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Abstract 

  

Scientists have invented many types of biodiversity models to predict trends that aid in reversing 

biodiversity loss. Species Distribution Models (SDMs) are a diverse category of biodiversity models widely 

used in conservation that use climate data as the main predictor of species’ occurrence. But a plethora of 

biotic and abiotic factors determine the ranges and abundances of species in nature. One biotic interaction 

of particular importance to carnivore range and abundance, as well as all species, is predator-prey 

relationships. But a lack of global data stifles the accurate incorporation of predator-prey relationships into 

SDMs. Given the limited use of ecological theory in these climate-centric, statistical biodiversity models, 

this begs the question, how much does this limit the predictions they make? To gauge the magnitude of 

this problem, I used a globally applicable biodiversity model, Glob2Loc, to test the limitations of using 

climate data and ignoring predator-prey relationships when modelling leopards in India. I used this case 

study system because while leopards are of conservational concern globally, they are reportedly adapting 

to urban and agricultural areas in India by changing their diets and consuming both wild and domestic prey, 

apparently leading to population stabilisation. First, I modelled three scenarios of leopard range and 

abundance, each with different assumptions on predator-prey relationships. The first scenario just 

accounted for climate data. The intermediate scenario matched observations most accurately by assuming 

leopards consume wild and domestic prey and exist in undisturbed and modified habitats to a lesser extent. 

The final minimum scenario echoed standard practice because it obeyed IUCN habitat classifications and 

removed leopards from modified habitats in their climatic range, but also constrained leopards to only 

coexist alongside wild prey. Next, I compared each scenario to recent field data to decide which best 

reflected current observations on leopard range and abundance and identify key limitations in Glob2Loc 

(validate). Then, I followed each scenario into 2050, assessed their differences, and reported how far 

standard predictions contradicted the more realistic intermediate scenario. To identify locations to which 

leopards may be drawn, I also mapped prey biomass across India using top prey species reported in the 

literature. I found my intermediate scenario, which realistically represented predator-prey relationships, 

best reflected current observations of leopard range. Meanwhile, my minimum scenario, which reflected a 

standard approach to modelling, underpredicted habitat area by two-fold. I also found that Glob2loc failed 

to capture leopard presence in several areas of northern central India despite leopard observations in the 

literature and high prey biomass in these regions. However, I also found that field measurements of 

abundance were flawed, which made validating Glob2Loc more challenging. Therefore, it is important to 

compare predator ranges to prey ranges and validate model results using field measurements to link 

discrepancies to the exclusion of biotic interactions. Furthermore, these results imply that considering 

maximum to minimum scenarios in biodiversity models can help quantify recovery potential or loss if 

human tolerance to wildlife increases or worsens.   



 

 

 

Introduction 

  

The suite of services that biodiversity provides to humanity - from enjoyable green spaces to climate 

regulation and food provision - are under threat because of destructive human activities (IPBES, 2019; Díaz, 

et al., 2019). Humanity has led one million species to the brink of extinction and cleared half the world's 

habitable land for agriculture (IPBES, 2019; Ellis, et al., 2010). The scale of humanity's impact on the planet 

is vast, and so measures have been taken to save it. To meet regional, national, and international targets 

for biodiversity, it is paramount that governments and industries prioritise the most effective action, and 

identifying such priorities can be supported by biodiversity models (Nicholson, et al., 2019). 

 

The term 'biodiversity model' encompasses a vast range of mathematical and computational methods that 

either fill in gaps in biological databases (e.g., species interactions) or estimate changes to elements of 

biodiversity upon future or past global change (Pollock, et al., 2020). An important type of biodiversity 

model often used in conservation are statistical models that correlate field observations on elements of 

biodiversity with environmental variables to make spatially explicit predictions about future change 

(Guisan, et al., 2013). My research focussed on the global application of these statistical biodiversity 

models, where the range and abundance of thousands of species are modelled alongside land cover 

dynamics. These models make inferences about the global state of biodiversity and aid in assessing 

progress towards targets such as the Global Biodiversity Framework (Nicholson, et al., 2019).  

 

The first step in projecting species distributions in biodiversity models is often climate centric. Climate can 

be easily quantified in multiple dimensions (temperature, precipitation, humidity across various scales in 

time and space) and is undoubtedly important in dictating where species can persist, especially if the planet 

exceeds 1.5°C of warming since pre-industrial times (Howard, et al., 2020). However, land-use change is 

currently the greatest threat to biodiversity, not climate change (Jaureguiberry, et al., 2022). Therefore, 

land use largely dictates where different species can be found, based on how tolerable they find modified 

habitats. And biotic interactions determine if species persist or not after habitat modification; if there are 

suitable prey or anthropogenic resources to which a species can adapt in the new landscape, then species 

may be able to survive (Santini, et al., 2019). 

  

However, accounting for biotic interactions in global biodiversity models is difficult because it requires a lot 

of data that isn’t available yet. Efforts to include biotic interactions are further complicated by 

unpredictable invasive alien species and that biotic interactions can change in space and time depending on 

climate (Srivastava, et al., 2019; HilleRisLambers, et al., 2013). Nevertheless, where it has been possible to 

include biotic interactions, predictive power is often significantly increased (Zhang, et al., 2022; Van der 



 

 

 

Putten, et al., 2010; Wisz, et al., 2013). A common way to approximate biotic interactions in large 

biodiversity models is to clip species’ initial purely climatic maximum ranges so species remain in the same 

ecoregions and elevations that the IUCN classifies as suitable after climate-induced range shifts (Glob2Loc; 

Leclère, et al., 2020; Schipper, et al., 2020). This aims to keep interacting species together. But is a post hoc 

consideration of biotic interactions enough?  

  

To investigate the limitations of not considering biotic interactions in globally applicable biodiversity 

models, I quantified the differences in estimated range and abundance of a predator when accounting for 

prey or not, using an established biodiversity model (See section ‘What is Glob2Loc?’). After a scoping 

review, I decided to use leopards in India as a case study system because they are recently increasing their 

tolerance to human-use landscapes based on adapting their prey base. They are changing their diet to 

include resources readily available in human-use landscapes such as dogs, cats, rodents, and livestock as 

well as wild prey (Athreya, et al., 2016; Prasad & Tiwari, 2009). Biodiversity models use IUCN habitat 

classifications to define landscapes in which species can exist, but the IUCN does not (yet) capture leopards' 

use of human-dominated landscapes by adapting their diet in India (Stein, et al., 2020). This creates a 

disconnect between on-the-ground evidence and evidence used in modelling studies. 

  

My research question was: “What are the limitations of current approaches to biodiversity modelling given 

that they don’t account for predator-prey relationships?”. I predicted that accounting for the distributions 

of leopard prey (both wild and domestic), and the resultant tolerance of leopards for habitat modification, 

will reflect their current range and abundance better than standard, climate-centric modelling approaches 

and also provide a more robust prediction of their future status. 

  

What is Glob2Loc? 

  

Glob2Loc (Global to Local) is a biodiversity model developed by Dr. Mike Clark at the University of Oxford in 

collaboration with end-users in industry and non-governmental organisations. Its broad aim is to predict 

global biodiversity trends to identify local conservation priorities for over 20,000 terrestrial vertebrates 

(Figure 1).  

  

First, it computes an ensemble of species distribution models (SDMs) accounting for climate, dispersal rate, 

and vegetation cover preferences to predict the maximum climate-suitable habitat per species in the 

future. Then, it considers how four major anthropogenic stressors (climate change, agricultural expansion, 

intensification, and urban expansion) will change spatially in the future based on human activity and 

feedbacks between the stressors. Finally, it integrates these trends with information on species tolerance 



 

 

 

to each anthropogenic stressor using data from the IUCN to remove any unsuitable habitats from the SDM 

predictions. This enables the prediction of future ranges for each species (biodiversity trends). 

 

Once Glob2Loc has identified suitable habitats, it makes spatially explicit estimates of abundance across 

each species’ habitat range. To predict abundance in unmodified habitat, observations from global 

databases on population density are run through a mixed effect generalised linear model with predictor 

variables of life history traits, Net Primary Productivity, and climate. For species that can exist in human-use 

landscapes (high and low-intensity cropland and pastureland), abundance from natural habitat is multiplied 

by a coefficient that reflects species' tolerance to that landscape based on field observations. The final 

output is population density per cell (2.25 km2) for different species’ habitat ranges, which can be summed 

up across landscapes to calculate abundance.  

  

Glob2Loc has great flexibility in its underlying structure, which allows for more fine-scale analyses of the 

future of biodiversity in certain locations, the contribution of each stressor and specific species. Glob2Loc 

can also reproduce estimates of current range and abundance, which meant I could validate evidence in 

the literature with modelled scenarios based on no or various different assumptions about prey 

distributions (Figure 1: ‘Validate’). Therefore, it is a suitable tool with which to answer my research 

question. 



 

 

 

 

  

Figure 1: This schematic represents how the data inputs of Glob2Loc are computed into the outputs that predict 

biodiversity trends into the future. The inputs describe where species are currently found (Rondini, et al., 2011) and 

relate that to the location and intensity of anthropogenic stressors and species’ tolerance to those stressors (blue 

boxes). The first model output comes from the ensemble model and describes the range and abundance of species 

after climate change, habitat preferences, elevation tolerance, and dispersal distance have been accounted for; the 

second output projects to location and intensity of anthropogenic stressors into the future, accounting for 

interactions between them as well (yellow boxes). These two primary outputs are then combined to give the final 

estimates of biodiversity trends into the future that account for human activities and how species range and 

abundance respond to them at 2.25 km2 resolution (brown box). Glob2Loc can also be used to check modelled 

outputs against field observations to ensure predictions are reasonable (See ‘Validate’ triangle on the right). Figure 

created using BioRender.com 



 

 

 

Methods 

Overview 

  

Figure 2 simplifies my research process into five steps. To understand the current literature around 

predator-prey relationships in human-use landscapes, I began with a scoping review of how predator-prey 

interactions change with agriculture and urbanisation (Figure 2; 1). Then, I decided on a research question, 

formed expectations, and planned the rest of my methodology. Next, using the biodiversity model 

Glob2Loc, I created three scenarios to represent current leopard range and abundance with different 

assumptions about predator-prey relationships (Figure 2; 2). The first scenario represented a maximum 

potential range and abundance, whereby only climate was considered, and leopards were not constrained 

by other species. The second was an intermediate, which assumed leopards ate wild and domestic prey and 

existed in wild and modified habitats at lower abundance. The final minimum scenario represented the 

typical modelling approach whereby all unsuitable habitat as defined by the IUCN was removed but 

additionally, leopards were constrained to exist only where top wild prey species did as well. I ran and 

validated each scenario with recent field data to decide which best reflected current observations on 

leopard range and abundance and to identify key limitations in Glob2Loc (Figure 2; 3). Then, I followed each 

prey scenario into 2050, given the projected climate and land-use change assumed by Glob2Loc (Figure 2; 

4). Finally, I assessed the differences across each scenario's predictions and the uncertainty within each 

scenario to determine how significant the limitations of not accounting for predator-prey relationships are 

in standard biodiversity models (Figure 2; 5). I also explored what my results mean for leopard conservation 

as well as wider modelling of trends in biodiversity. 

  



 

 

 

Figure 2: Flow Diagram to Illustrate Methodology 

Figure 2: A flow diagram to show my research process where numbered steps correspond to sections in the 

‘Methods’. The icons in each step represent what I did. Light blue boxes refer to literature-based reading 

stages (1); Light brown boxes represent the 2015 scenario generation (2); and darker brown boxes represent 

when I ran the same scenarios generated in 2015 forward to the year 2050 (4); Darker blue boxes with curves 

edges represent steps where graphical results were compared to my expectations to evaluate model 

uncertainty and gauge which scenario is most realistic (3 & 5). Figure created using BioRender.com 



 

 

 

Scoping Review: How predator-prey relationships change with agriculture and urbanisation 

and choosing a case study system  

  

To fully understand the current literature around predator-prey relationships in and out of agricultural and 

urban areas, I began by carrying out a scoping review (Figure 2; 1). I used the search engine Google Scholar 

to look up keywords and phrases in scientific literature. These included: "predator" OR "predator-prey" 

AND "agricultur[]" OR "urban[]" OR "climate change". I also used snowballing methods to locate studies 

with obscure titles that were missed by my keyword search.  

  

I ensured the studies I read were relevant using inclusion criteria. To minimise the chance of including weak 

science, studies had to be original peer-reviewed research papers or commentaries. Studies also had to be 

experimental or observational and set in a clearly described location. To also ensure as many confounding 

variables as possible were controlled for, studies had to compare urban or agricultural land to a nearby 

undisturbed site either along a gradient or via patches. Studies also had to measure the range and/or 

abundance of predators and their prey, or predation rate (directly or indirectly using prey decoys or 

measuring anti-predator behaviour). To make sure trends and case study systems were reproducible in 

Glob2Loc, the species studied were limited to terrestrial vertebrates that have been assessed for their 

threat status by the IUCN.  

  

My scoping review resulted in 32 usable papers describing possible study systems, which included leopards 

in India. I decided to pursue this as a case study because their unique habitat tolerance and high abundance 

in India is underpinned by changing predator-prey relationships (Athreya, et al., 2013). Leopards are 

exhibiting generalist behaviour and including a wide diversity of prey in their diets, which is helping them 

persist in natural and modified landscapes (Athreya, et al., 2016). While the consumption of livestock is 

causing conflict in some places, in others, their consumption of disease-carrying pests is providing a health 

benefit to people (Kshettry, et al., 2018; Braczkowski, et al., 2018). 

  

I then read deeper into my case study system to learn about the best current estimates of the abundance 

and range of leopards and their prey in India. I expanded my literature search to include technical reports 

by governments and conservation organisations as well as primary research papers and meta-analyses. The 

objective was to collect the best current evidence of leopard range and abundance rather than gather data 

linked to a specific year. This was because sampling effort differs greatly year-on-year and updates in 

ranges and abundance estimates in the literature may represent a progression of our understanding, rather 

than changes in leopard status. 

 



 

 

 

 

Modelling Three Scenarios of 2015 Leopard Range and Abundance with Different 

Assumptions on Predator-Prey Relationships 

  

Now that I had a concrete study system and contextual information about the current state of leopards, I 

used Glob2Loc to reproduce three versions of current leopard range and abundance, covering each 

assumption of prey availability (Table 1 & Figure 2; 2). While expectations from the literature represented 

the best current evidence, they varied in how old the population estimates were. The modelled baseline 

had to be linked to leopard status in a specific year, so I chose 2015 because it matched closely with the 

publication dates of several major studies on leopard range and abundance. Furthermore, Glob2Loc's 2015 

estimate of range and abundance in this year was not significantly different from estimates for the 

surrounding years (2010, 2020, and 2025) (Appendix; Figure S1).  

 

Table 1: Summary of Assumptions in my Maximum, Intermediate and Minimum 

Scenarios of Leopard Range and Abundance 

Scenario Prey Assumptions Habitat Assumptions Additional notes  

Maximum Not considered Persist in entire climatic niche 

regardless of prey and human 

activities 

Describes potential range and 

abundance without human 

activity 

Intermediate Constrained by 

wild and domestic 

prey 

Persist in unmodified habitat at 

regular abundance but exists in 

human-modified landscapes at lower 

abundances to reflect lower tolerance 

(agriculture and urbanised areas) 

Represents the most ecologically 

accurate prey base for leopards in 

India 

Minimum Constrained to wild 

prey only 

Only persist in unmodified landscapes 

deemed suitable according to IUCN 

habitat classifications (such as forests, 

grasslands, and desert) 

Reflects the typical approach to 

biodiversity modelling using IUCN 

habitat classifications, but 

additionally constrained leopard 

to coexist with wild prey only 

 

All scenarios at least accounted for climate, dispersal limitations, and natural habitat preferences. 

Glob2Loc’s projections of land-use change were reported with estimates of their uncertainty. So, in the 

intermediate and minimum scenarios where land-use data was integrated, I reported 95% confidence 

intervals around estimates of abundance and habitat area. As my maximum scenario only accounted for 

the climate’s influence on leopard range, 95% confidence intervals in the results couldn’t be calculated. 

Table 1: Summary of the assumptions behind each scenario I created and additional notes on what each scenario 

described. Scenarios were names ‘Maximum’, ‘Intermediate’ and ‘Minimum’ to reflect the size of the estimates 

of range and abundance they compute relative to each other. 



 

 

 

This is a limitation in my analysis and other globally applicable biodiversity models that don’t project 

climate change with uncertainty (Buisson et al. 2010). 

 

Maximum Scenario (climate only) 

  

My first scenario represented maximum leopard range by just accounting for climate data. The resultant 

map of range and abundance acted as a maximum threshold because leopards were not constrained by 

land use or prey availability. No globally applicable biodiversity model would stop here, but I included it in 

my analysis because it indicated what range and abundance could be without anthropogenic interference. 

 

Intermediate Scenario (wild and domestic prey) 

  

Next, I created the intermediate scenario, which still assumed leopards could exist across much of the 

habitat that climate constraints allowed, but at a lower abundance in modified landscapes (such as 

agriculture or urban areas). This reflected the fact that leopards could consume wild and domestic prey. 

Having a middle-ground scenario as well as a maximum and minimum also gave me an idea of the skew in 

the range of estimates for abundance and habitat area. 

  

I calculated abundance in the intermediate scenario differently in unmodified, agricultural, and urban 

landscapes. In unmodified habitat, leopard abundance was at its maximum as defined by the regression 

model built into Glob2Loc (See 'What is Glob2Loc?'). In agricultural landscapes, abundance was adjusted 

based on the intensity of given croplands (high or low) and pasturelands. As leopards only exist in the 

outskirts of cities in the literature, I removed 50% of urbanised land was removed from their range, and 

abundance was adjusted in the remainder of urban areas to reflect lower tolerance. However, it is 

noteworthy that many generalist predators tend to be overabundant in cities despite lower wild prey 

numbers due to the abundance of anthropogenic resources (rubbish, domestic and commensal animals like 

dogs and rats) (Eötvös, et al., 2018; Gámez, et al., 2022). This is known as the Predator-prey Paradox, but it 

is not known if leopards obey it due to lack of data (Fischer, et al., 2012).  

  

Minimum Scenario (wild prey only) 

 

Finally, I created the minimum scenario, which constrained leopard distribution, so they only existed where 

wild prey species were also present. I also restricted leopard habitat to natural areas by removing 

agricultural or urbanised land from their range where insufficient wild prey was available. This scenario 

reflected the assumption that leopards are intolerant of human activities and restricted to consuming wild 



 

 

 

prey with the same low tolerance for human activity. It also reflects the typical approach to modelling 

taken by other major biodiversity models (Leclère, et al., 2020; Schipper, et al., 2020).   

  

To obtain estimates of wild prey availability with which to constrain leopard distribution, I made prey meat 

availability maps using top prey species reported in the literature (Appendix; Table S1). I also used this map 

to identify areas that leopards may be drawn to due to high diversity and mass of prey. First, I overlaid the 

habitat ranges of all prey species to make a map of prey species richness. Then, I combined the species 

richness map with each prey species’ estimated abundance across its range and body mass to create a 

heatmap that depicted regions of high and low prey biomass. To constrain leopard range by wild prey 

species, I cropped leopard range so they could only exist where at least one top prey species was present. It 

wasn’t possible to constrain leopard range by a threshold weight of available prey because I could not 

capture all prey species in my review.  

  

Due to the restrictions in Glob2Loc, I could only include prey that were terrestrial vertebrates and assessed 

by the IUCN, i.e. those deemed worth including in the IUCN Red List. In particular, highly abundant, and 

common species have not been assessed. Therefore, wild boar (Sus scrofa) could not be included because it 

is highly abundant, and the IUCN does not assess two relevant sub-species present in India. However, this 

limitation won’t cause a significant problem because the prey species I have already included cover 97.6% 

of India, and adding another species would not likely change the trend. Also, there was limited input data 

on the habitat extents of two langurs (Semnopithecus hypoleucos and Semnopithecus priam), which meant 

they weren't modelled in Glob2Loc to avoid overfitting (less than 57 km2). However, I was able to include 

five other Semnopithecus species, so the exclusion of two was not likely to be a large limitation.  

  

Comparing my Three Scenarios to Field Observations (Validate) 

  

Next, I assessed how my three scenarios compared to up-to-date field observations (Figure 2; 3). This step 

checked how well the model predicted 2015 range and abundance since it was built on data from 2010 (See 

Figure 1: 'Inputs'). This revealed which modelled scenario’s predictions best reflected observed reality to 

gauge if omitting predator-prey relationships in current approaches to biodiversity modelling is a significant 

limitation. 

  

Projecting my Three Scenarios of Leopard Range and Abundance into 2050 

  

Finally, I looked at the range of estimates of leopard range and abundance in the future by running the 

same scenarios I created in 2015 forward to the year 2050 (Figure 2; 4). I used 2050 to characterise the 



 

 

 

future because it is a crucial year for international carbon and biodiversity targets (Mace, et al., 2018). It is 

also currently the furthest away year projected by Glob2Loc, which is still in development. 

  

Following this procedure and comparing 2015 to the current literature before looking forward to 2050 

meant that I knew which specific differences in the future were due to limitations in Glob2Loc’s 

construction or to climate and land use change. If I compared range and abundance in 2050 directly to 

expectations from the current literature, I wouldn't have been able to identify if discrepancies were 

because of an error in the model or climate change. Therefore, I compared the best current evidence to a 

point in time that was closer to when new data was published (2015) and then followed each scenario into 

2050.  

  

I compared each 2050 scenario to the outcomes of my baseline analysis from 2015, where I deduced 

nuances between my scenarios and the literature (Figure 2; 5). I compared my three estimates for future 

leopard range and abundance to see if any large differences were a cause for concern. I also predicted 

which 2050 scenario was most likely to occur based on which one most closely matched the evidence in 

2015. All models and statistical analyses were run in R version 4.1. and my code is available at 

https://doi.org/10.6084/m9.figshare.22794107.v3 

.  

  

https://doi.org/10.6084/m9.figshare.22794107.v3


 

 

 

Results 

Scoping Review: Expectations of Leopard Range and Abundance from Field Observations 

 
Range: The best estimate of leopard range in India is displayed in Figure 3, panel A (889,000 km2; adapted 

from Jacobson, et al., 2016). The authors carried out a meta-analysis by identifying recent presence and 

absence data of leopards across all wild and modified landscapes and estimated their current distribution in 

QGIS 2.10.1-Pisa. Other estimates available only considered leopard range in unmodified forests and 

computed far smaller ranges (Appendix; Figure S2) (Jhala, et al., 2015; Jhala, et al., 2020). 

 

Figure 3: Leopard Range from the Literature Compared to Glob2Loc Scenarios 

(2015) 



 

 

 

 

Abundance: India is estimated to contain a population of at least 12,800 adult leopards according to the 

government's most recent report (Jhala, et al., 2020). To estimate leopard abundance, the authors used 

likelihood-based spatially explicit capture recapture methods in a joint distribution framework with habitat 

quality, prey abundance, and human footprint as covariates. Specifically, observations of how leopard 

abundance in 2018 correlated with each covariate in camera-trapped locations were extrapolated to other 

forested landscapes, based on how the covariates changed.   

  

The only other country-wide estimate was published five years earlier and reported a far lower abundance 

of approximately 8000 leopards in 2014 (Jhala, et al., 2015). While this apparent increase in abundance 

from 2014 to 2018 was reported as a conservation success by some news outlets, it is important to note 

that the assessment published in 2020 had almost three times the sampling effort as did the 2015 study. 

So, it is difficult to conclude if the population did increase or if the latter study was more thorough 

(Vaidyanathan, 2019).  

  

Conversely, 12,800 may be an absolute minimum abundance estimate as the authors only surveyed 

undisturbed forests in major tiger conservation landscapes (Jhala, et al., 2020). In fact, leopards exist 

outside forests and are also known to exhibit lower abundances in tiger territory, so the abundance of 

leopards is likely to be higher (Harihar, et al., 2011; Odden, et al., 2010). After the 2015 study, the lead 

authors acknowledged this and stated in a conference that although they measured abundance to be 8000, 

true abundance could be 12-14,000 (Bhattacharya, 2015). Assuming the same proportional limitation 

existed in the 2018 study could mean true abundance was 19,200-22,400 leopards, but this hasn’t been 

verified. Furthermore, data deficiencies meant camera-trap information from northeast India could not be 

included in their model and estimate of country-wide abundance.  

  

Figure 3: Comparison of the best current evidence on leopard range from the literature (Panel A, yellow background; 

889,000 km2) and my modelled scenarios each based on integrating prey types and availability to different extents 

(Panels B to D). ‘B’ describes leopard range only accounting for climate (1,524,700 km2). ‘C’ describes leopard range 

constrained by climate, domestic, and wild prey. ‘Extant’ (dark green) habitat describes cells with at least 50% 

undisturbed habitat. ‘Extant in human-use landscape’ (light green) describes habitat where leopards are present, but at 

lower abundances than in undisturbed habitat because at least 50% of the cells contain modified land. ‘D’ describes 

leopard range constrained to wild habitat and prey (450,351 km2). ‘Fragmented’ (yellow) represents cells with 1-50% 

undisturbed habitat as the remainder is modified and unsuitable. Cells that were completely modified by 

agriculture/urbanisation with 0% natural habitat were assumed to be unsuitable for leopard occupancy and were 

removed from leopard range (grey). 



 

 

 

Comparing my Three Scenarios of Range and Abundance from Glob2Loc with Field 

Observations  
 

Range 

 

The geographical maps of India from Glob2Loc and the literature were not identical, meaning I couldn’t 

carry out a direct, quantifiable, spatially explicit comparison of differences in range. Specifically, the maps 

of India from Glob2Loc and the literature defined the boundary between northwest India and Pakistan 

differently, and the shape of India differed (Athreya & Kulkarni, in conversation 2023). Furthermore, the 

methods employed in the literature and Glob2Loc were very different, making it impractical to conduct an 

explicit comparison. So, I compared country-level habitat area and also completed a qualitative visual 

comparison of range.  

  

Total habitat area: The best estimate from the literature lay approximately halfway between my modelled 

maximum and minimum scenarios, which indicated that an intermediate habitat area would best match 

observations (Figure 4). The habitat area predicted by the wild habitat and prey-only scenario (minimum) 

was approximately half that of the observed habitat area estimate from the literature (450,000 km2 vs 

889,000 km2). The habitat area predicted by the climate-only scenario (maximum), assuming leopards 

occupy their entire climatic niche regardless of human activity, was almost twice as large as the literature's 

best estimate (1,500,000 km2 vs 889,000 km2). This confirmed my prediction that the intermediate scenario 

best matches observations because leopards are adapting to human-use landscapes but are not completely 

tolerant.  

 

The habitat area predicted by the intermediate scenario (accounting for wild and domestic prey) could not 

be included in Figure 4 because its area was the same as the maximum scenario. But a large amount of this 

habitat is of a lower quality that will inevitably be fragmented (centre of cities, roads, impenetrable 

agriculture). But its total area could be approximated as halfway between the maximum and minimum 

scenarios (987,525 km2) because observations from the literature indicated that total leopard habitat was 

an intermediate area (Figure 4). So, the best way to capture leopard range in a model is to acknowledge 

they do exist in human-use landscapes, but not all, and not necessarily at the same density as in natural 

habitat.  



 

 

 

 

Qualitative visual comparison: As the evidence from the literature shows that leopard habitat is 

fragmented but still covers a significant portion of India, a scenario between my modelled minimum and 

intermediate may best represent observations. Figure 3 depicts the expectations from the literature (Panel 

A) and my three modelled scenarios using Glob2Loc (Panels B, C, and D). 

  

The range predicted by my minimum scenario was too fragmented to represent an adaptable species such 

as leopards (Figure 3D). If I changed the assumptions behind my minimum scenario and artificially 

increased leopard tolerance to human-use landscapes, the resulting range map became more similar to 

observations from the literature (Appendix; Figure S3). I achieved this by halving the threshold proportion 

of natural habitat per cell required to classify it as 'Extant', 'Fragmented', or unoccupied by leopards. This 

confirmed that leopards should be modelled with a higher tolerance to modified landscapes and that an 

intermediate range scenario is most realistic. It is common practice to fine-tune models to match 

observations to get a good fit because no model perfectly replicates reality, so long as any ex-ante 

adjustments are made for all species 

Figure 4: Comparison of total leopard habitat in India from the literature’s best estimate and the maximum 

and minimum scenarios generated in Glob2Loc. Blue bard represent my modelled thresholds, and the green 

bar reflects habitat area from the Jacobsen et al 2016 meta-analysis. Confidence intervals were not reported 

in the literature and were not available for Glob2Loc’s maximum estimate as they were derived from 

confident in land-use estimates which wasn’t considered in the climate-only scenario.  Glob2Loc’s 

intermediate scenario, accounting for wild and domestic prey has the same habitat area as the maximum 

scenario. The figure shows that an intermediate habitat area may best match field observations.  



 

 

 

  

The maximum scenario failed to identify that leopard populations are fragmented across central India and 

exist in two bands along the west coast and north of the country. Therefore, assuming leopards exist 

continuously along their climatic niche is a large limitation and removes Glob2Loc’s predictions far from 

observed reality. But it highlighted that land-use change has significantly impacted leopard range because 

total habitat area fell by 70.5% ± [67.0, 74.0] between my maximum and minimum scenarios. 

 

A three-way comparison of leopard range in Glob2Loc, the literature, and prey range in Glob2Loc indicated 

that prey availability should be considered alongside climate to model generalists like leopards. Firstly, 

constraining leopard range to wild prey after their maximum habitat was defined only reduced the 

population by an estimated 52 leopards. Secondly, several leopard populations exist in northern central 

India, as evidenced by my literature search, but this wasn't captured in Glob2Loc (Figure 3). However, 

Glo2Loc predicted there may be a significant biomass of prey species in this region (Figure 5). Therefore, 

leopard populations may exist in northern central India because of ample prey availability, despite climate 

variables being just below the threshold to define the habitat as suitable in Glob2Loc. 

 

Figure 5: Prey Biomass in Leopard-free Areas in 2015 

Figure 5: A map to show the biomass of the top 16 wild prey species in leopard-free regions of India in 2015 

according to Glob2Loc (species listed in Appendix; Table S1). Darker green regions indicate areas with the highest 

prey biomass. The map was constructed by combining the range, abundance, and body mass of each top prey 

species. Then, habitat that overlapped with leopards’ maximum habitat scenario was removed.  Light pink regions 

depict areas that are free from both leopards and their top prey. Appendix Figure S4 Panel A illustrates the total 

prey biomass in India. 
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Abundance 

 

Overall, an estimate of leopard abundance between my minimum and intermediate scenarios in Glob2Loc 

would accurately reflect observations (14,900-27,000 leopards). Accounting for a wide habitat tolerance 

and consumption of a broad range of prey (wild and domestic) best predicts leopard status now and 

possibly into the future. Figure 6 compares the abundance estimates from the literature (green) to my 

modelled scenarios covering each prey assumption (blue). 

 

Although the literature and Glob2Loc used different methods to estimate abundance, the model accurately 

reflected observations. The literature calculated a minimum possible abundance estimate because it only 

monitored leopards in undisturbed forests coinhabited by tigers and did not cover all states in India. 

Therefore, the literature is most similar and comparable to my minimum scenario (considering wild habitat 

and prey only). Estimates of abundance from the literature and my minimum scenario were not 

Figure 6: Comparison of abundance estimates from the literature (green) and my modelled scenarios in Glob2Loc (blue). 

The estimate from Jhala et al. 2020 (12,853 95% CI [11,491, 14,215]) represents a minimum estimate that only accounted 

for leopard abundance in forested habitat where tigers were also present. Therefore, my modelled minimum scenario 

(wild habitat and prey only; 14,877 95% CI [13,120, 16,623]) is most similar to the literature in terms of habitat coverage. 

Abundance in reality may possibly be higher and closer to the intermediate scenario (wild and domestic prey; 26,951 95% 

CI [25,013, 27,435]). No confidence interval is available for the maximum leopard abundance estimate (climate only; 

50,947) because confidence was derived from uncertainty in land cover estimates.  



 

 

 

significantly different (95% confidence intervals overlap; Figure 6). Therefore, my intermediate and 

maximum scenarios may have accurately reconstructed abundance given their assumptions about prey. 

Uncertainty in the literature's best estimate of leopard abundance in India confounded my validation which 

sought to identify which modelled scenario was most realistic. But leopard abundance could be 

approximated to lie between the minimum and intermediate estimates in Glob2Loc (14,900-27,000). 

However, Glob2Loc didn't account for all stressors to leopards, such as poaching, which would mean the 

realised abundance is lower than what Glob2Loc predicted (Stein, et al., 2020). 

  

Assessing my Three Scenarios of Leopard Range and Abundance in 2050 

 

Change from 2015 to 2050 

 

Climate change and human-induced land-use change did not significantly affect leopards by 2050 in 

Glob2Loc because the 95% confidence intervals of leopard minimum habitat area, which accounted for all 

stressors, overlapped (Appendix; Figure S1). Furthermore, leopards persisted in much of their range from 

2015 to 2050 (Figure 7D). By 2050, habitat area increased overall by 2.56% in the maximum, climate-only 

scenario. However, reporting the overall change in range masks the finding that habitat loss and gain 

occurred to roughly equal extents in different locations at range edges (Figure 7D). Habitat area decreased 

overall in the minimum scenario by 0.833% due to urbanisation and agricultural expansion.  

 

Range 

 

My intermediate scenario is likely to provide the most robust estimate of the future since it best matched 

observations in 2015 (Figure 7B). Without considering the diets of leopards and their range expanding to 

human-use landscapes, a typical biodiversity model may underestimate future range by 2.25-fold 

(intermediate scenario: 1,005,100 km2, minimum scenario: 446,600 km2) (Figure 7). My climate-only, 

maximum scenario predicted habitat area was 3.50 times higher than my minimum scenario, which 

constrained leopards to wild habitat and prey (maximum: 1,563,600 km2, minimum: 446,600 km2). This 

difference highlights that land use has a large impact on leopard range and so acknowledging how species 

respond to agriculture and urbanisation in models is important to get accurate results. 

  



 

 

 

Figure 7: Glob2Loc’s Estimates of the Maximum, Intermediate and Minimum 

Range of Leopards in 2050  

Figure 7: The range of predictions of leopard habitat area in 2050 from the maximum to minimum scenarios as 

continued from 2015 using the same thresholds to classify occupancy as Figure 3; B to D. Panel A is the maximum 

climate-only scenario with prey and land-use not accounted for (1,563,600 km2); Panel B is the intermediate scenario 

accounting for wild and domestic prey in wild and modified habitat (approximately 1,005,100 km2, halfway between A 

and B); Panel C represents leopard range constrained to wild habitat and prey only (446,600 km2). From the baseline 

analysis in 2015, it is most likely that the intermediate scenario (B), accounting for wild and domestic prey and habitat, is 

most likely to represent the future. Panel D illustrates the difference in range from 2015 to 2050 according to the 

intermediate scenario which accounted for the most realistic prey base (wild and domestic prey; difference between 

Figure 3C & Figure 7B). Most range is unchanged (yellow) but there are gains and losses around the range edges (red 

and blue). 



 

 

 

 

I found that to define leopard range, considering prey availability after climate may cause Glob2Loc to 

underpredict range again in 2050. Firstly, constraining leopards by wild prey availability did not significantly 

affect leopard range, which was reduced by just 1.35% (which equated to approximately 194 leopards). 

Secondly, top prey biomass is still highest in northern central India, which is still unoccupied by leopards in 

2050 (Figure 8).  Therefore, it is likely that in 2050, there will be a concentration of leopard populations in 

northern India as they are facilitated by prey availability, even though Glob2Loc classified this region as 

containing an unsuitable climate. 

    

Figure 8: Prey Biomass in Areas without Leopards in 2050 According to Glob2Loc 

 

Abundance 

 

Glob2Loc's estimates of leopard abundance increased in my intermediate and maximum scenarios from 

2015 to 2050 because climate change increased maximum habitat by 2.56%. But in the minimum scenario, 
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Figure 8: A map to show the biomass of the top 16 wild prey species in leopard-free regions of India in 2050 and a 

comparison with 2015. Darker green regions represent areas with more/heavier prey species. Hot pink regions in 

west India highlight areas which contained top wild prey in 2015, but not in 2050 due to climate change. Light pink 

regions depict areas that are predicted to be unoccupied by leopards and their top prey in 2015 and 2050. The gain 

in prey range due to climate change by 2050 was negligible and occurred outside leopard habitat, and so is reported 

elsewhere (Appendix; Figure S4).  



 

 

 

abundance decreased because projections of urban and agricultural expansion removed more habitat by 

2050 than was gained due to climate change (Figure 9).  

  

Leopard abundance in 2050 may be between 14,600-27,400 adults (minimum-intermediate scenario) if 

nuances between current observations and Glob2Loc carry forward into the future (Figure 10). This 

suggests the impact of climate, agriculture, and urbanisation on the leopard population in India won't 

change from 2015 to 2050. But leopard populations globally are decreasing overall due to poaching, which 

isn't accounted for in Glob2Loc (Stein, et al., 2020). The upper and lower bounds of leopard abundance 

defined by my maximum and minimum scenarios also quantify loss or recovery potential for leopard 

populations if habitat is rewilded or if human-wildlife conflict worsens.  

 

To not validate model outputs with observations or consider predator-prey relationships could mean that 

typical approaches to modelling trends in biodiversity underpredict leopard abundance by almost 2-fold in 

the future (Figure 9: A and B). This problem will continue unless IUCN data is updated. Instead reporting 

upper and lower thresholds for leopard abundance in models and accepting uncertainty may be more 

truthful (e.g., 2050: 14,500-27,400 leopards). My maximum scenario predicted leopard abundance was 3.6 

times greater than my minimum scenario in 2050 (Figure 9: A & C). So, assumptions about prey 

consumption and habitat tolerance greatly affect predictions in biodiversity models.  

Figure 9: Visualisation of the range of estimates of leopard abundance based on no (climate only) or two different 

assumptions of what prey leopard eat and hence where they roam (wild only or wild and domestic). Without 

considering an intermediate scenario and understanding how modelled results compare to observations, there is a 3.6-

fold difference between the maximum and minimum estimates of leopard abundance (14,571 - 52,128). However, 

when you report a range after considering how the model compared to the literature in 2015, this uncertainty is 

almost halved (14,571 - 27, 439 and a 1.9-fold difference).  



 

 

 

Discussion 

  

We need to represent carnivore ecology appropriately in models if they are to be useful in projecting 

biodiversity trends. Leopard distribution and abundance, as with many generalists, is largely determined by 

prey availability (Sutton, et al., 2023). I assessed the limitations in current approaches to biodiversity 

modelling when predator-prey relationships are not accounted for, using the biodiversity model, Glob2Loc. 

I found that my modelled intermediate scenario which most closely approximated leopard diet, as 

evidenced by a literature search, also matched field observations most accurately (Figure 3; Figure 

6). Validating Glob2Loc with real observations helped identify uncertainty in the model and the literature 

and allowed me to link imperfections in the model’s predictions to not accounting for how prey influence 

range. I found that reporting ranges rather than one number when estimating abundance better represents 

the uncertainty in the literature and biodiversity models. Furthermore, a scenario-based approach to 

biodiversity modelling, as reported here, can quantify possibilities in terms of recovery potential or loss if 

human tolerance to wildlife increases or worsens in the future 

  

Validating biodiversity model outputs as a way to identify limitations of excluding biotic 

interactions 

  

Species distribution models (SDMs) are limited when they only consider how climate affects habitat ranges 

or are adjusted post hoc to account for habitat preferences. To overcome this, comparing the predicted 

range of focal species with recent data and other species with which it is known to interact identifies where 

the model is inaccurate and why. For example, Glob2Loc failed to capture a cluster of leopard populations 

in northern central India (Figure 3). But comparing modelled outputs to field observations identified that 

this may be because Glob2Loc doesn’t account for prey availability, which is shown to be high in this region 

(Figure 5). One could conversely argue that the ensemble SDMs in Glob2Loc did not accurately define 

climate suitability, leading to fallacious extrapolation of leopard range. But no SDM can perfectly capture 

climate tolerance of a species because of the biotic and topographic factors that also influence observed 

ranges from which we define climate suitability. This is especially true for generalists such as leopards 

which live in warm climates and whose range is strongly determined by biotic interactions (Paquette & 

Hargreaves, 2021; Galiana, et al., 2023). With more time, I would investigate the climatic characteristics of 

northern central India to gauge if Glob2Loc poorly defined climatic suitability of leopards or if prey 

facilitates leopard presence in areas with typically unsuitable climate. But in the meantime, validating 

model outputs identifies limitations caused by approximating reality.  

  



 

 

 

Glob2Loc and individual SDMs cannot fully capture the plethora of biotic and abiotic factors that come 

together to determine if and to what extent species exist in nature (Peterson & Soberón, 2015). This is 

instead conceptualised in ecology as the fundamental niche, which is an abstract, n-dimensional 

hyperspace with axes for every condition and resource that affects a species (Hutchinson, 1957). But 

species distribution modelling and the concept of niches are separate (Colwell & Rangel, 2009). SDMs are 

built on data from observations in nature which at best reflect the realised potential of the current gene 

pool, and not their true potential (Jiménez‐Valverde, et al., 2008). Moreover, Buisson et al. 2010 found that 

of all the sources of uncertainty in ensemble species distribution models (e.g., initial data inputs, type of 

SDM, and climate change scenarios), SDMs were the greatest source of uncertainty in forecasts (Buisson, et 

al., 2010). Therefore, validating model outputs with recent data is an important step in using SDMs, which 

are inherently limited in their applications. 

  

Methods exist to include biotic interactions in SDMs, and this has led to improved predictive power, 

especially in landscape-level case studies where inter-species relationships can be parameterised (Sutton, 

et al., 2023; Giannini, et al., 2013). However, data limitations stifle the incorporation of biotic interactions 

into biodiversity models that operate on a global scale, such as Glob2Loc (Wisz, et al., 2013). A recent 

advance however has been the use of random forest models to predict predator-prey relationships to build 

up the database computationally (Llewelyn, et al., 2022). As a next step, it would be beneficial to use 

computationally constructed interaction databases such as this in SDMs and use prey ranges as covariates 

that explain predator range to see if new outputs better reflect observations.  

 

It would also be useful to include a joint species distribution model (jSDM) into Glob2Loc’s ensemble, which 

uses co-occurrence data to identify associations between species that cannot be explained by shared 

climate preferences alone and project communities under climate change (Pollock, et al., 2014). However, 

best practice currently recommends that when focussing on predator-prey relationships, trophic 

interaction distribution models are optimal (Dormann, et al., 2018). These models, which require 

information on predator and prey range as well as the specific location of hunts can identify 40% more of a 

species’ true range than individual SDMs (Trainor, et al., 2014). But data requirements for more accurate 

models such as these are too large for globally applicable biodiversity models. This confirms it is important 

in the meantime to validate outputs from models in the meantime with real observations to identify and 

understand limitations 

   

Overall, my results indicate potential limitations of global biodiversity models and caution their potential 

use. There is a need to develop a framework to validate globally applicable biodiversity models. Centralised 

methods that allow model outputs to be swiftly and efficiently checked against real data would identify if 



 

 

 

projections of future biodiversity trends are reliable. This could be commenced by expanding this analysis 

to more species and countries to see if the discrepancies identified between observations and model 

outputs of leopards in India are upheld in other study systems. 

 

Considering scenarios in biodiversity modelling can allude to recovery potential or loss if 

tolerance to wildlife changes  

  

An approach to scenario-based biodiversity modelling may also indicate the potential loss of leopards in 

India if human tolerance of wildlife decreases. The extent to which large carnivores coexist alongside 

humans in urban and agricultural settings is a product of human-wildlife conflict and the effectiveness of 

management strategies that are in place (Linnell, et al., 2001). However, Glob2Loc is limited in that it 

doesn’t account for the effect poaching and retaliatory killing have on leopard populations, when these 

activities are recognised as the biggest threats to leopards by the IUCN (Stein, et al., 2020). While leopards 

are reportedly persisting in human-modified landscapes in India recently, this may change in the future and 

Glob2Loc, like other biodiversity models, cannot capture this unless IUCN data is updated. But a scenario-

based approach to modelling, as reported in this study, can help to overcome this limitation by reporting 

the best and worst outcomes for biodiversity. If retaliatory killings in India drive leopards out of landscapes 

co-occupied by humans by 2050, then their maximum possible abundance could be defined by the 

minimum scenario in Glob2Loc rather than the intermediate scenario (Figure 10). This could coincide with a 

population decrease of 46.9%.   

  

Conversely, recovery potential can be quantified by scenario-based modelling if land is rewilded (taken out 

of agriculture and given back to nature). For example, a decrease in meat consumption and the rewilding of 

agricultural land has been proposed as a solution to the biodiversity crisis (Wang, et al., 2023). To quantify 

the impact of this, Glob2Loc can project future biodiversity trends under different human diet scenarios 

and their associated land-use change (e.g., business as usual or increase in plant-based foods). This analysis 

would especially help inform recovery potential for specialist species that are completely intolerant to 

human-use landscapes.  

   

Conclusions: No biodiversity model is perfect, but that doesn’t mean they are not useful. To gauge 

uncertainty in current models and to understand the reasons for their errors, authors should emphasise 

validating outputs with real data and checking how interacting species are projected together. It may be 

imperative to scale up bias-testing in other globally applicable biodiversity models as recently, there have 

been calls to move on from global mapping exercises given they have little more left to uncover (Wyborn., 



 

 

 

et al., 2021). If discrepancies between models and recent data are a common occurrence, then this could 

shift the research community’s next steps.  
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Management Report 

 

I first emailed my supervisors in August of the summer vac to discuss a new project as the one I completed 

a proposal on fell through. I first met with them to discuss this at the end of September, and we came up 

with ideas for a new project then, so I avoided losing time planning when I returned to Oxford. After this, I 

began reading up on Glob2Loc and the previous modelling papers it expands on. 

  

Then in mid-October, I met with MC where I explained I had become interested in the fact that Glob2Loc 

doesn’t account for biotic interactions in its projection of range and abundance. For the rest of 

Michaelmas, I began my scoping review of how predator-prey relationships change with climate change, 

agriculture, and urbanisation and how that affects species range/abundance in these areas. I drafted mini-

proposals and figured out a rough research path to pursue once I knew specific case study system to 

investigate from my reading.  

  

I originally wanted to add another model into the Glob2Loc ensemble that accounted for biotic interactions 

and test if the new ensemble predicted range and abundance better than the original. So, I spent a 

significant amount of time doing another scoping review and online tutorials of how predator-prey 

interactions have been accounted for in species distribution modelling so far. But in the end, I didn’t have 

enough time over the year to action my ideas from this step.  

  

In 0th week of Hilary term, after completing my scoping reviews, I met with my supervisors to confirm my 

specific case study system which I decided was most interesting from my reading. I then solidified the rest 

of my methodology and spent the rest of Hilary reading more closely around leopards in India, extracting 

statistical results from Glob2Loc, and comparing them to ecological theory and expectations. This required 

me to learn Mac terminal language and access Oxford’s Advanced Research Computer (ARC) to edit and run 

code and download results onto RStudio on my laptop for analysis.  

  

As I completed my analysis in Hilary term, I sometimes discovered missing data or errors when I used the 

code from Glob2Loc. It therefore needed to be troubleshooted a few times which would delay my analysis. 

But I used simulated data in the meantime and carried out similar analyses on several amphibian species in 

Brazil to get used to how the model worked and create code for my analysis. I also used delays in this time 

to start writing up my methods. This meant I didn’t waste time before Glob2Loc’s leopard and prey code 

worked again. 

  



 

 

 

I finished my research towards the end of the Easter Vac and finished writing up my thesis in this time too. I 

handed my first draft to my supervisors at the start of Week 1 Trinity term and received comments later 

that week. I then spent the rest of my time before the deadline editing my thesis. 

 

  



 

 

 

Appendix  

  

Table S1: List of all wild terrestrial vertebrate prey species used 

Species (binomial) Classification (Class, family) 

Axis axis Mammalia, Cervidae 

Boselaphus tragocamelus Mammalia, Bovidae 

Hoolock hoolock Mammalia, Hylobatidae  

Herpestes smithii Mammalia, Herpestidae  

Lepus nigricollis Mammalia, Leporidae  

Macaca leonina Mammalia, Cercopithecidae 

Macaca mulatta Mammalia, Cercopithecidae 

Macaca radiata Mammalia, Cercopithecidae 

Pavo cristatus Aves, Phasianidae 

Semnopithecus ajax Mammalia, Cercopithecidae 

Semnopithecus dussumieri Mammalia, Cercopithecidae 

Semnopithecus entellus Mammalia, Cercopithecidae 

Semnopithecus hector Mammalia, Cercopithecidae 

Semnopithecus schistaceus Mammalia, Cercopithecidae 

Rusa unicolor Mammalia, Cervidae 

Viverricula indica Mammalia, Viverridae 

   



 

 

 

 

 

 

 

  

Figure S1: Comparison of habitat area in the minimum scenario in 2010, 2015, 2020 and 2050. It shows that the 

difference between climate, agriculture and urbanisation across each year is not estimated to significantly 

affect the habitat extent of leopards in India (95% confidence intervals overlap). Therefore, it was appropriate 

to use 2015 for my baseline analysis to approximate leopard range and abundance.   



 

 

 

 

Figure S2: A Map to show the assessed leopard range estimated by Jhala et al. 2020 

 

Figure S2: Leopard range map in 2018, adapted from (Jhala, et al., 2020). Likely leopard presence due to camera 

trapping and MaxEnt species distribution model outputs is shown in red. The Northeast could not be included in 

the abundance calculation due to lack of data. Furthermore, not all of India could be sampled (grey) so other 

habitat may have been missed. Analysis was only carried out in states and forests where tigers are also present. 

But leopards exist outside this area too (Jhala, et al., 2020). This study resulted in a less generous estimate of 

leopard range than (Jacobson, et al., 2016).  



 

 

 

 

Figure S3: Comparison between the literature and two versions of Glob2Loc’s minimum scenarios with different thresholds 

for leopard presence 

Figure S3: Comparison of observations of leopard range from the literature and my minimum scenario in Glob2Loc. Panel B is the same graph as Figure 3D (‘Extant’ = at 

least 50% natural land; ‘Fragmented’ = 1-50% natural land). Panel C represents a minimum scenario but modelled leopards to have a higher tolerance for human-use 

landscapes than Panel B. Panel C was constructed using lower thresholds for leopard presence and hence predicts more of India to contain Extant populations (green) and 

fewer fragmented populations (yellow) than Panel B. In Panel C, ‘Extant’ (green) represents cells that contain at least 25% natural habitat, and ‘Fragmented’ (yellow) cells 

represent areas with 1-25% natural habitat. 



 

 

 

Figure S4: Comparison of Top Prey Species’ Range from 2015 to 2050 in India 

According to Glob2Loc 

Figure S4: Glob2Loc predicted a marginal increase in overall prey range from 2015 to 2050 in North India (Panel 

C). Panels A and B illustrate total prey biomass in India in 2015 and 2050 by incorporating information on each 

species’ habitat range, abundance, and body mass. Panel C only reports regions of India that Glob2Loc 

predicted to contain leopard prey species in 2050 that were unoccupied by prey in 2015.   
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