observed data (Figure

3.2).

Average predictive comparisons for combinations of species legal category and other

predictor variables are presented in Figure 3.3. As in the raw data, the most important

effect is that of species legal category, with nuisance species correctly categorised more

often than protected species, while game species are almost always miscategorised. The

effects of other predictors also interacted with legal category.

The involvement of respondents with resource-management activities was associated

with substantial improvements in categorising protected species (Figure 3.3). Members

of forest management associations were 21.1% more likely to categorise protected species
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Figure 3.2: Model fit and variability attributable to random effects for species and individ-
ual respondents. The heavy black line indicates the predicted fit, averaged over the 99%
confidence set of models. Black circles show the mean of the response variable binned into 1
unit intervals, with error bars of +/- 2 standard errors. The broken black lines and solid grey
lines indicate the minimum and maximum values of the conditional modes of the random
effects for individuals and species respectively taken from the best fitting model, illustrating
the range of variability.

correctly than non-members, but there was little difference between ordinary members and

committee members. Predictions regarding the categorisation of nuisance species were more

variable, but there were indications that the members of forest management associations

categorised nuisance species correctly less often than non-members. Hosting tourists had a

lesser effect, but there was some indication that respondents from households which hosted

tourists were slightly better at categorising protected and game species, but worse at cate-

gorising nuisance species.

Large differences were associated with occupation, with respondents holding an official

position or who acted as tourist guides being respectively 25.0% and 36.4% more likely

to correctly categorise protected species that those who were just farmers. Guides were

also more likely to classify game species correctly, but officials very rarely categorised game

species correctly. Occupation produced no convincing effect on the categorisation of nuisance

species.

Respondents’ level of education was also important for the categorisation of protected

species but had little effect for nuisance or game species. There was little difference between

those with only primary (EPP) education and those who had attended secondary (CEG)
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Figure 3.3: Model-averaged average predictive comparisons illustrating the effect of each
predictor variable on the probability of correctly categorising a species, and their interactions
with the species’ legal category. The dashed vertical line indicates the predicted overall mean
response for the original dataset. The solid vertical line in each panel indicates the predicted
mean response for the sample population if all of the species were protected, nuisance or
game respectively. Heavy lines indicate approximate 67% confidence intervals, obtained by
simulation. Light lines indicate approximate 95% confidence intervals. See Table 3.2 for
descriptions of the variables.

27



education. However, respondents who were educated at a lycée were 24.1% more likely to

categorise protected species correctly than those with only primary education.

We observed few clear differences associated with respondents’ demographic characteris-

tics, but males were 22.0% more likely to categorise protected species correctly than females.

There was also a slight improvement in the categorisation of protected species with age, so

that respondents aged 60 were 8.4% more likely to categorise protected species correctly

than respondents aged 20. There was no clear effect of whether or not the respondent had

ever encountered the species in question on their ability to categorise it correctly. There were

substantial changes in levels of knowledge attributable to location. For example, respon-

dents from fokontany A were 52.1% more likely than those from fokontany F to categorise

protected species correctly.

From the perspective of a policy maker or conservation NGO, a key question is the

extent to which education, or involvement with environmentally-based activities such as

tourism and local resource governance, affects awareness of laws among the individuals who

most often hunt wildlife. We therefore used the model to predict how these factors change

awareness in the group most likely to hunt; young (aged 25 years) male farmers with only

primary education (Figure 3.4). Baseline levels of knowledge for this group are predicted to

be much lower for protected species (47.2% categorised correctly) than for nuisance species

(72.5% correct). However, guiding, membership of forest management organisations and

belonging to a household which hosts tourists all improved categorisation, as does a lycée

education. Individuals with all these characteristics were almost twice as likely to correctly

classify protected species as those who did none of them (89.1% correct).

The fitted models suggest that approximately 21% of the remaining variation is at-

tributable to variation between individuals, while 41% is between species. Of the protected

species, lemurs were most often categorised correctly, followed by the birds and reptiles

(Figure 3.5). The two carnivore species (Fossa fossana and Cryptoprocta ferox ) and two

protected insectivores (Setifer setosus and Limnogale mergulus) were least well categorised.

In particular, the rare and cryptic aquatic tenrec (Limnogale mergulus) was very rarely

categorised correctly.
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Figure 3.4: Average predictive comparisons illustrating the effect of conservation related
activities and education on ability correctly to classify protected species amongst a target
group of individuals likely to hunt wildlife. For the purposes of the scenario, this group was
defined as young (aged 25 years) male farmers who have received only primary education.
The solid vertical line indicates the baseline predicted mean response of the target popu-
lation. Heavy lines indicate 67% confidence intervals. Light lines indicate 95% confidence
intervals.

Limnogale mergulus (VU)

Cryptoprocta ferox (VU)

Setifer setosus (LC)

Fossa fossana (NT)

Leptopterus chabert (LC)

Lophotibis cristata (NT)

Alectroenas madagascariensis (LC)

Sanzinia madagascariensis (VU)

Mantella madagascariensis (VU)

Microcebus rufus (LC)

Daubentonia madagascariensis (VU)

Furcifer lateralis (−−)

Hapalemur griseus (VU)

Propithecus d. edwardsii (EN)
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Species random effects (Protected species)

Figure 3.5: The conditional modes of the species random effect for protected species included
in our questions, indicating the differences in probabilities that the species were categorised
correctly. Positive values indicate that a species was more likely to be correctly categorised.
Heavy lines indicate an interval of +/- 1 SE and the lighter lines +/- 2 SE. Species are
referred to by their Latin names. For common names, please refer to the Table 3.1. The
letters in brackets after each species correspond to their status on the IUCN Red List: LC
= least concern, NT = near threatened, VU = vulnerable, EN = endangered (IUCN, 2009).
Furcifer lateralis is not currently IUCN listed.

29



3.4 Discussion

We found the level of knowledge about Madagascar’s wildlife laws to be generally poor

in our study area. One way to improve awareness of conservation rules is through dedi-

cated education campaigns (e.g., Padua, 1994), but these are expensive and can trade off

with other conservation activities (Alder, 1996). Consequently, it is important to know

which factors predispose individuals to be better informed about conservation rules so that

awareness-raising interventions can be effectively targeted.

For protected species, levels of awareness are substantially higher in better educated

individuals and those involved with tourism and community-based resource management.

These findings are largely in agreement with those of previous studies which have examined

the effects of ecotourism (e.g., Gadd, 2005; Waylen et al., 2009), level of schooling (e.g.,

Howe, 2009) and participation in community-based projects (e.g., Kideghesho et al., 2007)

on awareness of and attitudes towards other aspects of conservation. From a post hoc

assessment, it is difficult to be certain of the direction of causality and we cannot rule out

the possibility that these relationships could be partly endogenous. We feel, however, that

an individual’s awareness of the law is very unlikely to affect their probability of receiving

employment as a guide or joining a forest management organisation.

Providing better education and creating tourism-based livelihood opportunities are com-

mon goals for development and conservation interventions, and improving awareness and

understanding of wildlife laws is a useful byproduct of these activities. Currently, however,

only a small subset of the population are guides or have been educated to lycée level (4 and

19 individuals respectively). By contrast, the majority of the respondents in our study (430

individuals) participated in forest management organisations. Previous studies have ques-

tioned whether community-based approaches to conservation can be effective (e.g., Agrawal

and Gibson, 1999). In Madagascar, the partial devolution of natural resource management

to communities has shifted many responsibilities to the local level (Antona et al., 2004; Raik

and Decker, 2007) but forest management organisations have often received little support

since their creation, and concerns have been raised that this could undermine their success

(Hockley and Andriamarovololona, 2007). However our results suggest that, irrespective of

whether other benefits are realised, involvement with local forest management organisations

helps to sensitise people to conservation laws.

Another striking finding is the very poor recognition of game species’ legal status. Al-

30



though bushmeat has recently gained prominence as a conservation issue in Madagascar

(e.g., Garćıa and Goodman, 2003; Goodman, 2006; Golden, 2009), the focus has been on

protected species such as lemurs. The exploitation of game species has received very little

attention, although it is likely to be wider in extent (Jenkins and Racey, 2008). Our findings

suggest that the laws regarding game species are currently too poorly known to stand any

chance of influencing people’s behaviour.

In general, the factors which improved respondents’ ability to categorise protected species

also tended to improve categorisation of game species, but due to smaller sample sizes the

effects are less well estimated. By contrast, these same factors had little effect or even

reduced the ability of respondents to categorise nuisance species. One interpretation is that

increased exposure to conservation messages (through resource-management, tourism and

the like) biases individuals towards assuming, or reporting, that species are subject to legal

protection.

Although our primary focus here was relating differences in awareness to respondents’

individual characteristics, we also observed species-related differences. The causes of these

differences are beyond the scope of this study but might reflect differing levels of agreement

between national laws and local attitudes and beliefs. Although often viewed in isolation,

national laws are part of a larger system of formal and informal rules recognised by local

Malagasy, which incorporates traditional taboos or fady (Jones et al., 2008b). In some

cases, pre-existing attitudes towards a species might correspond with its legal status. For

example, the lemur Propithecus edwardsii, is legally protected and is also considered taboo

by many people in the area (Jones et al., 2008a) so it might be expected to be categorised

correctly more often than protected species which are not locally revered (such as the aquatic

tenrec, known as ‘water rat’ [voalavorano] in Magalasy). Awareness might also have been

affected by taxon-specific conservation measures, such as the extensive efforts devoted to

lemur conservation in many parts of Madagascar.

Ultimately, rules in conservation can only be effective if they are known and understood

by the people whose behaviour they are intended to regulate. Changing peoples behaviour

requires a concerted body of research to assess how knowledge, attitudes and behavioural

intentions are formed and influence one another (Holmes, 2003). Understanding the deter-

minants of awareness of rules and regulations is therefore a vital, but often overlooked, first

step towards building an evidence base for the creation of robust, successful and scientifically

informed policies to promote behavioural change.
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Chapter 4

Modelling the effect of individual

incentives for monitoring and

rule-breaking on conservation

outcomes

4.1 Introduction

Effective enforcement is essential to conservation success (Chapter 2) but enforcement mea-

sures may be very costly (Jachmann, 2008b; Robinson, 2008; Wilkie et al., 2001) so questions

about how enforcement measures can be efficiently designed and implemented are of consid-

erable importance to conservation practice (Robinson et al., 2010). The economics literature

contains an extensive body of theory on optimal deterrence (Becker, 1968; Garoupa, 1997;

Winter, 2008) which aims to understand how many resources should be devoted to pre-

venting rule-breaking, but there have been relatively few applications to conservation and

natural resource management (Chapter 2). Since Becker (1968) models of deterrence and

compliance have routinely focused on two components of enforcement; the probability that

a rule-breaker is detected and punished and the severity of sanction that they incur (e.g.,

size of fine, length of prison term). Together these factors determine the expected costs

of enforcement that a potential rule-breaker will face, with increases in either expected to

reduce the amount of rule-breaking that occurs (e.g., Milner-Gulland and Leader-Williams,

1992).
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Although this theory provides a useful framework for understanding the role of enforce-

ment in compliance, its usefulness implicitly depends on the assumption that policy makers

and managers are able easily and precisely to control the severity and probability of sanctions

faced by rule-breakers. However, this will rarely be true and certain aspects of enforcement

are more easily manipulated than others. For example, statutory punishments and sen-

tencing guidelines may help to ensure that particular categories of rule-breaking always

receive the same level of sanction (although the actual level of punishment may still show

considerable variation, e.g., Leader-Williams et al. 1990). Similarly, it may be reasonably

assumed that improvements in training and equipment will improve the ability of monitors

to detect rule-breaking. However, the actual probability of detection is likely to be much

more difficult to control since it depends strongly on the behavioural decisions of both the

individuals charged with monitoring and reporting non-compliance and the rule-breakers

themselves (Akella and Canon, 2004; Robinson et al., 2010).

The people responsible for monitoring non-compliance, be they police, customs officials

or protected area staff, face their own set of incentives, and there are several reasons why

these may differ from those of the manger or policy maker who nominally decides the level

of enforcement (Tsebelis, 1989; Andreozzi, 2004). Monitoring has opportunity costs, may be

dangerous (Hart et al., 1997) and risks inviting recriminations from peers (Robinson et al.,

2010) so monitors may face incentives to ‘cheat’ at their job (e.g., not patrolling as they

are meant to, or failing to report infractions when they are encountered). The position of

authority occupied by monitors may also create opportunities for corruption (Mookherjee

and Png, 1995). For managers, the main tools available to incentivise monitors to perform

their duties effectively are the payment of fees and salaries and the provision of performance

related bonuses (e.g., Jachmann and Billiouw, 1997; Jachmann, 2008b; Mesterton-Gibbons

and Milner-Gulland, 1998), but the effectiveness of such payments has received little atten-

tion and remains poorly understood (e.g., Tsebelis, 1989; Andreozzi, 2004; Mookherjee and

Png, 1995).

There are also many factors which can influence the choices and motivation of potential

rule-breakers. Models of rule-breaking assume that individuals are rational and act to

maximise their utility (Becker, 1968). Their decisions are therefore influenced by their

perception of the risk of punishment (which depends on both the probability that they are

detected and punished, and the severity of the sanctions that they would incur), but also

depend upon a range of individual characteristics that are rarely considered in such models.
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For example, the returns a hunter can expect from a day’s poaching depends upon their skills

at catching animals, their choice of hunting strategy and the resources that are available

to them (e.g., guns and cartridges or wire for snares; Hill and Kintigh 2009). These things

vary from one hunter to the next, and can result in large differences in hunting success

between individuals (Coad, 2007), with the result that poaching may be intrinsically more

attractive to some individuals than others. Other forms of individual heterogeneity may

produce similar effects. For example, the decision about whether or not to poach might

also vary according to an individuals opportunity costs (e.g., Damania et al., 2005), with

individuals who are able to find regular paid employment potentially facing lower incentives

to hunt (Muchaal and Ngandjui, 1999), or according to differences in their ability to avoid

detection and capture by enforcement agents (Malik, 1990).

Understanding how the motivations of enforcement agents and rule-breakers interact to

produce conservation outcomes is particularly important—and particularly challenging—in

community-based projects where the responsibility for ensuring compliance with conserva-

tion rules has been devolved to the local level (e.g., Gibson, 1995). In these settings, there is

a greater symmetry between the choices facing individuals, since each person could in theory

have the option to poach or not to poach, and to monitor or not to monitor (in contrast

to top-down approaches to enforcement where the roles of monitor and rule-breaker may

be more strictly delineated; cf. Mesterton-Gibbons and Milner-Gulland 1998). A common

criticism of the community-based approach has been that it often fails to take account of the

heterogeneous nature of communities, and the differing motivations of individuals within

them (e.g., Agrawal and Gibson, 1999; Berkes, 2004). However, there continues to be con-

siderable interest in local communities as targets for conservation action, and this looks set

to grow further with the spread of community-based approaches to implementing payments

for environmental services (e.g., Sommerville et al., 2009). Consequently, there is a pressing

need to develop a better understanding of the incentives faced by individuals, and how they

play out to produce community-level outcomes.

Individual-based models (IBMs) are simulation models that treat individuals as discrete

entities with at least one property in addition to age that changes over time (Grimm and

Railsback, 2005). They have been widely applied in ecology and are conceptually similar to

agent-based models or multi-agent simulation models (Bousquet and Le Page, 2004). IBMs

have previously been used in the study of human decision-making and social organisation

in natural resource management and conservation (Berger, 2001; Bousquet, 2001; Castella
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et al., 2005; Milner-Gulland et al., 2006). In contrast to other models of enforcement and

compliance, the adoption of an IBM framework allows the functional form of a community’s

response to policy levers to emerge from the aggregation of individual decisions, rather

than being assumed a priori, and provides a natural avenue for incorporating heterogeneity

between individuals. Here, I use an IBM of a community-based conservation project to

explore the effects on compliance of changing (1) the fine incurred by poachers if they are

caught, (2) the fees paid to individuals for carrying out monitoring duties, and (3) the

size of bonus payments made to monitors for catching a rule-breaker. These parameters

were chosen since they represent realistic policy levers which managers could be expected

to have at their disposal, allowing us to explore the effect of individual heterogeneity within

a community on the effectiveness of conservation rules.

4.2 Methods

4.2.1 Model structure

I model a small community-based project intended to reduce poaching of a protected species

(cf. Child, 1996; Hackel, 1999; Holmern et al., 2007). To achieve this, the project tries to

create incentives for the local people (a) to refrain from poaching, and (b) to monitor

whether others poach, using a combination of rewards and sanctions. Rewards for desirable

behaviour include the payment of a community-level benefit, monitoring fees and bonus

payments for reporting poaching. Sanctions include fines if individuals are caught poaching,

or if monitors are found to be neglecting their duties. The model follows and extends that

of Mesterton-Gibbons and Milner-Gulland (1998).

The modelled community consists of n individuals who differ from one another in three

respects: (1) their opportunity costs of participating in monitoring and of hunting, (2)

their average hunting success (which incorporates hunting effort in the traditional sense of

the word, the ‘catchability’ of their prey and other factors such as their equipment, innate

skill and experience), and (3) the degree to which they are willing to invest in avoidance

behaviour to improve their chances of escaping punishment when breaking rules. These

characteristics are sampled randomly from Normal distributions and are independent of one

another. Once assigned to an individual they are fixed and do not vary from round to round.

Each individual adopts one of six strategies in a given round, related to both their

monitoring and their poaching behaviour. Individuals can choose either to poach or not,
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Table 4.1: Payoffs to each strategy component. An ‘x’ in one of the final six columns
indicates that the strategy receives that row’s payoff component. The strategies are denoted
by the abbreviations: PM = poach and monitor; PC = poach and cheat; PO = poach and
neither monitor nor cheat; NM = do not poach but monitor; NC = do not poach but cheat;
NO = do not poach and neither cheat nor monitor.

Strategy
Component Payoff equation PM PC PO NM NC NO

Community benefit, W W = Bt x x x x x x
Monitor’s payoff, M M = Yi,t x x
Poacher’s payoff, P P = Πi,t − Ui,t −Ai,t x x x
Cheat’s payoff, C C = Fi,t x x
Alternative payoff, oi oi x

and either to monitor, cheat (pretend to monitor without performing their duties) or do

neither. This leads to the following combinations of behaviour: “poach but also monitor for

others poaching” (PM); “poach and cheat at monitoring” (PC); “poach and neither cheat

nor monitor” (PO); “don’t poach and monitor for others poaching” (NM); and “don’t poach

and cheat at monitoring” (NC); “neither poach, monitor nor cheat” (NO). NO individuals

are assumed to be pursuing an alternative livelihood strategy. The utility derived by an

individual from their actions in a given round depends upon their strategy choice (Table 4.1),

the choices of the rest of the population, their individual characteristics and, for poachers,

the size of the animal population. I assume that these strategies do not require special skills

or investment in particular technologies, so there are no barriers to individuals switching

between them.

4.2.2 Community benefit

Every individual, regardless of their strategy choice, receives a share of a communal benefit.

In each round a shared payment is made to the community by an external organisation. For

the first 5 rounds it is fixed at its maximum, Bmax, so every individual receives a share, Bt,

where n is the number of individuals in the population

Bt =
Bmax

n
. (4.1)

After this initial grace period the amount paid is reduced in proportion to the number

of poachers caught in the previous round, nC,t−1.
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The payment per individual is therefore

Bt =
Bmax

n

�

1−
nC,t−1

n

�

. (4.2)

4.2.3 Payoff from poaching

Individual i’s revenue from poaching in round t, Πi,t, is a function of the number of animals

caught, hi,t, and the revenue from catching a single animal, v

Πi,t = vhi,t. (4.3)

The number of animals caught by individual i in round t, hi,t, is drawn from a Poisson

distribution with mean equal to the size of the prey population in that round, Xt, multiplied

by the focal individual’s average hunting success, ei. Only the variable costs of hunting are

considered in this analysis and are incorporated into the revenue per animal. The effect of

hunting on the market for bushmeat is assumed to be negligible, and individual effort does

not vary, so v is constant.

The population dynamics of the hunted species are described by the discrete logistic

equation. The number of animals in round t, Xt, is given by

Xt = Xt−1 + ρXt−1

�

1−
Xt−1

K

�

−

n
�

i=1

hi,t−1 (4.4)

where ρ is the intrinsic growth rate and K is the environmental carrying capacity in the

previous round.

Any individual who poaches faces the risk of being caught and punished but poachers

expend resources on avoidance in order to reduce the chance that they are detected breaking

rules (Malik, 1990). Avoidance behaviour has costs (e.g., time spent evading detection that

is not spent hunting or using less noticeable but less efficient equipment). I assume a fixed

cost, a, per unit of avoidance behaviour. The total cost of investment in avoidance behaviour

by individual i in round t, Ai,t, is a function of the proportion of poachers who were detected

by monitors in the previous round (representing the perceived current risk of poaching) and

the focal individual’s ‘propensity to avoid’, αi, a measure of his willingness and ability to

engage in avoidance behaviour
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Ai,t = aαi

nC,t−1

nP,t−1
. (4.5)

The probability that an individual is detected poaching by any monitor is reduced by

his level of avoidance, with increasing levels of avoidance behaviour suffering diminishing

returns. The probability that individual i is caught poaching in round t, di,t, is given by

di,t = 1−



1−
p

αi

�

nC,t−1

nP,t−1

�

+ 1



 (4.6)

p is the baseline probability that a poacher is detected by any monitor before avoidance

behaviour is taken into account and nM is the number of monitors.

If a poacher is detected, their punishment takes the form of a fine, u, per animal caught.

The fine paid by poacher i in round t, Ui,t, is therefore

Ui,t =















hi,tu if caught

0 if not caught

(4.7)

4.2.4 Payoff from monitoring

Monitors receive a fee, f , per round but face resentment from poachers which imposes an

additional cost proportional to the proportion of poachers that are caught during round t

and the unit cost of social opprobrium, s. The net gain from monitoring, Yi,t, is therefore

Yi,t = f − s

�

nC,t

nP,t

�

(4.8)

The first individual to report a poaching incident is also paid a bonus, j, as an incentive

to monitor effectively. The bonuses paid to monitor i in round t, Ji,t, are therefore

Ji,t = jnC,t (4.9)

4.2.5 Payoff from cheating

The costs of monitoring mean that an individual may also face incentives to cheat, claiming

their fee, but failing to perform their duties. Cheating does not incur the social opprobrium
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of monitoring, but cannot earn bonuses and risks punishment if detected. The probability

that individual i is caught cheating in round t, gi,t, is

gi,t = 1− (1− q)nM,t (4.10)

where q is the probability that a cheat is detected by any individual monitor.

If caught, cheats have their monitoring fee for the round taken away and are fined a

fixed amount, k. The payoff to cheating in round t for individual {i} is therefore

Fi,t =















−k if caught

f if not caught

(4.11)

4.2.6 Payoff from alternative livelihoods

Poaching, monitoring or cheating are assumed to occupy all of an individual’s time. They are

therefore unable to pursue other activities. Individuals who do not pursue these activities

may instead adopt other livelihood activities. The payoff to individual i from alternative

livelihood activities is oi, and represents the opportunity costs of participating in the wildlife

management scheme.

4.2.7 Parameterisation and implementation

The model was implemented in R-2.10.1 (R Development Core Team, 2009). There are few

data in the literature to guide the model’s parameterisation so baseline parameter values

were chosen based on exploratory runs to ensure that the system did not lie at the extremes of

parameter space (see Table 4.2). Similar ‘paradigmatic’ IBMs (Grimm and Railsback, 2005)

have a long history of use in theoretical ecology to explore the consequences of individual-

level processes on patterns at more aggregated levels (e.g., �Lomnicki, 1978; Uchmański,

1985; 1999; Grimm and Uchmański, 2002).

During a typical run of the model, the system slowly approached an equilibrium. For

a given set of parameter values, this equilibrium displayed relatively little variation. Each

simulation was therefore allowed to run for 2000 rounds, to ensure that the system reached

equilibrium. To reduce the effects of stochastic differences between simulation runs, each

simulation was repeated 5 times and an average taken.

39



Table 4.2: Description of model parameters and their default values.

Parameter Description (Units) Baseline value

ρ Intrinsic growth rate 0.3
X1 The initial size of the animals population (animals) 7,000
K Environmental carrying capacity (animals) 15,000
Bmax Maximum community benefit 10,000
n Community size 498
p Baseline probability that any individual monitoring

detects an incidence of poaching, before avoidance be-
haviour

0.015

q Baseline probability that any individual monitoring
detects an incidence of pretending to monitor, before
avoidance behaviour

0.010

v Returns to poaching per animal caught 40
u Fine incurred per animal caught if detected poaching 40
k Fine incurred if detected pretending to monitor 20
f Fee paid to monitors per round 25
j Bonus paid to monitors as a reward for being the first

to report an incidence of poaching
40

s Unit cost of social opprobrium incurred in response
to monitoring

0.5

a Cost of one unit of avoidance behaviour for poaching 3
oi Payoff to alternative livelihoods for individual i N(20,6)
ei Average hunting success of individual i N(0.0150,0.0045)
αi Propensity to invest in avoidance behaviour of indi-

vidual i
N(10,3)

The human population was not subject to immigration or emigration so the number of

individuals remained constant. Community size is set at 498 individuals, a realistic size

for a small community, and at the beginning of a run individuals are assigned evenly to

each of the six available strategy options. At the end of every round individual payoffs are

calculated, and the 30 people receiving the lowest payoff are allowed to change their strategy.

24 are randomly assigned one of the strategies adopted by the 24 most successful individuals

while the remaining 6 choose a new strategy at random. This process is designed to reflect

imperfect knowledge about the success of different strategies and prevents the population

from settling at local optima.

4.2.8 Analyses

My analyses sought to test how changes to each of the three potential policy levers under

consideration—(1) the fine for individuals caught poaching, (2) the fee paid to monitors, and

(3) the bonus paid to monitors if they are the first to report a poaching incident—affected

levels of poaching and monitoring. First, the behaviour of the system was determined for a
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Table 4.3: Parameter values for the fine for poaching (k), and the size of fees (f) and bonuses
(j) paid to monitors in the ‘zero-enforcement’ baseline (S1) and subsequent scenarios (S2–8).

Scenario k f j

S1, zero enforcement 0 0 0
S2, fines alone 40 0 0
S3, fees alone 0 25 0
S4, bonuses alone 0 0 40
S5, fines and fees 40 25 0
S6, fines and bonuses 40 0 40
S7, fees and bonuses 0 25 40
S8, fines, fees and bonuses 40 25 40

baseline scenario in which the level of enforcement was as low as possible (i.e., a fine level of

zero, and no expenditure on paying either fees or bonuses to monitors). Next, I modelled a

series of scenarios corresponding to the use of one or more of the policy levers to encourage

monitoring and discourage poaching (Table 4.3).

4.3 Results

4.3.1 “Zero-enforcement” baseline

With no fines for poaching and no resources devoted to encouraging monitoring (scenario

S1), the poaching strategies are dominant. The model reaches equilibrium with the animal

population at approximately 38% of carrying capacity (Figure 4.1). Few individuals monitor

or cheat so the probability that poachers are detected is small. The majority of individuals

therefore spend their time poaching (strategy PO) while a smaller group pursue alternative

livelihoods (strategy NO). Individuals choose to pursue alternative livelihoods because their

opportunity costs outweigh the revenues they receive from poaching, which are a function

of both the animal population size Xt and their hunting success, ei.

4.3.2 Enforcement scenarios

In a scenario where fines are implemented alone (S2), approximately half of the community

poaches while the others pursue alternative livelihoods (NO) because the risk of fines reduces

the relative profitability of poaching. Very few individuals adopt a monitoring strategy, so

there is little increase in the probability that poachers are detected, but the equilibrium
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Figure 4.1: Comparison of a ‘zero enforcement’ baseline (S1) with scenarios where different
combinations of fines for poaching and fees and bonuses for monitoring are used to try to
encourage compliance. The top panel shows the equilibrium animal population under each
scenario, the middle panel shows the proportion of the community that adopts each strategy
and the bottom panel shows the resultant probability that poachers are detected, p.

animal population increases to 62% of carrying capacity because there are fewer individuals

poaching than in the baseline.

By contrast, the payment of fees or bonuses for monitoring, on their own or together,

does not affect the equilibrium animal population in the absence of fines. Paying fees alone

(S3) causes a increase in the proportion of poachers who also cheat (strategy PC) but only a

small increase in the number of individuals monitoring. The small number of monitors means

that cheats are unlikely to be detected, and so the cost of social opprobrium for monitors

outweigh the potential rewards from bonus payments. Consequently, the probability of

detecting poachers rises only slightly and the overall number of poachers is unaffected. The

payment of bonuses (S4) cause an increase in the proportion of the community who both
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poach and monitor, but is not sufficient for the strategy of monitoring without poaching

to become profitable for any individuals. This results in a higher probability that poachers

are detected. The pattern is similar when fees and bonuses are paid together (S7), with

further increases in the number of individuals who poach and monitor and in the probability

that poachers are detected. None of the scenarios where fees and bonuses are paid without

the implementation of fines cause a change in the in the equilibrium animal population

(Figure 4.1) because although the probability of being caught poaching increases, there are

no consequences so the poaching remains profitable for individuals with lower opportunity

costs.

Counterintuitively, the implementation of fines and fees together (S5) results in a lower

probability of detecting poaching and smaller equilibrium resource population than using

fines on their own (S2). This occurs because the majority of the community chooses to poach

and cheat (strategy PC). The payment of fees increases the returns to both monitoring and

cheating strategies, but only monitoring strategies incur the costs of social opprobrium

and only cheats bear the costs of being punished if they are caught. In S3, where fees are

implemented alone, a large number of poachers choose to neither monitor nor cheat to avoid

these costs. However, the addition of fines for poaching reduces the returns to poaching.

Monitoring is still not profitable because of the costs of social opprobrium, so in S5 the

balance of incentives is tipped in favour of cheating.

By contrast, the scenarios with fines and bonuses together (S6) or fines, bonuses and fees

(S8) are dramatically different, with virtually the entire community choosing to refrain from

poaching themselves and to monitor the behaviour of others (NM) because the payment of

bonuses to monitors, in combination with the imposition of fines for poaching, makes this

strategy the most profitable for all individuals. Under both scenarios the probability of

detecting poaching is high and the resource population is close to carrying capacity.

4.3.3 Responses of human and animal populations to varying policy levers

Changes to each of the policy levers may affect the probability that poachers are detected,

the proportion of the community that monitors, and the size of the resource population.

The specific responses to these changes vary between the policy levers and according to the

economic context in which they are used.

The probability of detecting poachers shows two distinct regions, depending on the level

of fine. Above a threshold fine level, the probability of detection is quite variable, but does
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not respond to changes in either the fees or bonuses paid to monitors. Below the threshold

fine level, however, the probability of detection rises steadily with both fees and bonuses

(Figure 4.2a–c). These changes in the probability of detection are only partially reflected in

the size of the resource population (Figure 4.2d–f). Again, two regions of distinct behaviour

can be distinguished above and below a threshold fine level. Unlike the probability of

detection, however, the sizes of the monitoring fees and bonuses paid only have a significant

influence on the resource population at intermediate fine levels. Here, the effects of small

changes to bonuses and fees are ambiguous and can produce either increases or decreases in

the resource population.

Two examples illustrating the potential for perverse effects caused by raising the fees

and bonuses paid to monitors are given in Figure 4.3. The left hand panel shows changes

in the strategy set and outcome variables in response to increasing bonuses, for an inter-

mediate level of fine, relatively low fees and profitable alternative livelihoods. When no

bonuses are paid, the community has a high proportion of individuals poaching and cheat-

ing (PC). Initially, increases in the size of bonuses see the number of cheats decline and

disappear, with some individuals poaching and monitoring (PM) but the majority pursuing

alternative livelihoods (NO). Further increases are counterproductive, however, as the strat-

egy of poaching and monitoring becomes more profitable and is adopted by an increasing

proportion of the community. Consequently, the number of poachers begins to rise again,

and the resource population begins to fall. Finally, at very high bonus levels, monitoring

without poaching (NM) begins to be profitable, and starts to replace both the poaching and

monitoring and alternative livelihoods strategies.

The right hand panel shows a similar effect, this time for increases in the size of moni-

toring fees with an intermediate fine for poaching but no bonuses paid to monitors. When

no fees are paid, the community is split fairly evenly between the three poaching strategies

and alternative livelihoods. In this case, raising the fee initially leads to more poaching,

with the largest group poaching and cheating. Since the probability of being caught cheat-

ing or poaching is small, at low levels the payment of a monitoring fee actually helps to

subsidise poaching and, as a result, the resource population falls. Further increases in the

fee eventually tip the balance in favour of monitoring, with the majority of the community

also stopping poaching.
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Figure 4.2: Changes in the probability that poachers are detected (upper panel) and the size of the equilibrium resource population (lower panel) in
response to to changes in pairs of the three policy levers. All other parameters values are held at their baseline levels, including the third policy lever
(Table 4.2).
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Figure 4.3: Examples illustrating the potential for perverse effects of payments intended to increase compliance by encouraging monitoring. The left hand
column, (a), shows the effects of increasing the size of bonus paid to monitors given an intermediate fine for poaching, relatively low fees paid to monitors
(k = 35, f = 25) and higher mean payoffs to alternative livelihoods (mean oi = 40) . The right hand column, (b), shows the effects of increasing the size
of fee paid to monitors given intermediate fines for poaching but no bonuses paid to monitors (k = 40, j = 0).

46



4.3.4 Influence of external factors on policy levers’ effects

The results of changes to the three policy levers are also affected by the context in which

they are applied. One important influence is the value of the resource to poachers (Figure

4.4). Increases or decreases in the returns to poaching shift the threshold fine level higher

and lower respectively, with the threshold occurring approximately at the point where the

returns per animal killed are equal to the fine for poaching.
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Figure 4.4: The relationship between the returns to poaching per animal hunted and the
minimum level of fine per animal hunted which results in an equilibrium animal population
at greater than 50% of carrying capacity. All other parameters are held at their baseline
value (Table 4.2).

Differences in the ease of detecting cheats primarily affect the response to changes in

the size of fees. For example, when it is very difficult to detect cheats, the range over which

increases in fees perversely reduce the resource population becomes much larger (Figure

4.5a). By contrast, there are no perverse effects of paying fees when cheats are easily

detected (Figure 4.5c).
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Figure 4.5: The effect on the equilibrium animal population of changing the size of fees and bonuses paid to monitors for three scenarios, differing according
to the ease of detecting cheats, q. The scenarios are (a) q = 0.002, (b) q = 0.01, and (c) q = 0.05. All other parameters values are held at their baseline
levels (Table 4.2). Larger equilibrium animal populations are indicated by lighter grey cells, while smaller populations are indicated by darker cells (see
the colour key to the right hand side of the figure).
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Changes in the average payoff to alternative livelihoods modify the effects of all three

policy levers (Figure 4.6). For example, when the profitability of alternative livelihoods

is low, increases in the size of bonus payments rapidly increase the resource population.

Increases to the size of the fee paid to monitors initially have a perverse effect, producing a

large fall in the resource population because cheating, rather than monitoring, is favoured,

reducing the threat of punishment for poachers. When the profitability of alternative liveli-

hoods increases, increases to the size of bonus payments produce a slower increase in the size

of the resource population so bonuses must be much higher for the population to reach car-

rying capacity. Also, the region over which increasing the payment of fees causes a reduction

in the resource population becomes smaller and then disappears.
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(b) Baseline profitability alternatives
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(c) High profitability alternatives
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Figure 4.6: The effect of changing the size of fees and bonuses paid to monitors for three scenarios, differing according to the mean returns to alternative
livelihoods, mean oi. The scenarios are (a) mean oi = 10, (a) mean oi = 20, and (c) mean oi = 40. All other parameters values are held at their baseline
levels (Table 4.2).
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4.4 Discussion

Changing peoples behaviour is an important goal of many conservation interventions. Over

time, the emphasis of discussions about how to achieve this has shifted from the enforcement

of rules and protected areas (Oates, 1999), to community-based, participatory conservation

(e.g., Lewis et al., 1990) and, more recently, the potential of payments for environmental

services (Ferraro, 2002; Engel et al., 2008). However, these approaches share considerable

common ground since they all represent strategies for changing individual incentives to abide

by rules or agreements. Understanding these incentives, and how they can be modified

in beneficial ways, has increasingly been recognised as crucial for effective conservation,

particularly in the growing literature on market-based instruments (Ferraro, 2002; Engel

et al., 2008; Sommerville et al., 2009).

Previous studies examining the enforcement of conservation or resource management

rules in the context of incentives have tended to concentrate on the resource users (e.g., fish-

ermen or poachers; Leader-Williams and Milner-Gulland 1993; Skonhoft and Solstad 1996;

Damania et al. 2005). However, the success of enforcement also depends crucially on the

incentives monitors have to carry out their duties (Mesterton-Gibbons and Milner-Gulland,

1998; Mookherjee and Png, 1995; Robinson et al., 2010). The model I have presented here

explores the effects on conservation outcomes of changes to three potential policy levers

intended to promote monitoring and discourage poaching. Within the region of parameter

space explored, I found that increasing the fine for poaching was generally the most robust

tool for improving outcomes. However, this finding must be weighed against the disadvan-

tages of high fines. Early economic models of crime and enforcement saw changes to the

probability that rule-breakers were detected and punished and the severity of subsequent

penalties as having equivalent effects on deterrence. From this, it was concluded that the

optimal strategy for managers should be to raise fines as high as possible—since this was

seen as costless—so that the deterrent effect upon rule-breaking could be maintained with

lower levels of costly monitoring (Becker, 1968). Subsequently, however, many extensions

to Beckers model demonstrated why fines cannot, in practice, be set at very high levels

(Chapter 2; Garoupa 1997; Robinson et al. 2010). In conservation, ‘fences and fines’ ap-

proaches have gradually fallen out of favour (Oates, 1999) and there is evidence that harsh

enforcement regimes can undermine relationships between conservation and local people

(e.g., Infield and Namara, 2001; Wilshusen et al., 2002).
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Increases in the size of fees and bonuses paid to monitors generally produced smaller

changes than increases in fines, and in some cases led to perverse effects. Mesterton-Gibbons

and Milner-Gulland (1998) found that the payment of fees was essential for the stability of

monitoring as a strategy. The discrepancy between this finding and my results is caused by

differences in the range of behaviours which modelled individuals are allowed to adopt. In

particular, I consider an additional component of individuals strategies (monitor cheating)

and allow both poachers and cheats to invest in avoidance behaviours in order to reduce

their risk of being detected and punished. Both of these behaviours are commonly observed

in studies of enforcement and compliance with rules (e.g., Malik, 1990; Polinsky and Shavell,

2001; Randall, 2004).

In my model, the robustness of fines in comparison to fees and bonuses is because their

effect is more direct; raising the level of fines in the model always lowers the profitability

of poaching, on average. By contrast, I observed two ways in which the payment of fees

or bonuses could lead to more poaching. These payments both increase the profitability of

monitoring for individuals who poach as well as those that do not, so do not necessarily

favour monitoring without poaching over monitoring and poaching. Similarly, the payment

of fees can encourage monitoring, but it can also lead to more cheating. The additional

income that an individual gains from the fee for monitoring can therefore increase the prof-

itability of poaching strategies PM and PC, and this can result in individuals switching

from non-poaching to poaching strategies. Previous studies have suggested that the intro-

duction of payments for actions which were previously voluntary, such as monitoring illegal

behaviour, could ‘crowd out’ intrinsic motivations and produce the opposite of their in-

tended effect (Frey and Jegen, 2001). However, the psychological mechanisms proposed to

explain the phenomenon cannot operate in this model (e.g. changes from ‘other-regarding’

behaviours to more self-interested decision-making; Cardenas 2000; Vollan 2008). Instead,

the apparent crowding out arises purely from rational utility-maximising behaviour.

My model highlights an important limitation of models of optimal enforcement, in which

the severity of sanctions and the probability of detection have generally been discussed as

separate inputs (see e.g., Becker, 1968; Milner-Gulland and Leader-Williams, 1992; Garoupa,

1997). By contrast, I show that the probability of detection experienced by rule-breakers

can be partially determined by the level of the fine, rather than the two being independent

of one another. This can occur because increasing the level of fine for poachers reduces the

profitability of poaching so that, when the returns to alternative livelihoods are low, the
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most profitable strategy is not to poach, but to monitor. The effect is therefore likely to

be particularly pronounced where monitors are recruited from small communities and have

relatively few other livelihood options. A formal optimisation of enforcement strategies

based on my model is beyond the scope of this investigation, but this result suggests that

care should be taken to account for such interactions. If the probability of detecting rule-

breaking and the severity of sanctions are jointly determined, models of enforcement which

assume that they are independent would tend to overestimate the amount of investment in

enforcement needed to produce a desired level of compliance.

Finally, this study serves to re-emphasise the importance of context and individual het-

erogeneity in determining the effectiveness of management interventions. In particular,

it highlights how different strategies for creating incentives can interact with one another

in communities where individuals differ in their underlying skills and motivations. The

outcome of changes to the three policy levers in the model depends strongly on their in-

teractions with one another, and on the broader socio-economic and ecological context in

which they are embedded. With the prospect of many more payment for environmental

services schemes being implemented (Engel et al., 2008; Wunder et al., 2008), there is an

urgent need to understand how they will interact with existing institutions and incentives.

Analyses on simulated systems, such as the one presented in this chapter, have their advan-

tages, allowing manipulations which would be unethical and challenging to perform in the

real world, and enabling thorough exploration of system behaviour. However they should

be seen only as a starting point for empirical investigations. More research is needed to

determine which characteristics of individuals and populations must be included in mod-

els of human behaviour if they are to inform robust decision making (Chapter 2; Travers

2009). Ultimately, improving our ability to chose effective strategies in situations where

management of human behaviour and biological populations must go hand in hand requires

discussions of our interventions—including enforcement, education, alternative livelihood

strategies and direct payment schemes—to be grounded in a unified theoretical framework

of incentives at the individual level.
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Chapter 5

Testing the value of patrol data for

conservation decision-making using

a “Virtual Ranger” model

5.1 Introduction

A large proportion of conservation expenditure goes towards enforcement measures (e.g.,

Wilkie et al., 2001; Jachmann, 2008a; Robinson et al., 2010). Higher levels of investment in

enforcement are known to be associated with higher levels of compliance with conservation

rules (e.g., Bruner et al., 2001; Hilborn et al., 2006), but conservation practitioners invariably

work with limited resources so enforcement measures must also be cost-effective (James

et al., 1999). To rigorously assess the effectiveness of enforcement strategies, however, there

is an urgent need for reliable data relating levels of rule-breaking to enforcement effort (Gavin

et al., 2010). Gathering these data is challenging because of the illicit nature of rule-breaking

(Fox and Tracy, 1986). One way of learning about the effects of enforcement would be to

implement dedicated surveys of rule-breaking, using interview techniques designed to reduce

response bias (e.g., Blank and Gavin, 2009; St. John et al., 2010) but this requires additional

resources and expertise to implement. Consequently, a common approach to studying the

effectiveness of enforcement has been to analyse the records collected by ranger patrols or

other enforcement agents as they go about their duties (e.g., Leader-Williams et al., 1990;

Jachmann, 2008b). This is attractive because collecting data in the course of patrolling

is viewed as a relatively cheap way to enhance the value of patrols (Gray and Kalpers,

2005), and in many cases patrol records may be the only source of information available
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to managers. However the interpretation of these data is not straightforward (for a full

discussion, see Chapter 6).

A measure of the effectiveness of enforcement strategies is the extent to which increases

in the resources devoted to enforcement cause a reduction in the amount of rule-breaking.

However, observed patterns in the number of infractions detected by patrols only partially

reflect the amount of rule-breaking, as they also depend upon changes in the detectability of

infractions and on the effects of external factors on poacher decisions (e.g., the availability

of legal sources of income; Skonhoft and Solstad 1996; Damania et al. 2005), as well as on

patterns of patrol effort in time and space. It is therefore difficult to use patterns observed

in patrol data (e.g., changes in the number of snares detected over time) to draw inferences

about the underlying processes of interest (e.g., the amount of poaching). Previous analyses

of patrol data have generally applied simple catch per unit effort (CPUE) methodologies to

account for increased detection due to increased patrol effort (e.g., Leader-Williams et al.,

1990; Jachmann, 2008b) but the use of such methods implicitly assumes that infractions

are distributed randomly with respect to patrol effort (cf. Hilborn and Walters, 1992). This

assumption rarely holds (Chapter 6). Furthermore, most previous studies have tended to

examine trends in CPUE aggregated at the scale of entire protected areas and over rela-

tively long periods of time, making it more difficult to detect whether patterns of patrolling

approximate a random sample or whether they suffer from biased spatial patterns of patrol

coverage (Chapter 6). Consequently, analyses of patrol data face a problem of separating

the deterrent effect of patrolling from the effects of other processes and biases. With perfect

information about the behaviour of both patrols and rule-breakers this task would be trivial,

but this is never the case.

Similar problems of inferring processes from observed patterns are common in ecology

(e.g., Halle, 1999; Wyszomirski, 1999). The validity of such inferences has been studied

through the construction of “virtual ecologist” models. By simulating both the underlying

phenomenon that is being studied and the observation process which is used to gather

data, virtual ecology allows investigators to relate observed patterns to the processes within

the model which generate them (Berger, 1999; Tyre et al., 2001). Conceptually similar

modelling approaches known as Management Strategy Evaluations have also found practical

applications in fisheries management, where simulations are increasingly being advocated

as a means to predict the robustness of potential management scenarios (e.g., Kell et al.,

2007).
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In this study, I construct a simulation model in which ‘virtual rangers’ collect data

about simulated rule-breaking events. I use this model to ask under what conditions simple

CPUE analyses of patrol data are useful for evaluating the effectiveness of patrolling as

a deterrent to poaching. Specifically, I examine (1) whether observable patterns that are

attributable to deterrence can be distinguished from those that arise if rule-breakers display

other behavioural responses to patrolling, and whether or not these patterns are robust to

(2) non-random spatial distribution of patrol effort, and (3) temporal lags in the responses

of rule-breakers and patrols caused by infractions persisting in the landscape after they

are committed, and rule-breakers basing their decisions on their memory of previous patrol

activity. I finish by considering the potential of the virtual ranger approach for testing

approaches to improving the effectiveness of law enforcement more generally.

5.2 Methods

5.2.1 Model structure

The model structure and parameterisation were broadly based upon the situation in Masoala

National Park in Madagascar (see Chapter 6). In this protected area, as is commonly the

case, poachers live around the park and come into it from the edge in order to lay snares.

The simulations were carried out in a 10km2 square area which was assumed to be part of a

larger protected area, positioned so that one side lies on the park boundary. A population

of potential rule-breakers lives in the vicinity of the area and commits infractions within

the protected area. Evidence of these infractions remains present within the cell for a

period of time, such as might be typical of snaring. Ranger patrols are carried out in the

area to improve compliance with laws prohibiting poaching. The landscape was divided

into smaller cells, 100m2 in size, and time within the model was divided into units of one

day. The principal outputs of the model were the number of new infractions committed by

rule-breakers and the number of infractions detected by patrols. These quantities could be

expressed at various spatial and temporal scales (e.g., the number of infractions detected

in the entire park or in smaller subdivisions, over days or weeks). An overview of the

model structure is given in Figure 5.1. The model was implemented in R version 2.10.1 (R

Development Core Team, 2009).
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Figure 5.1: Outline structure of the Virtual Ranger simulation model. The figure shows the
process at the whole area scale.
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5.2.2 Rule-breaker sub-model

In the model, rule-breakers were allowed to react to patrol effort in one of four ways: (1)

they could be insensitive to patrolling, meaning that their behaviour did not change in

response to changes in patrol effort, (2) they could be deterred by patrols, meaning that

the total number of infractions committed within the entire area in a round declined as

the perceived threat of patrols increased, (3) they could be displaced, moving away from

locations where the perceived threat of patrolling was higher, or (4) they could be both

deterred and displaced.

The supply of infractions in round t, Nt, was given by

Nt = a−
b+ a

1 + ec(d−Dt)
(5.1)

a determined the right-hand asymptote, b the left-hand asymptote, c was a scale pa-

rameter controlling the rate of change, d set the midpoint and Dt was a measure of the

rule-breakers’ perception of the threat they faced from patrolling at time t (see Equation

5.2, below). For the simulations these parameters were set at a = 50, b = -1, c = 0.5 and d

= 8. The resulting relationship between the perceived threat of patrolling and the supply

of infractions was a sigmoid curve falling from 49 infractions committed per round when Dt

= 0 to 2 infractions committed per round when Dt = 1 (Figure 5.2a).

When the scenario required that patrolling should produce no deterrent effect, Dt =

0. However, when patrolling did result in deterrence the perceived threat in round i was

calculated as a weighted sum of the patrol efforts, Et, expended in previous rounds. The

weighting given to patrol effort in previous rounds grew exponentially smaller the further

back in time that patrol had taken place. The perceived threat from patrolling at time t,

Dt, was

Dt =
�

Etλ
0 + Et−1λ

1 + . . .+ Et −mλm
− 1 (5.2)

where λ was the rate of forgetting and m was the length of the rule-breakers’ memories.

For all simulations m = 10, but λ was varied between scenarios. In the baseline scenario the

rate of forgetting was set to be very fast (λ = 0.01) so that the effects of patrolling did not

last once the patrol was over. This parameter value reflects a situation where rule-breakers

have good information about when and where patrols are operating, and are able to respond
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Figure 5.2: Shapes of processes within the model: (a) supply of infractions against pa-
trol effort, (b) decrease in the weighting given to patrol effort over time when calculating
rule-breakers’ perception of the threat of patrolling for three levels of discounting of older
information (fastest discounting when λ = 0.01 , slowest when λ = 0.75), and (c) decrease
in the probability that an infraction is detected with its distance from a patrolled cell.

quickly when a patrol enters or leave an area. Other scenarios, reflecting situations where

rule-breakers’ assessments of the current level of threat include older information, used

slower rates of forgetting (λ = 0.25 or λ = 0.75) so that the deterrent and displacement

effects of patrolling persisted for some time after the patrol departed the area (Figure

5.2b). In order to make results easily comparable between scenarios with different rates of

forgetting, Dt was normalised to lie between 0 and 1 by dividing it by its maximum possible

value given the value of λ in that scenario.

The new infractions committed in each round were then distributed in the landscape.

When patrolling produced no displacement effect, the locations of new infractions were

chosen at random. However, in scenarios where rule-breakers responded to patrolling by

displacing their activity to new locations, the probability that an infraction was placed

within cell i at time t, πi,t, depended on the previous history of patrolling in that cell

πi,t =
�

ei,tλ
0 + ei,t−1λ

1 + . . .+ ei,t−mλm−1 (5.3)

ei,t was the level of patrol effort in cell i at time t and took the value 1 if the cell was

patrolled in round t, and 0 if not.

In the baseline scenario the lifetime of infractions, ζ, was set to 1, meaning that each

infraction was removed from the landscape after a single round (i.e., it was only present

during the round in which it was committed). In some situations this assumption is likely

to be reasonable (e.g., poachers using guns may leave little sign of their presence once they

leave an area), but in many cases the local effects of rule-breaking may persist after the event
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(e.g., setting traps or snares). Scenarios in which evidence of infractions persisted in the

landscape for longer were achieved by setting ζ = 4 or ζ = 7, meaning that infractions were

removed at the end of the fourth or seventh round after they were committed, respectively.

5.2.3 Patrol sub-model

Unlike rule-breakers, whose behaviour was modelled at the group level, the movements of

ranger patrols were modelled individually. In each round where a patrol occurred, a set

amount of patrol effort was available for use. The cells patrolled were either (a) chosen at

random, or (b) placed along simulated patrol routes. Although it is unrealistic for cells to

be patrolled entirely at random, this option was included to represent a “perfect” sampling

scenario, and provided a baseline against which the performance of more realistic patterns

of patrolling could be measured.

The simulated patrol routes were constructed from a series of discrete decisions modelled

as a Markov process. The starting position for each patrol was a cell on the boundary of the

protected area, chosen at random. At each step, the patrol was able to move to a directly or

diagonally adjacent cell. The probability of each transition was determined by the relative

distance from a specified target point. This target point was a randomly chosen cell on the

border of the landscape furthest from the protected area boundary (i.e., patrols begin at

the boundary of the protected area and tend to move inwards meaning that, on average,

cells closer to the boundary of the protected area were more likely to be patrolled). The

probability of transitioning from the currently occupied cell, i, to adjacent cell, j, ui→j , was

ui→j =
r−s
j

�

r−s
j

(5.4)

rj was the rank of the distance between cell j and the target point, with the mean

taken of tied ranks. The sinuosity parameter, s (s > 0), affected the directness of the route

with larger values producing more direct routes on average. For the simulations, s = 1.5.

The patrol route continued to grow in this fashion until the number of cells visited reached

the set amount of patrol effort invested in that round (Figure 5.3). In rounds where the

available patrol effort was greater than 100, the route was split into smaller sections, each

involving 100 units of effort or fewer, to ensure that the patrol did not leave the edges of

the landscape. To achieve this, a new start point and target point were chosen every time

the length of a patrol segment reached 100.
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Boundary of Protected Area

Random patrolling

Boundary of Protected Area

Spatially autocorrelated patrolling

Figure 5.3: Examples of the two patterns of patrolling: random, and spatially autocorre-
lated. The three target points for spatially autocorrelated patrolling are indicated by hollow
circles. 100 units of patrol effort are expended in the random patrolling example, and for
each of the three spatially autocorrelated patrolling examples. Note that the target points
are never reached with spatially autocorrelated patrolling.

When an infraction occurred in a cell on or close to a patrol route, there was a probability

that it would be detected by the rangers but detection was never perfect. The probability

that an infraction was detected when the patrol was in cell i, pi, depended on the distance

of the infraction from the cell, with pi = 0.75 for infractions occurring in cells directly on

the patrol route (Figure 5.2c). For a unit of patrol effort in cell i the probability of detecting

an infraction in another cell was given by a standardised half-normal function

pi = 0.75
hz

h0
(5.5)

where hz represents the zth quantile (z ≥ 0) of the probability density of a normally

distributed variable with mean zero and standard deviation of 1, N(0,1). h0 equals the

value of hz when z = 0, and was included as a standardising constant. z is a function of

the distance of an infraction from the patrolled cell, δ,

z =
δ

ρ
(5.6)

where ρ was a constant which described how rapidly pi declined with distance. For all

simulations, ρ = 1. Once discovered, an infraction was marked as having been detected

within the model, and subsequently was not counted again if it was re-encountered.
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Table 5.1: List of symbols used for parameters and quantities within the model.

Symbol Description

t Round number
i Cell number
T ID for aggregated group of rounds
I ID for aggregated group of cells
Nt The total number of infractions committed at time t

a Right hand asymptote for supply of infractions
b Left hand asymptote for supply of infractions
c Scale parameter for supply of infractions
d Midpoint parameter for supply of infractions
Dt Threat from patrolling perceived by rule-breakers at time t

Et Patrol effort in entire landscape at time t

λ Rule-breakers’ rate of forgetting for previous patrolling
m Maximum length of rule-breakers’ memories
πi,t Probability that an infraction is placed within cell i at time t

ei,t Level of patrol effort in cell i at time t

ζ Lifespan of infractions
ui→j Probability that a patrol moves from cell i to an adjacent cell j
Rj Rank of the distance between cell j and the patrol’s target point
s Sinuosity parameter of patrols
pi Probability that an infraction is detected when a patrol in in cell i
hz zth quantile (z ≥ 0) of probability density of a normally distributed

variable N(0,1)
δ Distance of an infraction from the patrolled cell
ρ Rate of decline of pi with distance

The symbols used to denote parameters and quantities within the model are summarised

in Table 5.1.

5.2.4 Analyses

To study the importance of the behaviour of rule-breakers and ranger patrols in determining

the number of infractions detected by patrols I used the model to compare a series of

scenarios, incorporating different behaviours. For each scenario I examined how changes in

the number of infractions committed and the proportion of infractions detected interacted

to produce observable patterns in the number of infractions detected with patrol effort

and whether the scenario’s assumptions led to bias in CPUE. Although all processes were

modelled at a spatial resolution of 100m2 and a temporal resolution of 1 day, I analysed the

data at several different levels of aggregation by grouping sets of adjacent cells or days into

larger units.
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CPUE was therefore defined as

CI,T

EI,T

= qI,TNI,T (5.7)

In an aggregated group of cells, I, during time period T , CI,T was the number of infrac-

tions detected, EI,T was the amount of patrol effort expended (measured as the number of

cells visited), NI,T was the total number of infractions present and qI,T was the detectability

coefficient. Detectability is the proportion of the infractions in the area that are detected

by one unit of patrol effort (cf. the harvesting literature where the analogous constant,

catchability, may be defined as the proportional mortality caused by one unit of harvesting

effort; Chapter 6). Since NI,T was known in the model, I used the detectability coefficient

as a basis for comparisons between scenarios where there were differing total numbers of

infractions present.

The data were initially aggregated at the scale of the entire park and a single day,

but for each scenario comparisons were made with the data grouped spatially into blocks

of 50 x 50 cells or 25 x 25 cells and temporally into blocks of 5 or 10 days. Due to the

definition of effort as number of cells visited per round, detectability depends partly on

the spatial and temporal scale of analysis. The value of the detectability coefficient in the

baseline scenario is a simple function of the effective area being analysed. For example, if

the unit of aggregation was blocks of 25 x 25 cells (i.e., the landscape was split into 16), the

detectability constant was approximately 16 times larger than if the data were aggregated

over the entire 100 x 100 cell area. Similarly, if the data were aggregated into blocks of 10

days (thus increasing the ‘effective’ area tenfold), the detectability constant was 10 times

smaller than when the data were analysed one day at a time. To facilitate comparisons

between the different scales I therefore routinely standardised the detectability coefficient

in a given scenario by dividing it by its value calculated in the baseline scenario at the same

spatial and temporal scale.

Initially, the model was set up so that patrols were carried out in every round and the

level of patrol effort per round was held constant within each model run. Consequently, the

number of infractions committed and detected on average per round reached equilibrium.

Each run began with a 20 round initialisation period to allow the model to equilibrate,

during which no results were collected, and then ran for 500 rounds. For each scenario, the

model was run for 13 different levels of available patrol effort, from 10 to 250 in steps of 20
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units.

In the baseline scenario, patrols visited cells in the landscape entirely at random. In-

fractions did not persist in the landscape after the round in which they were committed,

and rule-breakers did not remember patrol effort once the patrol had left the area. Subse-

quent scenarios were compared to this baseline in order to quantify the effects of different

behavioural processes (Table 5.2). My first comparison was between scenarios where rule

breakers did not respond to patrolling, were deterred (i.e., responded by reducing the num-

ber of new infractions that were committed), or were displaced (i.e., responded by changing

the location of new infractions, moving away from patrolled areas). Next I examined how

differences in spatial patterns of patrolling could affect CPUE measures, comparing sce-

narios where patrol effort was assigned at random with scenarios where effort was spatially

autocorrelated with those where effort was joined together into simulated patrol routes (Fig-

ure 5.3a vs. b). Finally I varied parameters in the model to allow evidence of infractions to

persist in the landscape beyond the round in which the infractions were committed and to

allow the behavioural responses of rule-breakers to continue after patrols had left the area.
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Table 5.2: Scenarios analysed using the model.

Scenario Pattern of patrolling Rule-breaker responses consid-
ered

Lifetime of infrac-
tions, ζ

Rule-breakers’ rate
of forgetting, λ

Baseline Random None, deterrence, displacement,
deter. & displace.

1 (shortest) 0.01 (fastest)

Spatially autocorrelated
patrolling

Spatially autocorrelated None, deterrence, displacement,
deter. & displace.

1 0.01

Persistence of infrac-
tions

Random None, deterrence, displacement. 1, 4 or 7 0.01, 0.25 or 0.75

Rule-breakers’ memory
of patrolling

Random None, deterrence, displacement. 1, 4 or 7 0.01, 0.25 or 0.75
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5.3 Results

5.3.1 Effects of behavioural responses to patrolling

Analysed at the level of changes over the entire landscape per day, the number of new infrac-

tions committed per round in the baseline scenario, and in the absence of any behavioural

responses to patrolling, was fixed so did not vary according to the amount of patrol effort

(Figure 5.4a). As patrol effort increased, an increasing proportion of the total landscape

was sampled and the proportion of infractions detected increased linearly (Figure 5.4b).

Together, these two processes produced changes in the number of infractions that were de-

tected by patrols, which is the only one of the three quantities that would be observable

in reality (Figure 5.4c). The mean number of infractions detected increased linearly with

patrol effort, before flattening very slightly due to patrol saturation. The variance in the

number of infractions detected was approximately equal to the mean, and also increased

linearly with patrol effort.

When rule-breakers responded to patrolling by displacement (i.e., moving away from pa-

trolled areas), the observed patterns in the mean and variance of the number of infractions

encountered with increasing patrol effort were similar, but the proportion of infractions de-

tected was consistently lower than when there was no displacement (approximately 53% of

the proportion detected when there is no displacement; Figure 5.4f). Consequently, CPUE

was a biased measure of the number of infractions being committed when there was a dis-

placement response to patrolling, even though patrol effort was randomly distributed (Figure

5.5a). This occurred because the model allowed rule-breakers to react instantaneously to

the presence of patrols, becoming less likely to commit infractions in the vicinity of patrolled

cells than would be expected by chance.

If, instead of displacement, the effect of patrolling was to deter rule-breakers from com-

mitting infractions, the number of new infractions committed decreased with increasing

patrol effort (Figure 5.4g). However, the proportion (but not necessarily number) of those

infractions which were detected still increased linearly with patrol effort (Figure 5.4h). Con-

sequently, the observed relationship between the number of infractions encountered and pa-

trol effort was humped (Figure 5.4i). The mean number of infractions detected rose at first

while detection dominated, before declining again at higher effort levels as deterrence came

to dominate. The variance in the number of infraction detected was again approximately

equal to the mean so was greatest at intermediate levels of patrol effort (although the vari-
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Figure 5.4: The effects of differing behavioural responses to patrolling on the number of
infractions committed, the proportion of infractions that are detected and the observed
number of infractions detected as patrol effort changes. Rule-breakers show no behavioural
responses to enforcement in the top row (a–c), respond with displacement in the middle row
(d–f) and with deterrence in the bottom row (g–h). Light grey dots show the distribution
of the data (jittered by a small amount to allow the density of points to be judged more
easily), black points are the mean values binned over 20 units of effort.
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Figure 5.5: Comparison of detectability coefficients for different rule-breaker responses to
enforcement and spatial patterns of patrolling at three different spatial scales. Detectability
coefficients were standardised by dividing by the detectability coefficient in the baseline case
with no behavioural responses to enforcement and randomly distributed patrol effort at each
scale. Lower detectability coefficients represent situations in which CPUE underestimates
the true number of infractions present in the landscape.

ance in the proportion of infractions detected increased more rapidly with effort because

the total number of infractions is smaller at higher effort levels).

5.3.2 Effects of spatial sampling

When patrol effort was linked together along patrol routes, the shapes of the relationships

between the level of patrol effort and the means and variances of the number of infractions

committed, proportion of infractions detected or number of infractions detected were sim-

ilar to those that arose when cells were patrolled at random. However, the proportion of

infractions detected was lower, meaning that CPUE is a biased measure of the number of

infractions committed when sampling effort is not randomly distributed throughout space

(Figure 5.5a). With randomly distributed infractions, this effect was attributable to the

greater probability of overlap between the areas sampled by each unit of patrol effort when

patrol effort was closely grouped in space. Hence with no behavioural responses to en-

forcement, mean CPUE for the spatially autocorrelated pattern of patrolling modelled was

approximately 64% of the mean CPUE for random patrolling .

Spatially autocorrelated patterns of patrolling interacted with displacement responses

to patrolling, producing even more pronounced reductions in CPUE. When rule-breakers

responded to patrolling by moving away from patrolled areas the mean CPUE for spatially
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autocorrelated patrolling with displacement was approximately 17% of the mean CPUE

observed for spatially autocorrelated patrolling without displacement, and only 11% of the

mean CPUE for random patrolling with no displacement. The greater bias in this case

(compared with the bias due to displacement with randomly distributed patrol effort) oc-

curred because areas of the landscape furthest from the protected area boundary acted as

a refuge in which infractions were more likely to be committed (because of displacement)

but less likely to be detected (because these cells were patrolled less often).

5.3.3 Interactions between rule-breaker and patrol behaviour and the

scale of analysis

The biases in CPUE caused by rule-breakers’ behavioural responses to enforcement and

non-random patterns of patrolling are summarised at three different spatial scales in Figure

5.5, standardised to show changes relative to the baseline scenario at the relevant scale.

The spatial scale of analysis had a large effect on estimates of the detectability coefficients

when patrolling produced a deterrent effect. Analysed at the whole-landscape scale with

random distribution of patrol effort, the presence of a deterrent effect did not change the

detectability coefficient relative to the baseline. However, analysed in blocks of 50 x 50

cells or 25 x 25 cells the presence of deterrence caused a reduction in detectability (to 88%

and 65% of the baseline detectability coefficient, respectively). With spatial patrolling, the

presence of a deterrent effect resulted in a small increase in detectability when analysed at

the whole-landscape scale, but decreases in detectability at smaller spatial scales.

The overall decreases in detectability when data featuring deterrence were analysed at

smaller spatial scales arose because a larger proportion of areas contained no infractions and

were therefore treated as having a detectability coefficient of zero (a form of zero inflation,

Chapter 6). The lower number of infractions present in the landscape due to deterrence also

caused the counterintuitive increase in detectability with spatially autocorrelated patrolling.

This increase occurred because of a reduction in the negative bias caused by overlap in the

areas sampled by patrol effort.

There were also much smaller interactions between the effects of both displacement and

spatially autocorrelated patterns of patrolling and the spatial scale at which the data were

analysed. For both sets of behaviour, analysing the data at finer spatial scales leads to

small increases in the estimated detectability coefficients. These increases relative to the

same data analysed at the whole-landscape scale occurred because the process of calculating
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a simple mean detectability gives equal weighting to groups of cells which have received a

lot of patrol effort and those that have received very little. Thus, the effects of spatial

differences in the distribution of either infractions or patrol effort are reduced.

The effects of aggregating the data into groups of 5 or 10 days were also examined, but

I found no interactions between the behavioural effects and temporal scale.

5.3.4 Persistence of infractions

The effects of infractions persisting in the landscape were similar whether patterns of pa-

trolling were spatially autocorrelated or random, and depended strongly on the behavioural

responses of rule-breakers to patrolling (Figure 5.6). For clarity, only the results from ran-

domly distributed patrol effort are presented. When rule-breakers did not change their

behaviour in response to patrolling, increases in the persistence of infractions produced

decreases in the detectability coefficient. The reduction in detectability occurred because,

when infractions had longer lifespans, the probability that a patrol would re-encounter an

infraction which had previously been detected was increased. These re-encountered infrac-

tions were not included in the calculation of CPUE, so the recorded number of infractions

encountered was a smaller proportion of the total number of infractions present in the

landscape.

When rule-breakers displayed behavioural responses to patrolling, the detectability co-

efficient depended upon both the type of behavioural response (deterrence or displacement)

and the spatial scale of analysis, but not on the temporal scale of analysis. Analysed at

the whole-landscape scale, the effects of infractions persisting for longer when rule-breakers

were deterred were very similar to those when rule-breakers did not respond to patrolling.

However, the persistence of infractions served to counteract the negative bias caused by de-

terrence when the data were analysed at finer spatial scales. Longer-lived infractions meant

that the total number of infractions present in the landscape at any point of time was larger

and therefore fewer areas contained zero infractions, reducing the bias due to zero inflation.

Changes to the lifespan of infractions also had a pronounced effect when infractions

were displaced away from patrolled areas. When evidence of infractions remained in the

landscape after they are committed, the effects of displacement are reduced and detectability

is close to the value observed when there are no rule-breaker responses to enforcement. In

this case, the increase occurs because infractions that are already present in the landscape

cannot respond to the presence of patrols and are therefore not displaced.
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Figure 5.6: Comparison of detectability coefficients for different rule-breaker responses to
enforcement between scenarios where infractions persisted in the landscape for differing pe-
riods of time, carried out at three different spatial scales. In each case patrol effort was
randomly distributed. At the baseline (white bars) infractions disappeared from the land-
scape at the end of the round in which they were committed (ζ = 1), with larger values of ζ
meaning that infractions were longer-lived. Detectability coefficients were standardised by
dividing by the detectability coefficient in the baseline case with no behavioural responses
to enforcement and randomly distributed patrol effort at each scale. Lower detectability co-
efficients represent situations in which CPUE underestimates the true number of infractions
present in the landscape.

Together, a consequence of these effects is that differences in the behavioural responses

of rule-breakers to patrolling produce much smaller biases in detectability when infractions

have longer lifespans.

5.3.5 Lasting effects of patrolling

If rule-breakers have a memory of previous enforcement effort, their behavioural responses

to patrolling continue to have an effect on the number and location of new infractions

after the patrol has left the area. The rate at which rule-breakers discount information

about locations that have previously been patrolled had no consistent effect on detectability

when rule-breakers showed no responses to patrolling, or were deterred without changing

their spatial patterns of infractions (Figure 5.7). However, when rule-breakers gave greater

weight to information from older patrols (i.e., higher values of λ), detectability was higher.

This was because older information gave no indication of where new patrols would take

place within the model, so its use reduced the effectiveness of displacement in avoiding

patrols. These results were robust to both the spatial and temporal scales at which the data

were analysed, although the increase in detectability when greater weight was given to older
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Figure 5.7: Comparison of detectability coefficients for different rule-breaker responses to
enforcement when these responses continue after the patrol has finished, analysed at the
whole-area scale. In each case patrol effort was randomly distributed. At the baseline
(white bars) information about previous patrols was discounted very rapidly (λ = 0.01), with
larger values of λ meaning that information from old patrols was discounted more slowly.
Detectability coefficients were standardised by dividing by the detectability coefficient in the
baseline case with no behavioural responses to enforcement and randomly distributed patrol
effort. Lower detectability coefficients represent situations in which CPUE underestimates
the true number of infractions present in the landscape.

information was slightly more pronounced at smaller spatial scales.

5.4 Discussion

CPUE-based methodologies have often been used to analyse patrol data in order to learn

about the effect of patrolling on rule-breaking behaviour in conservation (e.g., Leader-

Williams et al., 1990; Jachmann, 2008b). However, the properties of CPUE as a measure

of rule-breaking activity have not previously been examined. In the study of fisheries and

bushmeat, where CPUE measures have been widely used, many discussions of the adequacy

of CPUE measures have focussed on whether CPUE is proportional to the abundance of

harvested species (Harley et al., 2001; Rist et al., 2008). Many phenomena which can lead

to non-linear relationships between CPUE and abundance are likely to have parallels in

the study of enforcement (see Chapter 6, Table 6.2). However, the use of CPUE measures

derived from patrol data for studying the effectiveness of enforcement may face additional

problems.

In this context, CPUE-based analyses require rather contradictory assumptions. On the

one hand, simple CPUE measures assume that the distribution of infractions is random
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with respect to the placement of patrol effort (Hilborn and Walters, 1992), which requires

rule-breakers not to alter their behaviour in response to the presence of patrols. However,

in order for patrolling to be effective in protecting resources it is essential that rule-breakers

are deterred from committing infractions—that is, that they do respond to the threat of

being caught. Here I examined the effects of two different types of behavioural response

to patrolling: deterrence and displacement. With deterrence, the response of rule-breakers

to patrolling is to reduce the number of infractions being committed per round. With

displacement, however, the same number of infractions may be committed, but their spatial

distribution is altered.

I have demonstrated that both types of behavioural response can result in CPUE being

a biased measure of the total number of infractions committed, but that their effects also

depend upon the spatial scale at which patrol data are analysed, the spatial patterns of

patrolling, the length of time that evidence of infractions persists in the landscape after they

have been committed and the length of time after patrolling that rule-breakers respond to

patrolling. It has often been assumed that even a biased measure of abundance can be useful

as an ‘index’ as long as the bias remains constant (Pollock et al., 2002). However, indices are

difficult to interpret if underlying behavioural processes change (McConville et al., 2009) and

several assessments of the reliability of indices for wildlife monitoring have demonstrated

that this is a common problem (e.g., Norvell et al., 2003; Hochachka and Fiedler, 2008). It

seems highly likely that similar issues will arise in the use of index measures such as CPUE

to monitor rule-breaking.

Temporal lags, such as those caused by long-lived infractions and rule-breakers’ use of in-

formation about previous patrolling, are inherent in many types of rule-breaking. Although

my results show that these lags can reduce the biases caused by spatially autocorrelated

patterns of patrolling and rule-breakers’ behavioural responses to enforcement, they may

not improve the usefulness of CPUE as a measure of deterrence because they also serve to

decouple the total number of infractions in the landscape from the number of new infractions

being committed. Consequently, even if CPUE is a reasonable index of the total number

of infractions that exist in the landscape, it may not be suitable for measuring the effect of

patrols on the number of new infractions being committed. Ecological surveys which sample

signs of a species presence, rather than encounters with the species itself, have to deal with

similar temporal lags. For example, in order to use dung counts to estimate the abundance

of forest elephants, researchers must also be able to estimate the rate at which elephants
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produce dung, and the rate at which dung decays (Barnes, 1996). For enforcement data, it

might be possible to estimate the rate at which evidence of different forms of rule-breaking

decays (e.g., Coad 2007 measured snare decay rates in a Gabonese bushmeat hunting sys-

tem) but there is rarely independent information available about the rate at which individual

rule-breakers respond to changes in law enforcement efforts (cf. Milner-Gulland and Clayton

2002 showed how responses to inspections in a bushmeat market became less pronounced

and more short-lived over time).

The choice of spatial scale at which patrol data are analysed is important for their in-

terpretation. Previous applications of CPUE methodologies to patrol data have tended to

make comparisons at the spatial scale of entire protected areas over a timescale of years (e.g.,

Leader-Williams et al., 1990; Hilborn et al., 2006) or months (Jachmann, 2008b). However,

data analysed at larger spatial scales may be more prone to biases due to autocorrelated

patterns of patrolling and rule-breakers’ responses to enforcement, while at smaller spa-

tial scales the effects of zero inflation become problematic. (Walters, 2003) has previously

highlighted the ‘fantasy’ of assuming that measures derived from spatially autocorrelated

samples are representative of the wider, unsampled area over long time periods. As a re-

sult, it is unlikely that simple changes to the level of aggregation at which patrol data are

analysed will be sufficient to overcome the problems of bias.

This study serves to highlight the potential of ‘virtual ecology’ approaches to answer

questions that fall outside of the traditional sphere of ecological research. I have considered

the possible effects of a small number of key processes upon the patterns that are observed

in patrol data, but the methods could easily be extended. My focus has been on quantifying

levels of bias, but the same framework could also be used to ask questions about precision,

which have an important bearing on the practicality of patrol data as a monitoring tool. For

example, ranger patrols have been proposed as a cost-effective way of gathering information

about trends in animal populations and the processes that threaten them (Gray and Kalpers,

2005). If sufficient data were available to parameterise my model for a real-world case study,

it could provide an ideal framework for assessing the statistical power of typical patterns of

patrolling to detect trends in threats or abundances, and to assess potential trade-offs that

might arise.

Learning about rule-breaking and how it can be deterred is vitally important, but

presents serious challenges (Gavin et al., 2010). Despite the need for enforcement to be

efficient there has been little research done to understand how the design of enforcement
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measures relates to their effectiveness as a deterrent to rule-breaking and, as a result, there

is often little practical information available to guide managers in their design and imple-

mentation. Although patrol data are often seen as a cheap way to achieve this aim, they are

prone to many different unobservable biases. Modelling approaches such as that presented

here are one way of assessing the situations under which biases are likely to arise, and what

their effects are, but considerable research is still needed to determine whether, in practice,

patrol data can be used as a basis for robust decision-making at useful temporal and spa-

tial scales. Ultimately, the information that can be recovered from patrol data will always

depend on the extent to which patrols approximate a true random sample of rule-breaking

activity, and its potential may only be fulfilled if cheap and practical means of regularly

validating it against independent measures of rule-breaking can be found.
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Chapter 6

Using encounter data in ecology

and resource management:

pitfalls and possibilities

6.1 Introduction

Data on the numbers of “encounters” with a subject of interest are widely used in ecologi-

cal studies to monitor spatial and temporal patterns of abundance or occupancy (Williams

et al., 2002). Similar data are also collected opportunistically, for example through off-

take records from harvested populations (e.g., commercial fisheries, Maunder et al. 2006;

bushmeat, Rist et al. 2010), or through volunteer-based “citizen-science” initiatives such as

the North American Breeding Bird Survey (Sauer et al., 1994). In conservation, encounter

data derived from the reports of rangers patrolling protected areas (e.g., Leader-Williams

et al., 1990; Brashares and Sam, 2005) or community based projects (e.g., Stuart-Hill et al.,

2005; Poulsen and Luanglath, 2005) are seen as potential sources of information for learning

about rule-breaking behaviour. Rules and agreements are ubiquitous in conservation, so

it is important to be able to study patterns of rule-breaking and to understand the fac-

tors which motivate illegal behaviour (Gavin et al., 2010). Ranger-based monitoring has

been advocated as an effective means of gathering a variety of data for natural resource

management, including both poaching signs and encounters with species of interest (Arcese

et al., 1995; Gray and Kalpers, 2005). In some cases analysis of encounter data has also

been formally incorporated into decision-making processes (e.g., the Convention on the In-

ternational Trade in Endangered Species of Wild Fauna and Flora makes use of ranger data

76



collected through the MIKE project: Monitoring the Illegal Killing of Elephants).

All forms of encounter data are prone to violations of the assumptions that are used to

model them. A large body of theoretical and empirical research has therefore examined the

processes which might lead to violations of these assumptions, the extent to which models

are robust to violations and strategies for overcoming these issues (e.g. imperfect detectabil-

ity, MacKenzie et al. 2005; non-linear relationships, Maunder and Punt 2004; inter-observer

differences and learning effects, Sauer et al. 1994). In the case of ecological surveys, the col-

lection of encounter data proceeds via carefully designed sampling regimes allowing various

simplifying assumptions to be made in the modelling of abundance or occupancy (Williams

et al., 2002). Analysing data on encounters of target species or poaching signs collected

opportunistically by enforcement agents in the course of their duties is attractive because

these data are relatively cheap and readily available, given that the patrols are already op-

erating. However, few studies have attempted to determine whether the approaches taken

to the analysis of other forms of encounter data are also appropriate for patrol data.

Since the primary purpose of patrols is to uncover and deter rule-breaking, with data-

collection often a secondary concern, violations of the assumptions normally made when

modelling encounter data are very likely, and may be severe. Consequently, there are many

questions to be answered about how such data can best be analysed, and whether they can

be a useful source of information about rule-breaking. These questions are important for

conservation practitioners who want to know whether patrol data can be used to inform

management decisions and whether improvements could be made to the collection and

analysis of the data. However, I believe that many of the biases present in patrol data are

also likely to exist to a greater or lesser degree in the other forms of encounter data used

in ecology and resource management. Consequently, a better understanding of how patrol

data can be analysed is also likely to have broader relevance to all those who use encounter

data.

In this chapter, I explore the use of patrol data—and similar datasets—as a source of

information about rule-breaking. I begin by illustrating the typical features of a patrol

dataset and outlining parallels with other forms of encounter data. By analogy with the

catch-per-unit effort approach used in the fisheries and bushmeat literatures, an obvious

strategy is to treat the number of infractions detected per unit effort as an index of offences

committed. However, despite its intuitive appeal, I show that the interpretation of this

index may not be straightforward. Observed patterns in any type of encounter data are the
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result of the behaviours of two sets of actors—for example, ranger patrols and rule-breakers,

or scientists and the target species—whose actions are unlikely to conform perfectly to

analytical assumptions. Furthermore, the usefulness of these data depends on incentives

for accurate reporting and the scale at which they are analysed. Analyses which do not

consider these effects risk misinterpreting observed patterns. I next propose improvements

to the collection and analysis of patrol data that might help to overcome these difficulties.

Finally I suggest ways in which these insights could also improve the understanding and

treatment of similar issues in other forms of encounter data commonly used in ecological

and resource management settings.

6.2 A typical patrol dataset

A typical patrol data set might record the activities carried out by the patrol and the

indicators of illegal behaviour that have been encountered. For example, the Cullman-

Hurt Community Wildlife Project (CHCWP) runs successful anti-poaching patrols in five

areas of Tanzania, in addition to various community-based initiatives with local villages.

CHCWPmaintains detailed records of the date, location name, duration (in number of days)

and personnel involved with each patrol, along with any signs of rule-breaking behaviour

encountered, including poaching, snaring and illegal timber extraction. In recent years,

the patrols have been equipped with GPS units and note a pair of co-ordinates for each

area patrolled. The patrols also record when confiscations (e.g., of skins, timber, snares

or firearms) or arrests are made. As a result, it is possible to ask how the number of

infractions detected change over time and in relation to changes in patrol effort (Figure

6.1). Project managers might seek to use this information to learn about the effectiveness

of their enforcement measures, and to make decisions about how to allocate their resources.

However, in order to be useful, it is necessary to understand what can be inferred with

confidence from changes in the number of infractions detected by patrols.

6.3 Encounters per unit effort

The data collected by patrols share many similarities with those commonly used to study

patterns of abundance in harvested populations (Table 6.1), and consequently it is appealing

to try to adapt methods from ecology and resource management to the study of rule-

breaking. In many cases, measuring abundance directly is difficult, so managers must base
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Figure 6.1: An example of patrol data collected by the Cullman-Hurt Community Wildlife
Project in Tanzania, showing (a) changes in the number of poachers arrested (shaded ver-
tical bars) and patrol effort (solid line) between 1994 and 2003, and (b) the relationship
between patrol effort (measured in patrol days) and the number of poachers arrested over
the same period. The crude analysis in (b) would suggest that more patrolling leads to more
arrests. On their own, however, these data are insufficient to distinguish this hypothesis
from plausible alternatives (e.g., the possibility that the increases in both quantities are
caused by a third, unmeasured factor).

their decisions upon surrogate measures derived from changes in the observed levels of

offtake over time (Milner-Gulland and Rowcliffe, 2007). A common choice is catch per unit

effort (CPUE). The use of CPUE as an index of abundance relies on the assumption that

offtake, or catch, is proportional to both the abundance of the harvested population and

the amount of effort invested in hunting (Hilborn and Walters, 1992)

C = qNE (6.1)

where C is the observed catch, E is the effort required to realise the catch, N is the

size of the harvested population and q is a constant known as catchability. More generally,

catch could to refer to encounters of any type, in which case C is the observed number of

encounters and q is detectability (since encounters do not necessarily result in capture or

mortality). For example, in analyses of patrol data the number of infractions encountered

per unit of patrol effort has been used as an index of the number of infractions committed

(Jachmann and Jeffery, 1998).
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Table 6.1: A comparison between three common forms of encounter data and the extent to which assumptions are likely to be violated (0 = unlikely to be
violated; + = quite likely to be violated; ++ = very likely to be violated, ? = currently unknown).

Encounter-based ecological surveys Fisheries and harvesting records Enforcement patrols

Collector Scientists; research assistants Fishermen; hunters; harvesters Enforcement agents (e.g., rangers)
Generator Study species Exploited species Rule-breakers (e.g., poachers)
Main aim of collector Abundance estimation; occupancy

modelling
Fishing; hunting; harvesting Detecting and punishing rule-

breakers
Choice of route Randomly located straight line

transects
Expert-led; chosen to maximise
profitability

Expert-led; chosen to maximise en-
counters with rule-breakers

Encounters are removed
from population?

No Yes Yes

Extent of violation of assumptions

Accurate reporting by collec-
tor

0 + ++

Generator does not respond
to collector

+ + ++

Perfect detection on the line + 0 0
Effort measures are appro-
priate

? + +

Linear CPUE-abundance re-
lationship

? ++ ++

Catchability does not vary ++ ++ ++
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Due to the ready availability of catch data, CPUE has been amongst the most widely

used indices of abundance in resource management, particularly in fisheries stock assess-

ments (Hoggarth et al., 2006), but also in the bushmeat literature (e.g., Vickers, 1991; Hill

et al., 2003). However, choosing an appropriate measure for each of the variables and for

the catchability coefficient is not trivial and requires considerable care.

6.3.1 What is the appropriate unit for encounters?

In general, the definition of an encounter should be determined by a study’s objectives.

For example, the number of elephants spotted along an aerial transect is an obvious unit

for encounters if the aim is to estimate the size of that species population in an area (e.g.,

Jachmann, 2002). In other cases, the unit of encounter might be a specific sign of a species

presence (e.g., mink scats and footprints, Bonesi and Macdonald 2004; chimpanzees’ nests,

Plumptre 2000) or an event (e.g., a burst of birdsong, Buckland 2006). In patrol data

many different types of rule-breaking behaviour are commonly reported, including direct

encounters with poachers, finding traps or snares, and other signs of illegal extraction such

as tree stumps or camp remains, and even these categories may be subdivided further.

For example, snares are generally considered to be unselective (Noss, 1998; Lee, 1999; Rao

et al., 2005), but some snaring methods can be very specific (e.g., laly, a technique used for

catching lemurs Golden, 2009).

Sometimes, however, the appropriate unit for encounters may be less clear. Tropical

trawl fisheries targeting shrimp are unselective and catch large quantities of non-target

species (Andrew and Pepperell, 1992), including hundreds of different types of fish (Sto-

butzki, 2001). In interpreting catch data from these fisheries one must therefore consider

whether the catches of different species should be analysed separately, or aggregated ac-

cording to taxonomic group or some other factor. Similar questions arise in the analysis of

patrol data. For example, in studying the effect of an ivory trade ban on elephant poaching

an obvious response variable is the number or proportion of elephants killed illegally (e.g.,

Burton, 1999; Kahindi et al., 2010). By contrast, using patrol data to assess the effective-

ness of enforcement measures as a conservation strategy (e.g., Hilborn et al., 2006) requires

a decision about whether different types of infractions should be considered separately, or

analysed together. In general, analysing different types of infractions separately may be

preferable if they are subject to different influences. However, various studies of crime have

shown that different types of infractions can act as substitutes for one another (Cameron,
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1988; Ehrlich, 1996) meaning that a reduction in one type of infraction need not result in

an overall reduction in rule-breaking.

6.3.2 How should effort be measured?

Data on numbers of encounters cannot be interpreted without a measure of the effort that

produced them. In ecological surveys estimating abundance, effort is often measured in

terms of the area searched, calculated from the length of transects walked or the number of

point counts conducted (Buckland, 2001). In fisheries, where CPUE approaches are widely

used, several different measures of effort have been suggested. Effort may be simply defined

as the fishing power of a vessel multiplied by an appropriate measure of the time invested

in fishing (Beverton and Holt, 1957; Gulland, 1964; Marchal et al., 2006), but the reality is

usually more complicated. Fishing effort is a compound measure of several factors, which can

include the number of fishermen, the type of gear and other technologies used (Hovg̊ard,

1996; Rose, 1998; Sangster, 1998), time spent fishing or area searched and the strategies

employed to find fish (Hilborn, 1985; Abrahams and Healey, 1990; Rijnsdorp et al., 1998;

Marchal et al., 2006). Similarly, many different measures of hunter effort have been used in

studies of bushmeat hunting, including time spent hunting, distance travelled and number

of hunters occupying an area (Rist et al., 2008). In both fisheries and bushmeat systems, the

most commonly used measures of effort are likely to reflect the inputs to harvesting more

accurately than harvesting-induced mortality (Bordalo-Machado, 2006; Rist et al., 2008).

Patrol effort has also been measured in many different ways. Based on experiences in

Malawi’s National Parks, McShane and McShane-Caluzi (1984) discusses the merits of four

different measures: (a) the number of times a grid cell is entered by patrol per unit time, (b)

number of effective patrol days per unit area per unit time, (c) distance patrolled per unit

area per unit time, (d) area surveyed per unit area per unit time. The number of patrol days

appears to have been the most widely used measure in the published literature (e.g., Leader-

Williams and Albon, 1988; Leader-Williams et al., 1990; Jachmann and Billiouw, 1997;

de Merode et al., 2007). Other studies have incorporated the number of patrol personnel

into their measures of effort, calculating “effective patrol man-days” (Jachmann, 2008b) or

including time spent patrolling and number of scouts employed as separate predictors of

the number of infractions detected (Jachmann and Billiouw, 1997; Holmern et al., 2007).

Hilborn et al. (2006) used a cruder measure, ranger patrols per day, while Gaveau et al.

(2009) simply classify their study area into inferred “high” and “low” enforcement effort
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sectors based on vegetation re-growth, interviews and models of accessibility.

In all encounter data, there is an important distinction between periods spent actively

searching—the effective effort—and time spent on other activities which result in a lower

probability of recording an encounter. However, this can be problematic. When conducting

line transect surveys for a rare species, field biologists might be faced with a question about

whether or not to include chance ‘off-transect’ sightings. If they are included, how should

effort then be measured? The measurement of effective effort may also be complicated if

some of the apparent effort is directed towards areas (or times) which are unsuitable for

the species or event being studied. The ability of longline fishing gear to catch bigeye tuna

(Thunnus obesus) is strongly dependent on the depth the gear reaches and the position

of tuna in the water column. Consequently, the effective effort in these fisheries must be

adjusted to take into account both the gear specification and the behaviour of tuna in the

fishing areas (Bigelow et al., 2002). To properly estimate the effective patrol effort, McShane

and McShane-Caluzi (1984) and Jachmann and Jeffery (1998) argue that a good measure of

patrol effort should recognise the difference between time spent actively patrolling and time

spent travelling to and from camps and the like. For example, Jachmann and Jeffery (1998)

classifies scout activity in Luangwa Integrated Resource Development Project in Zambia

into 12 categories, only 5 of which are considered to be directly related to patrol activity.

6.3.3 What does the ‘catchability’ coefficient represent?

In fisheries and bushmeat analyses, the catchability coefficient is generally described as

the effectiveness with which a specific type of fishing gear or hunting equipment catches a

particular species (e.g., Hilborn and Walters, 1992). This is analogous to the probability of

detecting a species or event within the area sampled by a strip transect. In distance sampling

approaches the probability of detection is generalised to be a function of the distance from

the transect line at which the encounter occurs (Buckland, 2001). For patrol data, the

detectability coefficient relates the number of infractions detected to both the total number

of infractions committed and the amount of patrol effort invested in discovering them, and

is therefore related to the efficiency of patrolling.

In each of these cases, an assumption of the simplest models is that catchability, or

detectability, does not change over time or between areas. In reality, however, these coeffi-

cients incorporate the effects of many different influences on the probability of an encounter,

including characteristics of the target species or event and temporal and spatial heterogene-
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ity in environmental conditions (Arregúın-Sánchez, 1996) which may not remain constant.

Patrol efficiency is likely to be affected by the type of patrol (e.g., on foot, by vehicle, aerial

surveys), expenditure on equipment, training and incentive payments (Leader-Williams and

Albon, 1988; Jachmann and Billiouw, 1997; Jachmann, 2008b), the morale and individual

abilities of different patrol officers, differences in terrain, weather conditions and the like. If

not explicitly modelled, changes in these factors may result in violations of the assumption

of constant detectability.

Where multiple gear types or species are involved in fisheries, or catchability varies,

CPUE measures are often ‘standardized’ using by including relevant covariates in Gener-

alised Linear Models (GLMs; McCullagh and Nelder, 1989) to explicitly model the differ-

ences (Maunder and Punt, 2004; Bordalo-Machado, 2006). The effects of spatially and

temporally heterogeneous probabilities of detection are similarly incorporated into distance

sampling approaches and models of occupancy (Buckland, 2001; MacKenzie et al., 2005).

These approaches have not been used to date in analyses of patrol data.

6.4 Interpreting patterns seen in encounter data

A key feature shared by all types of encounter data is that they are the product of two sets

of actors: a generator and a collector (Table 6.1). This is clearly true in the case of patrol

data where the number of infractions detected depends upon the behaviour of both patrols

and rule-breakers. In other forms of encounter data, this feature of the data has received

less attention, perhaps because one of the sets of actors is usually non-human, but it can

still have important consequences. To successfully interpret encounter data it is therefore

necessary to understand how these two sets of behaviours interact.

6.4.1 How does CPUE relate to the size of the sampled population?

Referring to the use of CPUE measures in analyses of commercial fisheries, Hilborn and

Walters (1992) note

“The simplest assumption regarding the relationship between commercial catch

and abundance is that the catch rate (CPUE) is directly proportional to abun-

dance. ... [This assumption] has been demonstrated to be wrong in almost every

case where it has been possible to test - simply stated it is almost impossible for

this relationship to be true.”
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Figure 6.2: Two general classes of non-linear relationships between the infractions detected
per unit effort and the total number of infractions committed. Hyperstability describes rela-
tionships where the number of infractions detected per unit effort declines more slowly than
the number of infractions, while hyperdepletion describes relationships where the number of
infractions detected per unit effort declines more rapidly than the number of infractions. As-
pects of patrol and rule-breaker behaviour which can result in these non-linear relationships
are described in Table 6.2.

In the fisheries literature, the two general classes of non-linear relationship between

CPUE and the true stock abundance are termed hyperstability and hyperdepletion (Figure

6.2, Hilborn and Walters 1992), with hyperstability the more common (Hilborn and Wal-

ters, 1992; Harley et al., 2001; Lorenzen et al., 2006). Hyperstability describes situations

where the number of encounters per unit effort remains high while the size of the sampled

population declines. Hyperdepletion is the converse situation, where the encounters per unit

effort drops off more rapidly than the size of the sampled population. In some cases these

relationships may be linked directly to the changes in the size of the sampled population

(e.g., when individuals differ in their probability of detection, those that are more easily

caught will tend to be detected first and proportionally more effort will be needed to detect

those that remain, resulting in hyperstability). However, non-linear relationships can also

be produced by changes which are independent of changes in the status of the underlying

population of interest but occur simultaneously (e.g., improvements in equipment or train-

ing while the number of infractions declines can appear as hyperstability; spatial shifts in

fishing effort or learnt avoidance can appear as hyperdepletion; Walters 2003).
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Although the sources of these non-linear relationships have primarily been studied in the

context of fisheries, many can also apply to other types of encounter data (e.g., bushmeat

Rist, 2007). In patrol data, changes in the behaviour or efficiency of patrols or rule-breakers

over time could produce either hyperstability or hyperdepletion (Table 6.2). If not recog-

nised, both non-proportional relationships can have important consequences. In patrol data,

hyperdepletion might encourage complacency, with managers believing that enforcement ef-

forts are more effective than they really are, while hyperstability could result in overspending

in the mistaken belief that the problem is worse than it really is. To date I are aware of no

studies of enforcement activities within conservation or resource management which have

explicitly assessed the functional form of the relationship between the number of infractions

detected per unit effort and the underlying number of infractions.

6.4.2 How does the number of encounters detected change with effort?

An obvious complication in the interpretation of patrol data arises because patrols are both

a source of information about and a deterrent to rule-breaking. In general, therefore, an

increase in patrol effort is expected to produce two opposing effects: a decrease in the total

number of infractions due to deterrence (and possibly removal of rule-breakers from the

population through incarceration) and an increase in the proportion of those infractions

which are detected (Burton, 1999).

In discussions of rule-breaking, deterrence is often treated as a single process, but in

reality changes in the recorded number of infractions reflect the aggregate effects of multiple

behavioural responses. Consider poachers hunting with guns. Increases in enforcement

effort may lead some individuals to make fewer hunting trips, and others to cease to poach

altogether. Alternatively, however, rule-breakers might substitute one type of infraction

for another (Becker, 1968). For example, in the ADMADE project in Zambia poachers

responded to increasing costs of enforcement by reducing the offtake of certain species,

substituting smaller mammals for their standard prey and switching to less conspicuous

technologies such as wire snares (Gibson, 1995). Rule-breakers may also adopt other forms

of avoidance behaviours, trading off increased costs or lower efficiency for a reduction in the

probability of being caught (Robinson et al., 2010). In the Serengeti, for example, hunters

primarily travel at night and spatially heterogeneous patterns of enforcement effort result

in the displacement of hunting effort from higher-risk to lower-risk areas (Hofer et al., 2000;

Nyahongo et al., 2005).
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Table 6.2: Hypothesised causes of hyperdepletion and hyperstability in the relationship between the number of infractions detected per unit effort (CPUE)
and the actual supply of infractions, based on findings from fisheries. Adapted from Hilborn and Walters (1992).

Patrol behaviour (Data collector)

Hyperstability Hyperdepletion

Non-random search Patrols preferentially target areas of high infractions. Patrols deliberately avoid areas with more infractions (e.g.,
due to social pressure, or threats to safety).

Significant handling
time

Proportion of time spent processing infractions or apprehend-
ing rule-breakers is not negligible—areas with high infractions
are effectively undersampled due to a higher proportion of to-
tal effort being handling time.

Extent of search area Changes to patrol patterns which increase the density of in-
fractions in the search area (i.e. patrolling new areas with
high levels of infractions).

Changes to patrol patterns which reduce the density of in-
fractions in the search area.

Patrol efficiency Increases in patrol efficiency (e.g., due to improved technol-
ogy, better training).

Reductions in patrol efficiency (e.g., due to poor equipment
maintenance, drop in morale, loss of trained personnel).

Rule-breaker behaviour (Data generator)

Hyperstability Hyperdepletion

Predictable behaviour Patterns of rule-breaking are predictable (e.g., clustered).
Heterogeneous ability to
avoid detection

Ability to avoid detection (or strength of deterrence) varies
between individuals—the more easily detected/deterred indi-
viduals are removed from the system first.

Changing ability to
avoid detection

Rule-breakers become less able to avoid detection over
time(e.g., due to loss of shared information from others).

Rule-breakers become better able to avoid detection (e.g.,
learning to predict patrol behaviour; improving ability to dis-
guise actions).
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Similar behaviours are also seen in animals in response to the presence of hunters or

observers, but their effects are rarely considered in analyses of encounter data. For example,

cod and other fish are known to move in response to fishing gear (e.g., Hemmings, 1973;

Suuronen, 1997; Handegard et al., 2003). Diana monkeys have been shown to fall silent

and retreat in response to the presence of humans (Zuberbühler, 1997) and both Adélie

penguins and red and eastern grey kangaroos move in response to aerial surveys (Fewster

et al., 2008). These types of behavioural responses could be an important source of bias in

many types of encounter data.

Detecting and quantifying these biases, and separating the contributions of different

processes to observed patterns in CPUE data, cannot easily be achieved using encounter

data alone (Figure 6.3). In fisheries this problem is frequently tackled by conducting fishery-

independent surveys so that CPUE measures can be independently validated (Hilborn and

Walters, 1992). However, alternative data sources must be carefully chosen if they are not to

suffer from similar biases. For example, orange roughy have been shown to move away from

camera systems as well as fishing gear (Koslow et al., 1995) and herring display avoidance

behaviours towards acoustic survey vessels (Vabø, 2002). In the study of rule-breaking,

there have been few attempts to date to compare patrol records with data derived from

other sources (Gavin et al., 2010).

6.4.3 Data collectors’ incentives

Another important consideration which is often neglected in analyses of encounter datasets is

the effect of the incentives faced by the data collectors (Chapter 4). In fisheries, every vessel

has an incentive to fish as efficiently as possible since the profits from fishing relate directly to

catch. However, the implementation of restrictions on the total allowable catch can lead to

catches being misreported (e.g., Patterson, 1998). In conservation, the link between rangers

rewards and the effort they invest, or number of infractions they detect, is not always clear.

Indeed, rangers may face strong pressures to turn a blind eye to offences committed by

friends, family or neighbours (Abbot and Mace, 1999) or may face threats to their safety

(Hart et al., 1997). Patrol reports (Jachmann, 2008a) and fisheries records may therefore be

subject to technical error, accidental or deliberate omissions, and falsification. Ecological

surveys are likely to be less prone to deliberate manipulation, but in many situations there

may be few incentives for local assistants to invest more than the minimum required effort.

Well designed management programmes can provide incentives for effective patrolling
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Figure 6.3: A hypothetical example illustrating how a single relationship between CPUE
(the number of infractions detected per unit effort) and effort could arise in different ways.
In the first example, (a), increasing patrol effort increases detection and also produces a
deterrent effect, leading to fewer infractions being committed. In the second example, (b),
there is no deterrent effect of enforcement. However, both scenarios produce the same
relationship between CPUE and effort.

and accurate reporting. For example, the number of senior staff visits to ranger camps in

Ghana’s National Parks was found to be positively correlated with the amount of effort

rangers expended on patrolling duties (Jachmann, 2008b). Similarly, increases in the pay-

ment of cash bonuses to scouts in the Luangwa Valley, Zambia, correlated with reductions in

the numbers of elephants that were illegally killed (Jachmann and Billiouw, 1997). However,

using a model of decision-making in a community-based conservation setting, Mesterton-

Gibbons and Milner-Gulland (1998) showed that paying bonuses is not sufficient to ensure

that mutual monitoring persists in the long term: individuals must also be paid a basic

salary which at least compensates their opportunity costs. Incentives for effective enforce-

ment can also be created by instituting competition between different patrol groups and by

encouraging them to monitor each other’s performance (Jachmann, 2008a).

6.4.4 Non-random patterns of sampling

Sampling regimes in ecological monitoring are carefully designed to allow robust inferences

to be drawn about the studied population. This generally requires samples to have been
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drawn at random, or at random from within defined strata (i.e., groupings based on sim-

ilarity; Cochran 1977; Burnham et al. 1980). For the sake of efficiency, however, ranger

patrols, hunters and fishing vessels all tend to concentrate their effort in areas where there

is a high probability of encounters. When effort is “intelligence-led” (i.e., acting based on

prior information about where encounters are likely), the relationship between effort and

the number of encounters may be difficult to predict. Comparing the efficiency of different

approaches to enforcement, Jachmann and Billiouw (1997) incorporated the effective num-

ber of investigation days as an additional predictor of the number of infractions detected,

alongside the amount of traditional patrol effort. However, if investigative approaches and

information derived from traditional patrols feed back to one another this approach may

produce biased results.

In addition to the difficulties it creates for defining an appropriate measure of effort,

directing patrols towards areas identified by informants may complicate attempts to un-

derstand spatial patterns of rule-breaking by introducing unquantifiable biases (Chapter

4). Holmern et al. (2007) recognise the potential problems the use of informants raise for

analyses of patrol effort. They note that the Village Game Scouts policing community

based conservation agreements around the Serengeti National Park “did not record if they

acted on information from fellow villagers or if they conducted a patrol without any prior

knowledge of illegal activities”. Similar problems are encountered in some forms of ecolog-

ical monitoring. For example, the traditional distance sampling approaches to monitoring

populations of forest elephants are expensive, and non-random ‘recce’ sampling has been

proposed as a cheaper alternative (Walsh and White, 1999). However, it has been argued

that without extensive calibration these approaches are likely to be prone to biases (Burn

and Underwood, 2000).

Other factors can also lead to non-random sampling patterns, such as ease of access

(e.g., Gaveau et al., 2009). Several studies of enforcement measures in conservation have

compared rule-breaking at the level of entire national parks over a number of years (e.g.,

Jachmann and Billiouw, 1997; Hilborn et al., 2006; Jachmann, 2008b). This approach is

reasonable so long as the patrol effort is near-randomly distributed within the parks in

question but, if patrol coverage is patchy or inconsistent, apparent changes in the level of

illegal activity might be real or might be caused by biases due to changing sampling or

poaching patterns (cf. Walters, 2003). When the resources available to carry out patrols are

small relative to the area to be managed, difficult-to-reach areas may go unpatrolled for long
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Figure 6.4: A map showing the distribution of patrol effort in Masoala National Park,
Madagascar, between 2005 and 2007. The shaded areas show an index of patrol effort,
indicating that the patrol resources are concentrated around the periphery of the park, with
darker grey shading representing more heavily patrolled cells. Large areas have not been
patrolled at all during this period (white cells). Individual grid cells are 9km2 in size.

periods of time meaning that there is essentially no information about the level of illegal

activity occurring in these areas (Figure 6.4). If data are analysed at an appropriately fine

scale to distinguish between patrolled and unpatrolled areas this need not be a problem,

but inferences cannot be made about the areas which are not adequately represented within

the sample (Walters, 2003).

6.5 Spatial and temporal scale in analyses of encounter data

Clearly, the complex and interacting processes that produce encounter data take place over

a range of spatial and temporal scales. In analyses of patrol data, for example, forest

clearance can affect whole parcels of land, and its effects remain detectable for long periods

of time. By contrast, individual poaching incidents are localised and once the hunter has left

an area little evidence may remain. Similarly, the spatio-temporal scales of rule-breakers’

behavioural responses to enforcement may vary considerably. For example, lags can occur

between increases in enforcement effort and any subsequent deterrent effect, since potential

rule-breakers must first learn about the change. Subsequently, if the higher level of effort is

91



not maintained, the level of deterrence may decay over time (Clayton et al., 1997). Small

scale avoidance behaviours, on the other hand, may change rapidly (e.g., hiding to evade

detection by an active patrol). Some forms of punishment, such as imprisonment, also have

longer lasting effects and should reduce the number of offences whether or not they produce

a deterrent effect (i.e., simply by removing potential rule-breakers altogether). The scale

at which patrol and other forms of encounter data are collected therefore has important

consequences for how it can be used, and how it must be analysed. Analyses of highly

aggregated data risk drawing misleading conclusions (Walters, 2003) and data which are

unable to describe fine-scale patterns are likely to be informative for decision-making at

relevant temporal and spatial scales for management. However, achieving high resolution

requires greater patrol effort and interpreting data at finer scales may require sophisticated

analytical techniques.

Standard statistical techniques applied to encounter data, such as generalised linear

models (McCullagh and Nelder, 1989), assume that every data point is independent. How-

ever, at finer scales this assumption breaks down. For example, if a hunter takes a route

through a forest, setting snare traps as his goes, observations made close to one another in

space will tend to be more similar to one another than expected if they were independent.

Similarly, if groups of animals or of hunters tend to avoid overlapping (e.g., if they have

clearly defined territories), then closely adjacent samples might be expected to show neg-

ative autocorrelation (i.e., sampled points close to one another are likely to be less similar

than would be expected by chance). If not corrected for, autocorrelation can inflate the

risk of “false positive” errors (e.g., Legendre, 1993; Lichstein et al., 2002; Diniz-Filho et al.,

2003). In ecological surveys, careful design can ensure that the potential effects of autocor-

relation are minimised. When surveying clustered species or events, a common approach is

to treat each cluster as a single encounter and then scale subsequent estimates according

to the average (e.g., Rosenstock et al., 2002). Where data are collected opportunistically,

as is the case in fisheries and patrolling, autocorrelation cannot be reduced “by design”

but may be tackled by the incorporation of spatial covariates or explicit modelling of the

autocorrelation (e.g., Nishida and Chen, 2004).

Encounter data collected at relatively fine spatial and temporal scales also often include

large numbers of zero observations with no encounters. This may complicate statistical

inference, and is referred to as zero-inflation if the number of zeroes is greater than can be

adequately modelled by standard probability distributions (Zuur, 2009). Zero observations
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may be classified as ‘true’ zeroes (i.e., areas in which the species or event was not present)

and ‘false’ zeroes (i.e., areas where the species or event was present, but remained undetected

for some reason; Martin et al. 2005). In patrol data, large numbers of true zeroes can occur

when patrols sample areas which are unsuitable for the illegal behaviour of interest or if

patterns of illegal activity are spatially autocorrelated (cf., Flores et al., 2009). Patterns

of suitability in particular may be complex and difficult to incorporate in analyses. For

example, clearing an area of forest of animals or removing its valuable timber can render it

unsuitable for further extraction for a period following the initial offence. The suitability of

an area at any point in time would therefore depend on the history of extraction up to that

point, and the time taken for the area to regenerate.

False zeroes can arise from imperfect detection (Martin et al., 2005; MacKenzie et al.,

2005). In patrol data, the probability of detecting infractions may sometimes be close to

1 (e.g., Jachmann and Billiouw 1997 argue that they were able to detect all new elephant

carcasses within their study area), but it will often be the case that some illegal activities

go undetected despite patrol efforts. False zeroes can also occur if rangers fail to report

infractions, either because they face incentives to cover them up, or because of inadequate

training or equipment failure. Similar problems occur in the reporting of bycatch data from

commercial fisheries, complicating assessments of the effect of bycatch on the mortality of

threatened taxa, such as albatrosses and sea turtles (Lewison et al., 2004). Methods for

modelling imperfect detection are well established in the field of occupancy modelling (e.g.,

MacKenzie et al., 2005; Royle et al., 2005). Modifications of distance sampling method-

ologies incorporating mark-recapture protocols can also allow for imperfect detection on a

transect line (Buckland, 2004).

6.6 How can the usefulness of patrol data be improved?

Although they can appear to be simple and intuitive, encounter data and CPUE mea-

sures must be treated very carefully if they are to be useful sources of information. In the

preceding sections I have drawn parallels between different forms of encounter data, and

highlighted their similarities. In this final section, I apply lessons learned in other fields

to provide practical suggestions for modifying the collection and analysis of patrol data to

improve its suitability for answering questions about the amount and distribution of rule-

breaking in conservation. Of course, there are important differences. Commercial fisheries,
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in particular, are often highly profitable businesses so there are sizeable incentives for en-

suring that they are well monitored and managed. As a result, it may be feasible to conduct

fishery-independent surveys and employ highly trained specialists to ensure that the appro-

priate analytical techniques are adopted for monitoring stocks. By contrast, conservation

managers must often operate with restrictive budgets and limited technical support (James

et al., 1999). Bearing in mind these limitations, however, I believe that there are a variety

of ways in which efforts to collect and analyse data on illegal behaviours could be improved.

6.6.1 Improving the recording of patrol data

The cheapest way to improve the usefulness of patrol data is simply to improve recording

practices. The keeping of detailed, standardised records of ranger patrols has long been

advocated (e.g., McShane and McShane-Caluzi, 1984). However, recording a greater variety

of information about patrols would enhance our ability to distinguish between the many

possible sources of variation in that exist within these data. For example, rangers differ

in their ability and motivation to uncover and report rule-breaking which can cause inter-

observer variation, while changes in the effectiveness of personnel over time could introduce

bias into records of infractions detected. Data collected by fishermen, fisheries observers

and ‘citizen scientists’ suffer from similar problems (Thomas, 1996). For example, inter-

observer variability has been demonstrated in data from the North American Breeding Bird

Survey, along with a tendency for observers to count a greater number of species as they

gain experience (Sauer et al., 1994). If properly recorded, the variability between patrols

could be incorporated into analyses in a variety of ways depending on factors such as the

number and turnover of personnel (cf. Punt, 2000; Brandão et al., 2002; Candy, 2004).

More accurate recording of the routes taken by patrols would help to determine whether

there are spatial biases in sampling, and is essential for answering questions about fine-scale

patterns of behaviour. Technological innovations such as GPS recorders and the Cyber-

Tracker system can help (Steventon, 2002), but simple paper and pen recording systems

can also be very effective if well designed and supported (e.g., the Event Book System

Stuart-Hill et al., 2005). In fisheries, the International Council for the Exploration of the

Sea coordinates a large standardised database containing information on commercial fish-

eries catches as well as trawl surveys and oceanographic information (http://www.ices.dk/).

This and similar projects help to facilitate the use of fisheries data for stock management

and research. Greater standardisation of the data collected by patrols, perhaps via the
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use of tailored databases such as the MIST system pioneered by WCS (BPAMP, 2006)

and WWF’s IRVES system, could enable large scale comparisons of enforcement and illegal

behaviour between different regions.

Understanding the patterns and drivers of rule-breaking in conservation requires an

understanding of how conservation measures affect individual decision-making by resource

users (Chapter 2). Deterrence is generally understood to be a function of both the probabil-

ity of detection and the severity of punishment (Becker, 1968) but many patrol records fail

to track what happens to offenders once they are caught, particularly in systems where pun-

ishments are decided by other authorities (e.g., the courts system Akella and Canon, 2004).

In practice the actual punishment that a rule-breaker incurs may differ from the theoretical

sanction and can vary considerably from case to case (Leader-Williams and Milner-Gulland,

1993). As a result, it is difficult for analysts to infer the true risk involved in rule-breaking

after the fact. To address this there is a need for more systematic collection of data about

the individuals who break conservation rules: from the point of detection, through capture

and processing, to prosecution, sentencing and the true level of sanction imposed and, ulti-

mately, to recidivism rates. Furthermore, to properly understand how this risk is perceived

by potential rule-breakers, there is also a need for research into levels of knowledge and

attitudes towards rules and enforcement measures (see Chapter 3).

6.6.2 Improving the patrolling that is done

Irrespective of the types of data that are collected by patrols, their potential uses are con-

strained by their resolution and the sampling patterns used to collect them. Choosing

an appropriate scale for the collection and subsequent analysis of patrol data involves a

trade-off between the loss of relevant information at coarse spatial and temporal scales, and

increased cost and analytical complexity at finer scales. With greater resources, consider-

able improvements in the usefulness of patrol data could be achieved by choosing sampling

regimes in order to maximise the potential information that might be gained (e.g., stratify-

ing patrol effort between different areas based on an understanding of human behaviour) or

by adaptively managing patrolling patterns (cf. Thompson and Seber, 1996). Clearly, how-

ever, the benefits of this approach must be weighed against its costs and possible trade-offs

(e.g., reductions in the deterrent effect of patrols). I are not aware of any studies that have

attempted to address whether ranger patrols can efficiently achieve multiple aims.
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6.6.3 Improving the analysis of patrol data

The collection of better data must also go hand in hand with the adoption of appropriate

analytical techniques, and each process should be designed with the other in mind. As

described in previous sections, useful approaches to many of the problems encountered in

the analysis of patrol data have already been explored for other types of encounter data.

However, other questions deserve further exploration. For example, traditional ecological

analyses have sometimes been criticised for paying too little attention to whether they are

able correctly to identify causal processes (Ferraro, 2005; Armsworth et al., 2009). The

standard, regression-based approach to patrol data implies that causality is strictly uni-

directional, with the number of infractions committed being partially determined by the

deterrent effects of patrolling, but not the other way around. In practice, however, this

is rarely true. The principal aim of patrolling is efficiently to prevent rule-breaking, so

managers may commonly direct more patrol effort towards areas where a greater number of

infractions are thought to be committed. Consequently, at least at some scales of analysis,

patrol effort may be partially endogenous (i.e., the level of patrol effort may be partly deter-

mined by the number of infractions committed in an area rather than being independently

arrived at).

A related problem is that of selection bias (Ferraro, 2005). Patrols and rule breakers

occupy heterogeneous landscapes, and factors such as ease of access may influence the

decisions of both sets of actors about where they concentrate their effort. Consequently,

areas that are easily accessed (e.g., near to paths or rivers) may be used more often by rule-

breakers and also patrolled more often, potentially creating spurious correlations. Similarly,

fishermen are known to use cues such as the presence of dolphins or seabirds to target areas

that are suspected to contain more fish (Polacheck, 1988). These problems of endogeneity

and selection bias are common in the social sciences (e.g., Maddala, 1992; Kennedy, 2001),

so the analysis of patrol data (and other forms of encounter data) is an area where closer

collaboration with economists and other social scientists may be particularly fruitful.

6.6.4 Validating patrol data with alternative sources of information

Some of the problems of interpreting patrol data may only be overcome through com-

parisons with alternative sources of information on illegal behaviour. For example, Hilborn

et al. (2006) model the effects of changes in expenditure on enforcement on buffalo, elephant
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and rhino populations in the Serengeti National Park system, finding close correspondence

between their predictions and abundance estimates from ecological surveys. In fisheries,

studies attempting to quantify non-linearities in CPUE-abundance relationships have relied

heavily on the existence of alternative measures of abundance (e.g., Harley et al., 2001).

A number of alternative approaches to gathering data on illegal behaviour are available to

researchers (see Gavin et al., 2010). These include self-reporting (e.g., Gavin and Anderson,

2005), direct questioning (e.g., Jones et al., 2008a), information from other observers and

informants, the randomized response technique - an indirect, anonymous method for esti-

mating rate of rule-breaking at the population level (e.g., Blank and Gavin, 2009; St. John

et al., 2010) and wildlife forensics (e.g., Wasser et al., 2008). Each of these approaches has

its own strengths and weaknesses, but comparisons between different sources of data on

illegal behaviour are rare (Gavin et al., 2010).

There is also considerable scope for borrowing approaches from the field of experimen-

tal economics to answer questions about individual responses to threats of punishment or

conditional rewards, the role of different institutional structures in legitimising rules and

sanctions, the psychological effects of different enforcement regimes and the effectiveness of

strategic dissemination of information about enforcement outcomes. So far, conservation

has been slow to adopt these methodologies (but see Travers, 2009).

6.6.5 Considering rule-breaking behaviour in the context of wider incen-

tives

Ultimately, successfully interpreting data on how individuals respond to conservation mea-

sures such as ranger patrols requires approaches which consider enforcement as a part of a

wider system, taking into account the myriad other factors which affect individual choices

(Chapter 2). In Sumatra, for example, high international coffee prices increased rates of

deforestation inside Bukit Barisan Selatan National Park, confounding the effects of law

enforcement (O’Brien et al., 2003; Gaveau et al., 2009). Illegal behaviour can also be af-

fected by changes in prices of legal goods, as demonstrated by models of bushmeat hunter

behaviour (Damania et al., 2005). Here effects were found to be ambiguous: higher prices

for agricultural commodities can lead to a greater proportion of effort being devoted to

farming, but could also stimulate greater consumption of bushmeat. In the absence of ob-

vious price-driven effects, it has also been shown that changes to the socio-political context

of enforcement due to war or civil unrest can undermine its effectiveness (e.g., de Merode
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et al., 2007). I will only be able to assess the true role of enforcement and other conserva-

tion measures when they are understood within the broader context in which they operate

(Ferraro, 2005; Ferraro and Pattanayak, 2006).

6.7 Conclusions

There is a strong desire within the conservation community to learn about and improve the

effectiveness of our actions (Pullin and Knight, 2001; Sutherland, 2004). The enforcement

of rules and agreements is widely recognised as being crucial to the success of conservation

(Chapter 2), and expenditure on enforcement consumes a large part of conservation budgets

in many areas of the world (e.g., Jachmann, 2008b; Robinson, 2008; Robinson et al., 2010).

Patrol datasets represent a commonly used and widely available source of information about

rule-breaking, but are complex and difficult to interpret successfully. Here, I have shown

how patrol datasets share many similarities with other forms of encounter data, and high-

lighted how such datasets can be made more informative, through improvements to data

collection and analysis. However, the technical skills required to perform appropriate anal-

yses of such challenging datasets presents a serious capacity-building issue. A program of

research is needed which establishes the power of different methods to detect change and to

provide policy-relevant information, and which examines the effects of enforcement within a

broader framework of individual incentives, as one of many factors contributing to successful

conservation outcomes. As is so often the case, conservation can learn a great deal from the

experiences of other disciplines. However, by highlighting the importance of crucial sources

of bias that might otherwise be neglected, a better understanding of patrol data stands to

benefit every field that relies on encounter data.
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Chapter 7

Discussion

7.1 Background

Conservation interventions often seek to change people’s behaviour, discouraging actions

which cause damage to species or ecosystems, or promoting those which are beneficial.

There are many different approaches to achieving these goals, and over time the dominant

paradigm has undergone several shifts. Early conservation interventions, for example, were

often based entirely on the creation and enforcement of rules, usually focused around the

designation of protected areas from which local people were excluded to reduce the damaging

effects of habitat destruction and overexploitation (Pullin and Knight, 2001). Subsequently,

approaches emphasising the importance of inclusion and community participation have re-

ceived greater attention (e.g., Lewis et al., 1990). Most recently, payments for environmental

services (Ferraro, 2002; Engel et al., 2008) have been promoted as an efficient way to achieve

conservation goals.

All of these different approaches remain central to the practice of conservation today, and

it is therefore important the details of their design and implementation are based upon robust

foundations of theory and evidence (Pullin and Knight, 2001; Sutherland, 2004; Ferraro and

Pattanayak, 2006). In recent years, a considerable amount of empirical and theoretical

research has been carried out in order to understand approaches that focus on provision of

benefits (e.g., improving livelihood opportunities through the development of ecotourism,

Kiss 2004; paying private landowners to maintain flows of environmental services, Engel

et al. 2008). However, similar work has generally been lacking for enforcement measures in

conservation. Consequently there is a clear need for research which answers both theoretical

and practical questions regarding the enforcement of conservation rules. This thesis sets
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out to address some of these questions. By focussing on behaviour at the level of individual

actors, my research has advanced discussions of enforcement and compliance in conservation

in a number of important areas.

7.2 Contributions

7.2.1 Individual decision-making and incentives

An important contribution made by this thesis has been to draw together the various strands

of research on enforcement and compliance that exist in other fields, establishing the basis

of a theoretical framework for understanding these issues in conservation (Chapter 2). The

effectiveness of rules in conservation, and the measures taken to enforce them, depend upon

the decision-making of several distinct sets of actors. For example, the choice of strategy

for improving compliance with conservation rules is generally taken by managers or policy

makers (i.e., at the institutional level). However, the ultimate effects of these choices depend

upon how these decisions are implemented by the individuals who are directly responsible

for carrying out enforcement (e.g., rangers), and the responses of potential rule-breakers

(e.g., poachers). To be able to understand the factors which influence the effectiveness of

rules in conservation, it is therefore necessary to understand the differing incentives faced

by individuals at different levels of the enforcement chain (Akella and Canon, 2004) and

how they interact. My research shows that these incentives depend on both the role played

by an individual, and their particular abilities and characteristics.

7.2.2 Individual heterogeneity and the behaviour of rule-breakers

At the level of rule-breakers, understanding compliance requires a consideration of many

determinants of behaviour, right the way through from an individual’s awareness and un-

derstanding of rules, to the incentives that they face to break them, and the way in which

enforcement changes these incentives in favour of compliance. Logically, the creation of

rules can only change behaviour if people are aware of their existence. However, previous

studies of rule-breaking have tended to assume that rules are perfectly known by the people

whose behaviour they are intended to change and this assumption had gone largely untested.

The research presented in Chapter 3 begins to address this gap, reporting the first study

to examine factors which affect awareness of conservation rules at the individual level. Al-

though knowledge of rules was found to be generally poor—a potentially serious barrier to
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their effectiveness—the research also found evidence of large differences in understanding

between individuals which could be explained to some extent by personal characteristics.

In particular, levels of education and involvement with tourism, and community resource

management were all found to improve awareness.

Even if awareness is high, rules are only effective if they are able to change the motiva-

tions of potential rule-breakers, whether this occurs directly (e.g., through the presence of

enforcement creating a threat of punishment) or indirectly (e.g., mediated through effects

on norms of acceptable behaviour; Ostrom 2000). Here too, individual differences are im-

portant. In the individual-based model presented in Chapter 4, the availability of several

potential courses of action (‘strategies’) that an individual can pursue, and the heterogeneity

of outcomes for different individuals pursuing the same strategy, means that equilibria where

multiple strategies (e.g., poaching, monitoring and alternative livelihoods) can coexist are

common (cf. Tsebelis, 1989; Mesterton-Gibbons and Milner-Gulland, 1998; Walker, 2009).

In this situation, the level of compliance that results from changes to policy levers (e.g.,

the size of fine for poaching, or of fees paid to enforcement agents) is shown to be highly

sensitive to the context in which they are embedded (e.g., the profitability of poaching and

of livelihood alternatives; the ease with which monitors are detected if they cheat).

The tendency of conservationists to think of communities as homogenous entities has

previously been criticised for ignoring important details of human behaviour in the design

of community-based projects (e.g., Agrawal and Gibson, 1999) and there is evidence that

individual differences (e.g., in opportunity or transaction costs, or social status) within

groups can also affect the outcomes of approaches based on payments for environmental

services (Sommerville et al., 2010). Understanding of the effects of individual heterogeneity

upon responses to incentives is an issue that requires further attention, not only in the study

of enforcement but throughout conservation.

7.2.3 The behaviour of enforcement agents

Traditionally, discussions of enforcement have often assumed that managers have two main

options at their disposal for manipulating the incentives created by enforcement: change

the probability that an individual is caught and punished if they break a rule, or change

the severity of punishment that is subsequently incurred. Since Becker (1968), models

of rule-breaking and compliance have regarded the deterrent effect of enforcement as a

function of these two key variables. However, translating the results of such models into
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practical recommendations for conservation has proved difficult (Robinson et al., 2010). One

important reason for this may be that the probability of detection and punishment cannot

be precisely controlled by managers (Chapters 4 and 5). Instead, the probability that

a rule-breaker is detected emerges from the interaction between rule-breakers’ behaviour,

and the behaviour of enforcement agents (Mookherjee and Png, 1995; Mesterton-Gibbons

and Milner-Gulland, 1998). Consequently, to analyse properly the effectiveness of different

policy options for improving enforcement it is necessary to understand how they affect the

incentives of enforcement agents to perform their duties (Walker, 2009; Robinson et al.,

2010).

Chapter 4 addresses this issue in the context of a community-based conservation project

where local people are able to both poach and monitor. I show that the question of how to

design effective measures for incentivising locally-based monitoring and enforcement is com-

plex, and care must be taken to avoid perverse effects when individuals differ in their skills

and motivation. Very few previous studies have addressed the issue of monitors’ incentives

in conservation. Mesterton-Gibbons and Milner-Gulland (1998) argued that locally-based

monitoring cannot be sustainable unless monitors are paid a fee which compensates their

opportunity costs. While this finding is likely to hold true, I show that the effects of paying

larger fees—and, similarly, larger bonuses—to monitors are not always beneficial. In some

contexts, such as those where it is difficult to determine whether enforcement agents are

carrying out the duties properly (i.e., it is easy to ‘cheat’), the payment of higher fees could

undermine conservation success. Within the limits of the scenarios I explored, Chapter 4

suggests that changes in policy levers which produce their effects more directly (e.g., fines)

may be more robust than those which are mediated through changes in enforcer behaviour

(e.g., performance bonuses for rangers) because they are less susceptible to these perverse

effects. However, there is evidence that in some cases the imposition of harsher penalties

can erode co-operation between local people and conservation authorities (e.g., Infield and

Namara, 2001). Further research will be needed to ascertain how changing the severity of

punishment compares to the use of alternative policy levers in practical settings.

7.2.4 The usefulness of patrol data as a source of information

Understanding both rule-breaker and enforcer behaviour is also vital to interpreting sources

of data on enforcement and compliance. Establishing a theoretical basis for understanding

rule-breaking in conservation provides a framework around which empirical studies can be
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structured. However, empirical testing of the effectiveness of strategies to improve compli-

ance in conservation requires accurate sources of data about rule-breaking (Gavin et al.,

2010). An obvious source of information about the effectiveness of enforcement is the data

collected by enforcement agents themselves, and many empirical studies of enforcement

measures in conservation have made use of ranger patrol data (e.g., Leader-Williams et al.,

1990; Jachmann and Billiouw, 1997; Hilborn et al., 2006). Previously however, little consid-

eration has been given to the suitability of patrol data for this purpose. This thesis presents

the first thorough examination of the properties of patrol data as a source of information

about rule-breaking, and shows that understanding the behaviour of both rule-breakers and

enforcement agents is crucial to interpreting observable patterns (Chapters 6 and 5).

Many behavioural processes which are known to occur frequently in systems of rule-

breaking and enforcement (e.g., spatially autocorrelated patterns of patrolling; avoidance of

patrols by rule-breakers) introduce biases in patrol data and, as a consequence, interpreting

patterns observed in patrol data can be challenging (Chapter 5). The use of catch per unit

effort (CPUE) methods for the analysis of patrol data has been recommended in order to

try to remove the biases caused by variations in the level of total patrol effort over time and

space (McShane and McShane-Caluzi, 1984; Jachmann and Jeffery, 1998), but this simple

approach fails to remove biases if the data are highly aggregated. Chapters 5 and 6 also

suggest that is unlikely that analyses of patrol data alone can readily distinguish between

different behavioural responses by rule-breakers, so despite the attractions of patrol data as

a ready source of information, its promise for measuring the deterrent effect of patrolling is

questionable.

A comparison of patrol data with other forms of encounter data (for example those

used in fisheries stock assessments, analyses of bushmeat hunting and wildlife population

surveys), reveals many similarities and perhaps offers opportunities to improve the usefulness

of patrol data (Chapter 6). In these contexts, the main approaches to dealing with bias

have been the implementation of rigorous sampling schemes (e.g., random allocation of

survey effort with distance sampling; Buckland 2001), the calibration of CPUE measures

with independent data (e.g., data from survey vessels in commercial fisheres; Hilborn and

Walters, 1992) and the standardisation of CPUE measures through modelling approaches

which correct for measurable sources of variability (e.g., changes in the capacity of fishing

vessels; Maunder and Punt, 2004; Bordalo-Machado, 2006). Even so, analyses of CPUE

data in other fields have tended to neglect the possibility that their subjects of study might
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respond to the presence of observers, and an improved understanding of the importance of

such behavioural responses may have benefits beyond the study of rule-breaking. Ultimately,

my research suggests that the practicality of patrol data as a source of useful information for

management decision-making depends on the extent to which it is feasible for patrol routes

to mimic a statistically robust sampling design, and whether suitable patrol-independent

data can be collected cheaply and easily enough for regular calibration to be carried out

(Chapters 5 and 6).

7.3 Limitations and further research

The study of enforcement in conservation is at an early stage, and many questions relating to

the theory and practical implementation of enforcement measures remain to be answered.

The following section outlines directions for future work which would help to verify and

build upon the research presented in this thesis.

There is a large body of existing theory in other fields which tries to understand rule-

breaking (Chapter 2). So far, however, only a small proportion of this research has been

applied to the study of rule-breaking in conservation. There is much to be gained from

further exploration of this literature, but in many cases existing theory does not translate

directly to situations commonly encountered in conservation (e.g., Robinson et al., 2010).

In the literature on the economics of crime and its applications to resource management,

a great deal of effort has been devoted to understanding how optimal enforcement can be

achieved; that is, from the point of view of a policy maker and given that enforcement is a

costly activity, determining how many resources should be invested in enforcement (Chap-

ter 2). The models developed to study these questions provide a number of insights into

the efficiency of enforcement measures at producing compliance under different conditions.

However, such models are generally based on the assumption that individuals act rationally

to maximise their utility. This assumption is known often to be flawed (McFadden, 1999).

Currently, little is known about the decision rules that are used by local people affected

by conservation interventions. However, there are indications that the framework of utility

maximisation may not be appropriate. For example, different models of subsistence in

the field of human behavioural ecology have used short-term maximisation of gain (e.g.,

Hill et al., 1987), short-term minimisation of risk (e.g., Kaplan et al., 1990) or long-term

household survival (e.g., Mace, 1993) as the currencies of decision-making. It has repeatedly
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been shown that humans are not consistent in their decision-making when faced with sets

of mathematically equivalent decisions framed in differing manners (e.g., Kahneman and

Tversky, 1979; Tversky and Kahneman, 1992). It has also been argued that humans are

boundedly, rather than strictly, rational and may aim to satisfy their immediate needs rather

than achieve truly optimal outcomes (see Conlisk, 1996). For example, Gadgil et al. (1993)

report that the behaviour underpinning traditional resource management systems in tribal

societies is often based upon rules of thumb for harvesting decision-making. The relevance of

such issues for environmental problems has been recognised, but their practical significance

for the design of successful conservation interventions remains very poorly explored (Penn

and Mysterud, 2007).

Where decision-making is found to be strongly dependent upon the an individual’s stage

in life, it may be necessary to modify the models used to explore the effects of conservation

interventions to take this into account. Incorporating this sort of heterogeneity is a logical

extension of the individual modelling approach I adopted in Chapter 4 and has also been

suggested to solve similar problems in related fields. For example, the decision-making of

farmers is known to depend on factors such as their age, education, attitudes to risk and

personality, and one solution has been to model their decisions using ‘frame-based’ models,

a type of individual based model structured around the differing frames of reference of

individuals at different stages in life (Edwards-Jones, 2006).

Modelling approaches could also be deployed more widely to study other aspects of rule-

breaking and enforcement. The nature of rules and enforcement imposes serious practical

and ethical limits on the types of studies which can be carried out; in reality it would never

be possible systematically to vary the severity of punishments handed out for a particular

infraction over large ranges (as is done in Chapter 4) or to know precisely the behaviour of

both rule-breakers and enforcement agents (as is possible in Chapter 5). The use of models

as virtual environments in which different conservation strategies can be explored, and where

the experimenter has perfect information about their effects on different actors’ behaviour,

holds considerable promise. As in this thesis, applications of these approaches could include

exploring both the robustness of management approaches to changing behaviour under

different levels of uncertainty and variability (cf. Chapter 4) and the suitability of existing

data sources for learning about the state of managed systems. (cf. Chapter 5).

In order to explore these questions further, new empirical approaches are required. A

limitation of the modelling approaches employed in this thesis has been the lack of suitable
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data for their parameterisation and validation. While models have a valuable role to play

in the study of rule-breaking, their potential can only be realised if their predictions can be

rigorously tested with suitable data. As models become more sophisticated and complex,

and better able to account for the range of behavioural interactions that drive systems

of enforcement and compliance, their information requirements increase (Chapter 2). The

development of new models of rule-breaking in conservation must therefore go hand in

hand with efforts to devise novel methods, and novel applications of existing methods, for

gathering data on rule-breaking in conservation.

One promising avenue is the adoption of experimental economics techniques which aim

to test hypotheses about human behaviour within a controlled experimental framework

(Carpenter et al., 2005). For example, Sirén et al. (2006) used an experimental lottery to

explore the relationship between income and preferences for wild meat in Ecuador. Winners

of the lottery were given a choice between prizes, some of which were intended to be used

for either hunting (e.g., a shotgun) while others were for alternative foodstuffs (e.g., chicken

wire for farming poultry). The study interpreted their decisions as indications of how

marginal increases in wealth might affect hunting. Similar approaches could readily be

adopted for the study of enforcement. For example, Travers (2009) conducted a series of

experimental games with villagers in Cambodia to examine how levels of extraction from

a common resource varied with the imposition of different institutional arrangements. One

was designed to mimic external enforcement and others mimicked direct payment schemes,

distributed by an external authority or by the villagers themselves. This study was one

of the first in which several different approaches to changing behaviour were compared

within a common framework and found that the extent to which they encouraged self-

organisation and group decision-making strongly influenced their effectiveness. It also found

evidence that externally imposed interventions can undermine inherent compliance with

rules if the incentives they create are not sufficiently strong, emphasising the need to ensure

that incentive-based approaches to conservation are carefully designed to meet the needs of

specific situations (cf. Chapter 4).

7.3.1 Recommendations for practitioners

Although there is a clear need for further research into problems of enforcement and com-

pliance in conservation, this thesis also suggests a number of practical measures that could

be adopted immediately by managers. For example, Chapter 3 suggests that more atten-
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tion should be given to the differences in knowledge of conservation laws that exist between

local people. Armed with such information, conservation practitioners might carry out tar-

geted awareness campaigns to supplement traditional enforcement measures. In designing

enforcement strategies, care must be taken to ensure that enforcement agents are sufficiently

motivated to carry out the duties effectively (Jachmann, 2008a). Furthermore, encouraging

rangers and park guards to collect a greater variety of data during their patrols and, where

possible, assessing the viability of alternative data sources as means of validating patrol data

will help to establish whether patrol data will play a useful role in the study of enforcement.

7.4 Conclusions

Rules, and measures to enforce them, are at the heart of conservation. As such they should

be important topics for research, but they remain seriously understudied. This thesis has

laid out the basis for a theoretical framework for understanding these issues, based upon

a foundation of incentives and individual decision-making. In the past, the study of en-

forcement may have suffered from the focus placed on developing alternative approaches

to changing behaviour. However, enforcement measures have remained key components of

many types of conservation intervention and share considerable common ground with ap-

proaches such as community-based benefit sharing and payments for environmental services,

in that they all aim to provide incentives for local people to behave in ways which are com-

patible with conservation. To achieve this aim, there is an urgent need for conservation to

recognise these similarities, to think in a more unified way about approaches to changing

behaviour, and take a more active interest in developing an understanding of human be-

haviour in conservation interventions (Mascia et al., 2003; Chan et al., 2007). It is therefore

vital that enforcement seen as part of a broader toolkit of approaches to changing behaviour

in conservation, and established as an essential subject for research in conservation.
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