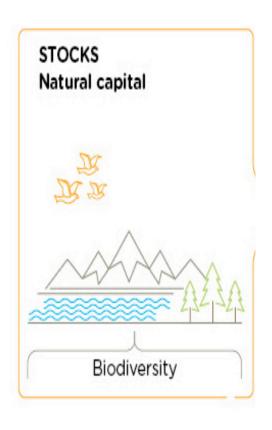
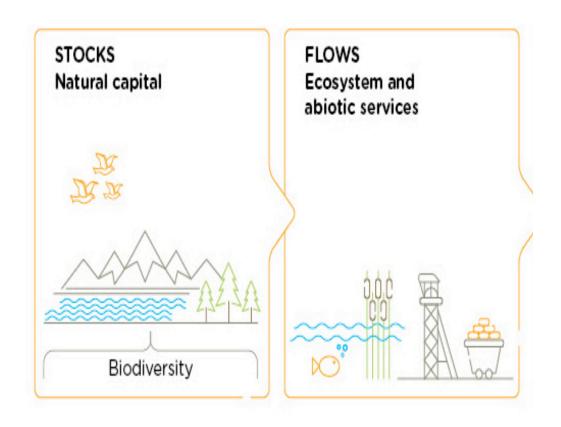
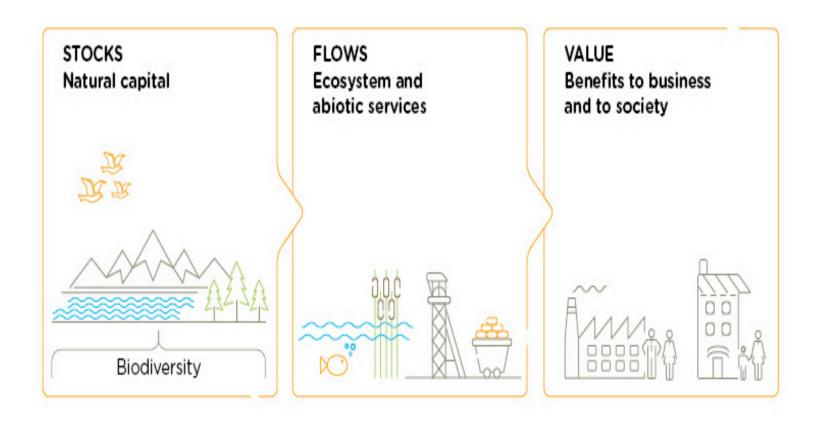

of development projects in Uganda


7th March 2018 Julia Baker


What is Natural Capital?

Underpins all other types of capital, as well as our economy



- Assess & measure as 'stocks'
- Stocks comprise living elements e.g. wetlands
- And non-living elements e.g. minerals
- Biodiversity is just one component

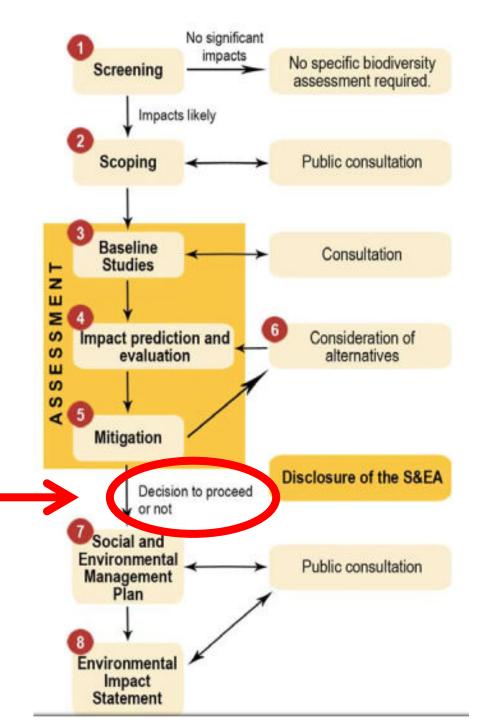
Stocks generate flows called Ecosystem Services

Climate control, flood regulation, disease control

Ecosystem Services provide various benefits for people

Food, fibre, water & fuel

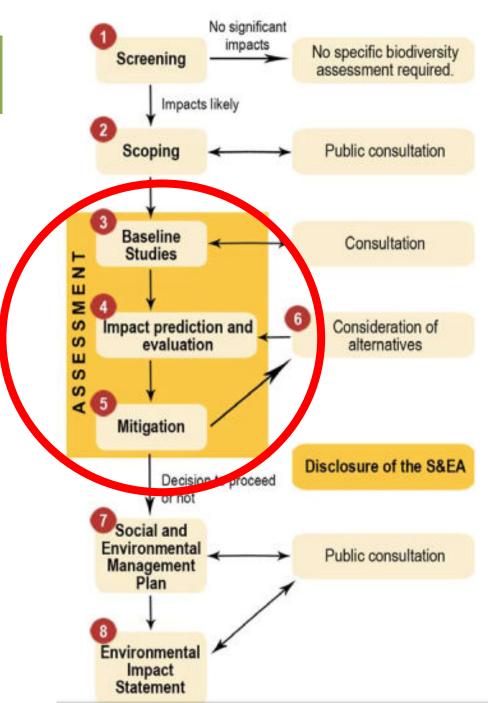
Cultural values


what's the Problem?

Not all benefits are fully assessed or quantified

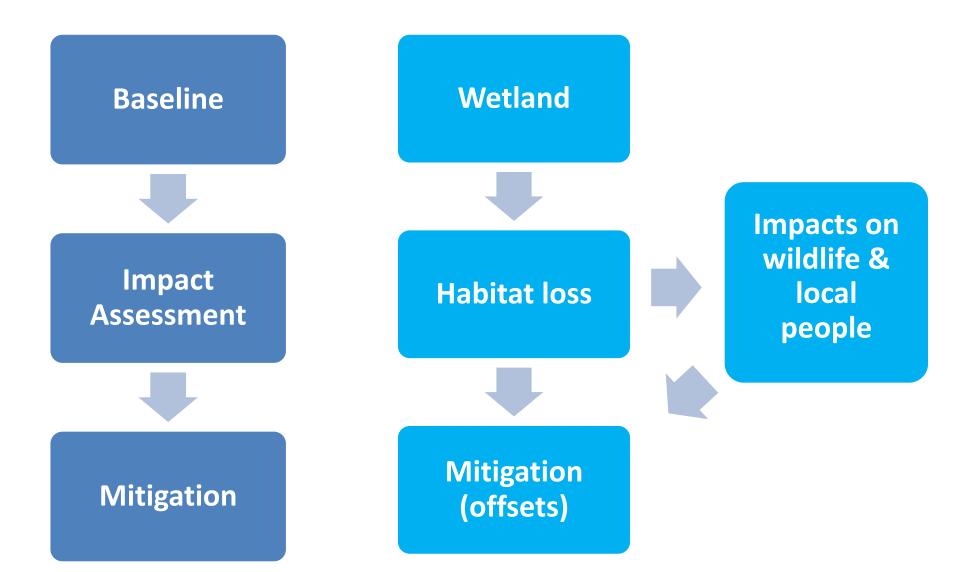
True costs & benefits from major infrastructure projects?

The Social and Environmental Impact Assessment Process



Economic & social benefits outweigh the loss of nature

But we are not measuring the economic & social benefits from nature




The Social and Environmental Impact Assessment Process

Env and Social

Impact Assessment

Baseline

Impact Assessment

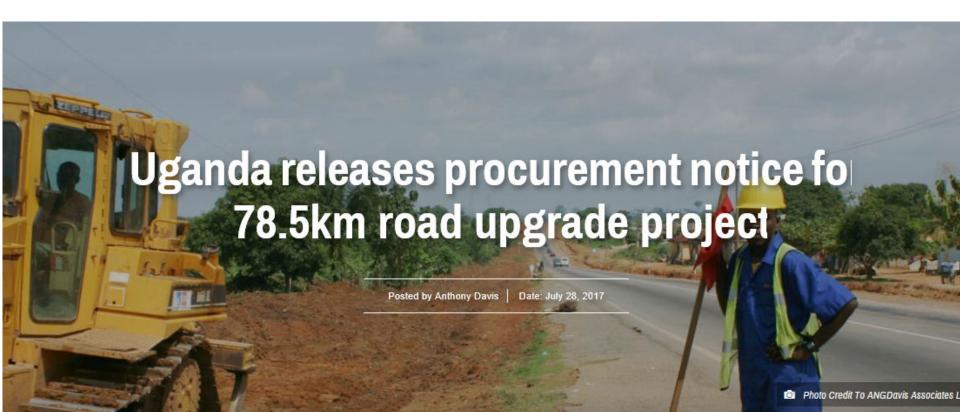
Mitigation

Wetland

Habitat loss

Mitigation (offsets)

Impacts on wildlife & local people


Air quality, climate regulation, flood control, water regulation &...

Tuesday, March 06, 2018 17:23 PM

The African Development Bank Group (AfDB) has approved \$253 million of loans to the Governments of Kenya (\$147.3 million) and Uganda (\$105.7 million) for the upgrading of a 118km road section connecting the two countries as well as the construction of the a 32km Eldoret town bypass in Kenya.

Economic & social benefits outweigh the loss of nature?

We <u>are</u> measuring the economic & social benefits from nature

A Natural Capital Forum for Uganda?

Roundtable discussion August 2017

Interest!

Best as part of an existing committee (e.g. Top Policy)

 But need case studies on Natural Capital accounts of development projects in Uganda

Natural Capital case study

How apply a Natural Capital Account?

What the benefits are to Government, investors, lenders, ESIA consultants & contractors?

Experimental Ecosystem Accounts for Uganda

Research Article

Total Economic Value of Wetlands Products and Services in Uganda

Feasibility Study for Biodiversity Accounting in Uganda

Ugandan Natural Capital Case Study

- Natural Capital account of:
 - Biodiversity loss only not full NC account
 - Construction stage not the full project lifecycle of operation & decommission
- One approach to construct Natural Capital accounts
- Financial values of benefits, not of biodiversity

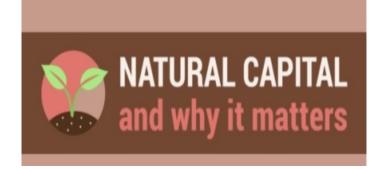
Construction of a sugarcane factory & associated activities

2500 hectare loss of wetland

Ecological baseline

Env and Social Impact Assessment

- Various plant species including Papryus
- Birds including globally endangered species such as the Shoebill stork
- Fish


Social baseline

Env and Social Impact Assessment

- International: climate regulation
- National: flood control
- Local communities:
 - Domestic clean water supply
 - Cattle grazing
 - Fishing
 - Cultural sites

Social baseline

- International: climate regulation
- National: flood control
- Local communities:
 - Domestic clean water supply
 - Cattle grazing
 - Fishing
 - Cultural sites

	US\$ per ha per year	
Climate Regulation		
Flood Control		

Karanja et al, 2001

	US\$ per ha per year	
Climate Regulation	265	
Flood Control	7240	

Karanja et al, 2001

	US\$ per ha per year	2500 ha wetland loss
Climate Regulation	265	-662,500
Flood Control	7240	-18,100,000

Karanja et al, 2001

Social baseline

- International: climate regulation US\$ 662,500
- National: flood control US\$ 18,100,000
- Local communities:
 - Domestic clean water supply
 - Cattle grazing
 - Fishing
 - Cultural sites

Social baseline

- International: climate regulation US\$ 662,500
- National: flood control US\$ 18,100,000
- Local communities:
 - Domestic clean water supply
 - Cattle grazing
 - Fishing
 - Cultural sites

Domestic Clean Water Supply	2500 ha loss of wetlands
N. households depend on water supply	9000

Domestic Clean Water Supply	2500 ha loss of wetlands
N. households depend on water supply	9000
Water use per year m ³	197,100

Domestic Clean Water Supply	2500 ha loss of wetlands
N. households depend on water supply	9000
Water use per year m ³	197,100
Market price per m ³	2 US\$
Kakaru. 2013	

Domestic Clean Water Supply	2500 ha loss of wetlands
N. households depend on water supply	9000
Water use per year m ³	197,100
Market price per m ³	2 US\$
Gross annual cost Kakaru, 2013	394,200 US\$

Social baseline

- International: climate regulation US\$ 662,500
- National: flood control US\$ 18,100,000
- Local communities:
 - Domestic clean water supply US\$ 394,200
 - Cattle grazing
 - Fishing
 - Cultural sites

Social baseline

- International: climate regulation US\$ 662,500
- National: flood control US\$ 18,100,000
- Local communities:
 - Domestic clean water supply US\$ 394,200
 - Cattle grazing
 - Fishing
 - Cultural sites


Pastures	2500 ha loss of Wetlands
N. cattle grazing	3300

Pastures	2500 ha loss of Wetlands
N. cattle grazing	3300
Average value of pasture consumed per day per animal	Cost of leafy feeds farmers would have to buy if wetland pastures not available

Pastures	2500 ha loss of Wetlands
N. cattle grazing	3300
Average value of pasture consumed per day per animal	US\$ 0.2


Pastures	2500 ha loss of Wetlands
N. cattle grazing	3300
Average value of pasture consumed per day per animal	US\$ 0.2
Cost per day for all cattle	US\$ 660

Pastures	2500 ha loss of Wetlands
N. cattle grazing	3300
Average value of pasture consumed per day per animal	US\$ 0.2
Cost per day for all cattle	US\$ 660
Total cost per year	US\$ 240,900

- International: climate regulation US\$ 662,500
- National: flood control US\$ 18,100,000
- Local communities:
 - Domestic clean water supply US\$ 394,200
 - Cattle grazing US\$ 240,900
 - Fishing
 - Cultural sites

- International: climate regulation US\$ 662,500
- National: flood control US\$ 18,100,000
- Local communities:
 - Domestic clean water supply US\$ 394,200
 - Cattle grazing US\$ 240,900
 - Fishing
 - Cultural sites

Fish spawning grounds	2500 ha Loss of Wetlands
Estimated per ha per year	US\$ 6.3


Fish spawning grounds	2500 ha Loss of Wetlands
Estimated per ha per year	US\$ 6.3
Total gross cost per year	US\$ 15,750

Can also assess financial value of fish caught

- International: climate regulation US\$ 662,500
- National: flood control US\$ 18,100,000
- Local communities:
 - Domestic clean water supply US\$ 394,200
 - Cattle grazing US\$ 240,900
 - Fishing US\$ 15,750
 - Cultural sites

- International: climate regulation US\$ 662,500
- National: flood control US\$ 18,100,000
- Local communities:
 - Domestic clean water supply US\$ 394,200
 - Cattle grazing US\$ 240,900
 - Fishing US\$ 15,750
 - Cultural sites

- Financial values associated with tourism?
- Not appropriate to assign financial values to all ecosystem services
- Still fully assess as part of a Natural Capital account

- International: climate regulation US\$ 662,500
- National: flood control US\$ 18,100,000
- Local communities:
 - Domestic clean water supply US\$ 394,200
 - Cattle grazing US\$ 240,900
 - Fishing US\$ 15,750
 - Cultural sites

Construction of a sugarcane factory & associated activities

Significant local job creation & boost to national economy

2500 hectare loss of wetland

Offset to achieve No Net Loss

Economic & social benefits outweigh the loss of nature

Use Natural Capital Accounts to design sustainable & fair No Net Loss

Natural Capital Accounts - Benefits

Governments

Make the right decisions to balance national economic development with local needs

Investors & lenders

Set & achieve sustainability requirements

ESIA Consultants

Improved impact assessments & mitigation design

Contractors

Build sustainable & fair infrastructure

- Research on financial values of Uganda's wetlands
- But anecdotal, different methods, dated, not part of a formal NC Account
- Useful illustration but need to establish data

Uganda's Natural Capital Forum?

- What type of Forum could be useful (e.g. part of an existing committee)?
- Is there interest in being involved?
- Who would chair the Forum and who would be members?
- What would encourage uptake of Natural Capital approaches - more case studies? Presentations from international NC experts?
- If a Forum would be useful, what are the next steps to establish the Forum?