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Abstract 

Globally, hundreds of thousands of wildlife rangers patrol wide areas within protected areas 

every day, observing biodiversity and illegal activities. Data collection by rangers therefore has 

enormous potential to track changes in biodiversity and threats to it, at scale and with little 

additional cost. However, ranger patrols are biased in space and time and detections are 

imperfect, so what rangers observe may not capture underlying reality well. Furthermore, even 

when monitoring results are reliable, they might not be used effectively to inform conservation 

management. Effective ranger-based monitoring also requires active engagement by the 

people collecting and using data (rangers and managers). In this Thesis I investigated factors 

affecting (a) the reliability of ranger-based monitoring data and, (b) the effective use of these 

data within conservation management. I used the monitoring and management of elephant 

poaching in the Mana-Chewore World Heritage Site, Zimbabwe, as a case study and combined 

statistical, mathematical, and qualitative methods. 

 

I began with a participatory modelling approach in which rangers and managers helped me to 

build and evaluate models of the spatial distribution of elephant poaching in Mana-Chewore, 

with statistical methods to account for patrol bias. Combining quantitative models and 

interview responses allowed for more robust inference in the face of uncertainty, with 

proximity to water emerging as the strongest driver of poaching (reflecting both poacher and 

elephant behaviour). Next, I developed mathematical simulations to quantify how patrol 

characteristics (effort, spatial coverage, etc.) interacted with poaching dynamics to affect the 

power of ranger-collected data to detect underlying spatial and temporal trends in poaching. 

Power to detect trends was low in many scenarios, with some non-intuitive results (such as 

spatially targeted patrols achieving power similar to spatially random patrols). Strategies 

required to achieve robust results depended heavily on monitoring objectives (the magnitude 

of change in poaching that managers wish to detect, for example). To complement these 

quantitative insights, I interviewed 23 rangers working in Mana-Chewore to investigate their 

perceptions of patrol-based data collection. I found that their occupational culture (including a 

strong sense of duty and deference to authority), as well as their awareness of how their data 

were used, shaped their engagement with monitoring. In a second qualitative analysis, I 

interviewed nine park managers and 17 senior staff of the national wildlife authority to 

investigate the extent to which ranger-collected data were used to inform anti-poaching. 

Managers valued and made basic use of ranger-collected poaching data but did not 

systematically analyse trends in these data to inform their anti-poaching strategies. Managers 
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felt that management based on intuition, experience and more reactive data-use was more 

familiar and dependable, and therefore did not embrace data-based adaptive management.  

 

For ranger-based monitoring to contribute effectively to biodiversity conservation, 

practitioners and scientists must acknowledge, understand, and account for uncertainty in 

both monitoring data and the behaviour of those collecting and using it. Clearly defining 

monitoring and trend detection goals and critically evaluating the likelihood of achieving these 

goals is essential, as is meaningfully engaging the perspectives of rangers and managers. More 

generally, this research demonstrates the importance of interdisciplinarity in the study of 

socio-ecological systems, and the power of models for both understanding and dealing with 

the uncertainty inherent in these systems.  
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Three rangers working at my field site, the Mana-Chewore World Heritage site in the 
Zambezi Valley, northern Zimbabwe. Photographs used with permission from each ranger. 
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“What we observe is not nature herself, but nature exposed to our method of 

questioning” – Werner Heisenberg, Quantum Physicist 

 

 

 

 

 

 

A wildlife ranger at my study site in Zimbabwe records data on an old 
elephant carcass encountered while on patrol. The protected area in which 
he works is vast (several thousand square kilometres), so not every poached 
carcass is found by this ‘method of questioning’.  
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Chapter 1: Thesis Introduction   

1.1. Background to research 

Managing biodiversity when monitoring and implementation are uncertain 

 

The appeal for evidence-based management of natural resources is ubiquitous (Gillson et al., 

2019; Sutherland et al., 2004).  Central to this is conservation monitoring - collecting and 

evaluating baseline data on the ecological and social dimensions of the system under 

management. Protected area managers, for example, need timely and reliable information on 

threats to the biodiversity under their jurisdiction as an essential baseline for assessing 

management performance and designing management strategies (van Wilgen and Biggs, 

2011). This includes basic data on where in the landscape illegal activities are more likely, and 

how the intensity of these activities change over time (Critchlow et al., 2015). Conservation-

relevant monitoring data, such as information on elephant poaching levels before and after an 

ivory trade ban are, however, difficult to collect at relevant scales. Measuring and managing 

socio-ecological systems is challenging because these systems are characterised by dynamic 

and uncertain linkages between human actors and ecological processes (Ban et al., 2013). 

Rather than ignoring uncertainty or making simplifying assumptions about it, conservation 

scientists can better inform effective management of biodiversity by explicitly quantifying and 

incorporating uncertainty into their research questions (Milner-Gulland and Shea 2017). 

Conservation managers and policy makers must similarly endeavour to make decisions that are 

not only evidence-based, but robust to uncertainty (Bunnefeld et al., 2017).  

 

Uncertainty comes in many forms, such as epistemic uncertainty due to our imperfect 

knowledge of socio-ecological systems, ontological uncertainty due to the inherent complexity 

of these systems, and strategic uncertainty about how to manage these system well (Dewulf 

and Biesbroek, 2018).  Natural variation in ecological systems, such as the environmental 

stochasticity affecting species population dynamics, is another important source of uncertainty 

(Regan et al., 2002).  Regan et al. (2002) further identify uncertainty in the vague and 

ambiguous language used to describe ecological systems (linguistic uncertainty), such as 

‘vegetation cover’ and ‘endangered’ which are broad terms open to interpretation. 

‘Implementation uncertainty’ may also occur when resources users (e.g., fishers or hunters) do 

not comply with conservation management rules, or respond to them in unexpected ways 

(Fulton et al., 2011). These various forms of uncertainty mean that the outcomes of 
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management interventions are unpredictable. It is crucial, therefore, to explicitly acknowledge 

uncertainty and pursue management pathways that are not only theoretically effective, but 

also robust to uncertainty (Regan et al., 2005). In this Thesis, I have identified observation 

uncertainty (a form of epistemic uncertainty) and implementation uncertainty (a form of 

strategic uncertainty) as particularly relevant to my case-study of ranger-based monitoring.  

 

Observation uncertainty arises from the difficulty of accurately monitoring socio-ecological 

systems. Monitoring trends in plant and animal populations, and threats to these populations, 

is essential to understanding how human activities affect natural systems, and to evaluating 

the effectiveness of interventions designed to protect biodiversity (Canessa et al., 2015; Nichols 

and Williams, 2006). Yet socio-ecological systems are only partially observable. Field methods 

to derive real-world data are inevitably constrained by their spatial or temporal extent, or 

biased in some other way (Dobson et al., 2020; Grimm, 1999). Metrics of biodiversity, as well 

as measures of human resource use (especially when illegal; Gavin et al., 2010), are often 

biased and imprecise.  As an example, McConville et al. (2009) found that aerial surveys in 

Kazakhstan underestimate saiga antelope (Saiga tatarica) abundance when population density 

is low, leading to overestimation of rates of decline and confounding managers’ ability to 

accurately measure progress towards conservation goals. It is crucial, therefore, that 

observation uncertainties like this are understood before inferences about underlying system 

dynamics are made (quantitative models are a key method for achieving this, as described in 

the methods overview in Chapter 2).  Similarly, it is essential to evaluate whether monitoring 

programmes have a realistic chance of robustly detecting changes in the environmental 

variables of interest (Field et al., 2007).  

 

Another, poorly understood, source of uncertainty occurs when conservation policy is 

translated into practice. Conservation interventions are not implemented in a vacuum; 

whether or not they achieve their goals depends to a large extent on the values, motivations 

and broader socio-political context of the people who implement these interventions and the 

people who are affected by them.  The success of the ranger-based monitoring and adaptive 

management programmes investigated in this Thesis, for example, depend on the priorities 

and practices of the individual rangers and park managers responsible for collecting and using 

conservation monitoring data. The drivers of implementation uncertainty typically lie within 

the remit of social science, so this form of uncertainty is underrepresented in the natural 

resource management literature (Bunnefeld et al., 2011). A major source of this uncertainty is 

human behaviour; people do not behave as policymakers or those designing conservation 
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projects envisage. In their comprehensive analysis, for example, Fulton et al. (2011) identified 

human behaviour as the main source of uncertainty in fisheries management globally.  

 

Furthermore, the relationship between evidence (e.g., ranger-collected data on elephant 

poaching) and policy (e.g., new anti-poaching strategies) may be messier than much of the 

evidence-based conservation literature acknowledges. Diverse social and political factors 

interact with evidence to shape decisions, so real-world policy may be better described as 

“evidence-informed” rather than “evidence-based”  (Adams and Sandbrook, 2013). Nuno et al. 

(2014), for example, investigated uncertainties in the implementation of strategies to reduce 

bush meat hunting in the Serengeti, Tanzania, finding that institutional barriers and the 

influence of key individuals affected implementation success. Conservation interventions in 

developing countries may be particularly vulnerable to implementation failure due to lack of 

capacity and resources, and generally weaker governance (Smith et al., 2003). Qualitative 

research methods are needed to better understand implementation uncertainty in general, 

and the behaviour and context of rangers and park managers in particular (see the methods 

overview in Chapter 2).  

 

The potential of ranger-based monitoring for biodiversity conservation 

 

The collection of biodiversity data by wildlife rangers, whose job it is to protect threatened 

species, presents a model case of both the value of monitoring data and the uncertainties 

inherent in its collection. In this Thesis, I use the term ‘ranger’ to refer to ‘a field-based 

operative whose regular work involves surveillance, protection and maintenance of species and 

ecosystems’ (Belecky et al., 2019). I define ranger-based monitoring as the collection of data 

by rangers, which may include evidence of illegal activity, animal sightings and behaviour, and 

vegetation status (Gavin et al., 2010). While “law-enforcement monitoring” is another common 

term in the literature for ranger-based monitoring (Moreto et al., 2014; Stokes, 2010), I 

considered this terms to be too specific to the monitoring of illegal activities.  

 

Globally and daily, hundreds of thousands1 of rangers patrol large distances within protected 

areas, observing biodiversity and illegal activities. Ranger-based monitoring thus has significant 

potential to inform conservation, at large scales and low cost. For example, ranger-based 

monitoring of illegal activities in the Virunga-Bwindi forests provides large quantities of 

 
1 Based on personal communication with Mohammad S. Farhadinia who is compiling a global 
database of numbers of state-employed rangers.  
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management-relevant data that influence strategies to reduce threats to gorillas (Gray & 

Kalpers, 2005). Similarly, careful analysis of ranger-collected data on several types of illegal 

activity in a Ugandan protected area helped scientists and managers design patrol strategies 

that led to significant improvements in law enforcement effectiveness  (Critchlow et al., 2016). 

Moore et al. (2018) used 10 years of ranger-collected data on poaching activities in a Malawian 

protected area to identify areas of high poaching threat, and to demonstrate the effectiveness 

of patrols at deterring these threats over time, while Ihwagi et al. (2015) used ranger detections 

of elephant poaching to assess the effectiveness of different land-use policies for elephant 

protection. As another example, the case study that I investigate in this Thesis is part of a global 

programme under which ranger-collected data on elephant carcasses from over 60 African 

protected areas are used to estimated continental poaching rates and trends and inform ivory 

trade decisions (CITES Secretariat, 2019).  

 

There are three main reasons why ranger-based monitoring can make a significant contribution 

to the evidence base of what does and does not work in biodiversity conservation. The first is 

the vast temporal and geographical reach of ranger-based monitoring, leading to potentially 

large volumes of data. Rangers operate in protected areas across the world, and a high 

proportion of their time is spent out in the field covering wide areas on a regular basis (Belecky 

et al., 2019). Their data-collection potential is thus enormous. Secondly, ranger-based 

monitoring may be cost-efficient compared to independent and systematic biodiversity surveys 

usually carried out by professional ecologists. Such surveys are skill intensive, and costs often 

prohibit their use at large spatial and temporal scales, especially in developing countries where 

resources for biodiversity conservation are limited (Jones et al., 2017). Thirdly, ranger-based 

monitoring involves a closer link between data collectors and data users. Both wildlife rangers 

and protected area managers typically work within the same branch (e.g., management and 

operations) of the same organisation (e.g., the state wildlife department). Such a link, which is 

absent when monitoring is conducted by external scientists and ecologists, may foster greater 

integration of monitoring results into local management decisions (Danielsen et al., 2009).  

 

Implementation and observation uncertainty in ranger-based monitoring 

 

Against these advantages, however, ranger-based monitoring may be particularly vulnerable 

to the observation and implementation uncertainties described above.  Ranger patrol coverage 

is almost always biased in space and time, and detections are imperfect, so what rangers 

observe does not always correlate well with true underlying system dynamics (Dobson et al., 
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2020). As a result, it is often difficult to know whether observed trends in ranger-collected data 

reflect changes in the pattern and efficiency of patrol themselves, or real changes in 

biodiversity or illegal activities. Furthermore, because the relationship between patrol effort 

and detectability is not constant (with detection efficiency or ‘catchability’ varying across time 

and space), even catch-per-unit-effort indices may be biased (Keane et al., 2011). In a study of 

ranger-based monitoring in Mole National Park in Ghana, Burton (2012) found that patrol 

observations underrepresented the park’s mammal species diversity, and resulted in different 

inferences about spatial patterns in mammal abundance, compared to camera trap surveys. 

Observer error such as the mis-categorisation of a natural mortality carcass as an illegal hunting 

mortality, or errors in the recoding of GPS locations, may also compromise monitoring 

accuracy.  

 

Furthermore, the rangers who collect data and the park managers who make use of these data, 

do not operate like predictable algorithms. They are people with skills, values, and priorities 

that inevitably influence monitoring and management success. This human dimension is 

particularly important in the context of ranger-based monitoring, where those responsible for 

collecting and using data are not professional ecologists. These individuals must fit monitoring 

in alongside more immediate management and protection duties. Also, smaller state budgets 

and fewer skilled professionals translate into far less monitoring of natural resources in 

developing compared to developed countries (Danielsen et al., 2009).  

1.2. Problem statement and research gap 

To be effective, biodiversity monitoring programmes must (a) reliably detect changes in 

variables of interest (e.g. animal population abundance or harvest levels ), and (b) produce 

results that are adequately integrated into conservation management decisions (McDonald-

Madden et al., 2010). Millions of limited conservation dollars are spent on monitoring that has 

no reasonable chance of detecting change (Field et al., 2007). An important contribution 

research can make, therefore, is to quantitatively evaluate the accuracy and precision of trend 

detection for different monitoring designs. Indeed, much previous research has focussed on 

evaluating the sampling rigour of monitoring schemes (Field et al., 2005; Jones et al., 2017). 

Ranger-based monitoring, however, presents a unique challenge in that data are not collected 

according to a systematic sampling design. Patrols are not explicitly monitoring-focussed and 

are subject to biases such as changes in patrol effort through space and time (Keane et al., 

2011). Evaluating the rigour of ranger-based monitoring is thus difficult and few examples of 

such evaluations exist in the literature (Burton, 2012; Jachmann, 2008).  
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Compared to quantitative evaluations, little research has considered the important socio-

economic and political dimensions of conservation monitoring, particularly by non-scientists 

(Earle, 2016). A well-financed monitoring scheme with a robust survey design may nevertheless 

fail to contribute to conservation outcomes if there is no clear framework for using the results 

to inform management decisions. Conservation monitoring programmes are often conceived 

as ends in themselves; but in order to be effective, they must be explicitly embedded within 

and inform a broader framework of conservation science or management (Nichols and 

Williams, 2006).  Adaptive management of biodiversity (whereby ongoing monitoring helps 

evaluate and improve management interventions with uncertain outcomes) is a technically 

well-developed and commonly promoted conservation tool, yet practical examples of its 

application remain sparse (Keith et al., 2011).  Implementation of adaptive management 

requires substantial human and financial resources over and above those required for baseline 

monitoring, as well as time for testing and evaluating management actions (McDonald-Madden 

et al., 2010). There is a need to better understand the reasons why adaptive management so 

often fails to be implemented in practice (Allen and Gunderson, 2011), and is instead replaced 

by trial-and-error management, based on expert judgement.  

 

Finally, previous sociological research with rangers has demonstrated the power of engaging 

ranger perspectives and ideas to better understand and address conservation challenges 

(Moreto et al., 2017; Moreto and Lemieux, 2015). Yet, much of this work has come from a 

criminology and policing perspective, with rangers conceived of as law enforcement officers 

with roles similar to those of policeman (Moreto and Matusiak, 2017). While this has produced 

much valuable insight, rangers’ responsibilities extend beyond  law enforcement, with 

biological monitoring being a major additional role in many protected areas globally (Belecky 

et al., 2019). Furthermore, as far as I am aware, no previous work has sought to understand 

how rangers themselves perceive and engage with patrol-based data collection, and the 

broader management uses of these data. This is important because poor engagement with, 

and ownership of, monitoring by those undertaking it may compromise data quality and 

thereby limit evidence-based conservation. 

1.3. Research aims and questions 

Using the monitoring of elephant poaching in the Zambezi Valley, Zimbabwe, as a case study, 

this DPhil research aims to investigate (a) the reliability of ranger-based monitoring data and, 



 19 
(b) the extent to which it is effectively used to inform conservation management. I pose the 

following research questions: 

 

1. What factors affect the reliability of ranger-collected data on elephant poaching, and 

how can inference from such data be made more reliable?  

2. What factors affect the active and meaningful engagement of rangers with monitoring? 

3. What factors affect the extent to which park managers use ranger-collected data to 

inform their decisions?  

4. How can the insights from questions 1-3 be used to maximise the contribution of 

ranger-based monitoring to effective protected area management? 

I use the term reliability to refer to the accuracy (or bias) and precision (level of uncertainty) 

with which ranger-collected data capture true underlying patterns in poaching (Nuno et al., 

2013). The specifics of how reliability is defined will vary depending on whether the focus is 

spatial or temporal patterns in poaching (see Chapter 4). I use active and meaningful 

engagement to refer both to rangers themselves seeing data collection as important, and to 

supervisors of monitoring programmes seeing rangers as active agents whose ideas and 

motivations are considered and engaged. This kind of active and meaningful and active 

engagement will have implications for the quality and consistence of the data that rangers 

collect (see Chapter 5).  

1.4. Conceptual framework for Thesis 

The object of this study is the ranger-based monitoring and management cycle (Fig. 1.1). 

Managers implement actions (e.g., new patrol strategies) based on an evaluation of the data 

reported from ranger patrols (e.g., location of illegal activities). Data reliability and use are 

affected both by the technicalities of data collection and analysis (data dynamics), as well as 

the values and perceptions of the rangers who collect these data and the park managers who 

use it (human dynamics). This Thesis combines quantitative methods (to understand 

observation uncertainties in this system), and qualitative methods (to interrogate 

implementation uncertainties) to address the overall research questions. The intention is that 

the quantitative analysis of data dynamics and the qualitative analysis of human dynamics will 

provide complementary insights (Fig. 1.1).  For example, the capacity and resources within the 

implementation environment (qualitatively analysed) may affect levels of ranger patrol effort 

and thus data reliability. In turn, the statistical power of monitoring to accurately detect change 

(quantitatively analysed) will determine its usefulness for guiding management.  
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The cycle in Figure 1.1. is embedded within a broader socio-ecological system (SES). Following 

the influential framework developed by  Ostrom (2009), the focal elements of my case study 

SES are the broader resource system (the Mana-Chewore protected landscape), resource units 

(elephants), resource users (poachers), and a governance system (rangers and park managers). 

Addressing the above research questions will involve understanding and measuring the 

outcomes of interactions between these elements (Ostrom, 2009).  
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Figure 1.1. Conceptual framework for this DPhil research, showing the ranger-based monitoring-management cycle (centre), the two research foci (human 
dynamics and data dynamics), and the primary research questions (bottom). How each of my four data Chapters fit into this framework, and the focus of each 
Chapter, is also shown.  
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1.5. Thesis overview 

In Chapter 2, I introduce the global programme for monitoring the illegal killing of elephants 

(MIKE), the case study of ranger-based monitoring that I used for this research. I also describe 

my case study site in Zimbabwe, the Mana-Chewore World Heritage Site in the Zambezi Valley. 

Finally, I provide a higher-level overview of the quantitative and qualitative methods used in 

this Thesis.  

 

Part 1: Data dynamics and observation uncertainty 

 

In Chapter 3, I present the results of spatial models of elephant poaching in Mana-Chewore. 

Models were based on detections of carcasses by ranger patrols (201 carcasses, 2000–2017) 

and used statistical methods to correct for patrol bias. I followed a participatory modelling 

framework, using interviews with rangers and managers to help build and evaluate these 

models. I found that poaching patterns in the bias-corrected scenarios differed among 

themselves and from the uncorrected scenario. Practitioners interrogated the credibility of the 

predictions in each scenario and thus helped discern true poaching patterns from those 

explained by patrol bias. Proximity to water was the strongest driver of poaching, probably 

reflecting both poacher and elephant behaviour. These results demonstrate the value of 

combining multiple lines of evidence (statistical models and interview responses) for more 

robust inference in the face of uncertainty. This analysis lays the ground for identifying possible 

sources of bias in ranger-collected data (investigated further in Chapter 4) and provides an 

example of how analysing patterns in real data might inform local anti-poaching and elephant 

management (investigated further in Chapter 6). 

 

This Chapter was published in May 2020 in the journal Biological Conservation: Kuiper, T., 

Kavhu, B., Ngwenya, N.A., Mandisodza-Chikerema, R., Milner-Gulland, E.J., 2020. Rangers and 

modellers collaborate to build and evaluate spatial models of African elephant poaching. Biol. 

Conserv. 243, 10843 (see the note on co-authorship on page 8 for author contributions). 

 

In Chapter 4, I present results from the mathematical simulation models I developed to 

quantify how various characteristics of ranger patrols (such as patrol effort and spatial 

coverage) interact with poaching dynamics to affect the power of ranger-collected data to 

detect underlying spatial and temporal trends in poaching. I parameterised these simulations 

using empirical poaching data and analysis from Chapter 3, as well as insights from the 
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interviews conducted for Chapters 5 and 6. Results showed that under current conditions at 

my study site (intermediate patrol effort that is often spatially constrained), ranger-collected 

data are unlikely to have strong quantitative power to detect trends in poaching. However, this 

did depend on aspects of patrol performance that can be manipulated by managers, however. 

Importantly, the relative trend-detection performance of different patrol strategies depended 

in large part on the particular management question (the magnitude of change in poaching 

that managers wish to detect reliably, for example). These results, therefore, complement my 

findings on the various ways managers use ranger-collected data in Mana-Chewore (Chapter 

6).  

 

Part 2: Human dynamics and implementation uncertainty  

 

In Chapter 5, I present results from interviews with 23 rangers at my study site which assessed 

the importance that rangers ascribed to data collection within their broader occupation, and 

their level of engagement with data management and use. I found that rangers saw the 

collection of biodiversity data as a routine duty that helped guide patrol strategy. Reporting 

these data was perceived as a primary way of demonstrating fulfilled responsibilities to their 

supervisors. Rangers did not, however, engage actively with data management and use. Ranger 

sentiment was evenly divided between those who said feedback on how the data they 

collected were used would motivate more engaged data collection, and those who said they 

would continue collecting data regardless, out of duty. Three elements of the occupational 

culture of rangers at my site—a strong sense of duty, deference to authority and knowing their 

defined responsibilities within the organizational hierarchy—were identified as key drivers of 

their engagement with monitoring. Building on these findings, I developed a theory of change 

to support more meaningful engagement of rangers with monitoring. Such engagement could 

boost data volume and reliability (Chapter 4), thereby creating more evidence on which to base 

conservation management decisions (Chapter 6).  

 

This Chapter was published in September 2020 in the journal People and Nature: Kuiper, T., 

Massé, F., Ngwenya, N.A., Kavhu, B., Mandisodza‐Chikerema, R.L., Milner‐Gulland, E.J., 2020b. 

Ranger perceptions of, and engagement with, monitoring of elephant poaching. People Nat. 

pan3.10154 (see the note on co-authorship on page 8 for author contributions). 

 

In Chapter 6, I present results from interviews with park managers in Mana-Chewore, which 

sought to understand the extent to which managers use ranger-collected data on elephant 
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poaching to inform their anti-poaching strategies. I specifically sought to understand manager 

perspectives on, and their extent of adoption of, adaptive management (which I defined in this 

Chapter as the analysis of trends in poaching data to improve anti-poaching strategies). I 

interviewed 8 park managers, as well as 17 national-level informants (mostly staff of the 

government wildlife department) familiar with local elephant management practices. I found 

that park managers valued ranger-collected elephant poaching data and used them to guide 

patrols. Managers did not, however, systematically analyse trends in poaching data, nor did 

they adjust their anti-poaching strategies in response to these trends. A major reason for this 

is that managers felt that the costs of adopting such an adaptive management approach 

outweigh the benefits. Specifically, managers were unfamiliar with the technicalities of data 

analysis and felt that management based on intuition, experience and more reactive data-use 

was more familiar and dependable. As a result, there was a low level of ownership of data-

based adaptive management among managers. Furthermore, the perspectives, priorities, and 

needs of park managers have not been adequately considered in the external programmes that 

are seeking to promote adaptive management in Mana-Chewore. Looking ahead, I developed 

a theory of change that outlines key priorities and actions to promote effective use of ranger-

collected data to inform anti-poaching strategies in Mana-Chewore. This theory-of-change 

drew on technology adoption theory, and the concept of human-centred design, to ensure that 

solutions take as their starting point the perspectives, concerns, priorities, and decision-making 

context of park managers. 

 

Synthesis  

 

In Chapter 7, I present a summary and discussion of what I see as the contributions of this DPhil 

research to the field of conservation science and socio-ecological systems research. I identify 

five key higher-level insights, or themes, that cut across two or more of the data Chapters 

outlined above. For each theme, I review previous work, summarise the insights from my 

research, and suggest avenues for future research.   
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Chapter 2: Case Study and Methods  

In this chapter I provide an overview of the broader ranger-based monitoring programme 

which I use as a case study for this research (section 2.1), my particular study site in Zimbabwe 

(section 2.2), and the qualitative and quantitative methods I used to address my research 

questions (section 2.3).  

2.1. The MIKE programme: ranger-based monitoring of elephant poaching  

Elephant poaching and the global ivory trade  

 

The poaching of elephants for their ivory is a prominent example of the global illegal wildlife 

trade (Hauenstein et al., 2019).  Wittemyer et al. (2014) estimated that over 100 000 African 

elephants were illegally killed for their ivory during a peak in continental poaching from 2010 

to 2012. This has had substantial consequences for source country economies (Naidoo et al., 

2016), socio-political stability (Douglas and Alie, 2014), and wider ecological systems (Malhi et 

al., 2016). The monitoring and management of this poaching threat provides a model case 

study of the observation and implementation uncertainties outlined in Chapter 1. It also 

provides a comprehensive case study of the importance of ranger-based monitoring for 

conservation outcomes.  

 

The elephant poaching policy space may be conceptualised as a set of complex global to local 

socio-ecological systems, each with elephant population trends and ecology in one dimension 

and the diversity of human actors involved in their exploitation and conservation in another 

(e.g., local communities, government, NGOs, criminal syndicates, and scientists). At the global 

scale, this might include continental trends in elephant populations and poaching rates 

(Wittemyer et al., 2014), transnational ivory trade networks (Underwood et al., 2013), inter-

governmental decision making about trade (Stiles, 2004), and markets in consumer states 

(Zhou et al., 2018). A local-scale supply-side socio-ecological system (i.e. single protected area) 

might involve adjacent rural communities, illegal harvest gangs directed by a regional 

syndicate, government anti-poaching patrols, and local NGOs (Harrison et al., 2015). A 

significant challenge is that there remains significant uncertainty about many aspects of these 

socio-ecological systems at different spatial scales. 
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International policy on elephant poaching 

 

Accurate estimates of rates of elephant poaching at different scales, and how they change over 

time, are critical for understanding drivers of poaching (Hauenstein et al., 2019), and 

evaluations of the effectiveness of conservation policies designed to reduce poaching. These 

may be global interventions like legalisation of international trade (Biggs et al., 2017), domestic 

ivory bans like that recently declared for China (Harvey et al., 2017), or local supply-side 

interventions such as intensifying law-enforcement patrols to deter illegal harvesters (Hilborn 

et al., 2006).  

 

Ivory policy has dominated international wildlife trade discourse, particularly since the 

establishment of the Convention on the International Trade in endangered Species (CITES) in 

1973. CITES is an international conservation agreement among governments (there are a total 

of 183 parties to the convention) that develops regulations to ensure that international trade 

in wild plants and animals does not threaten their survival. The 1989 CITES ban on international 

trade in ivory was a landmark occasion for CITES and for international conservation policy in 

general, fuelling much debate around the efficacy of bans, a matter that is still moot today 

(Biggs et al., 2017). It became clear that the evidence base for making decisions about ivory 

was scant. Stiles (2004) remarks, for example, that there is simply no adequate data pre- and 

post- 1989 to test the effects of the ban on elephant poaching levels. In recognition of the need 

for baseline data on elephant poaching, CITES established the MIKE programme (Monitoring of 

the Illegal Killing of Elephants) at the 10th conference of the parties to CITES in Harare, 

Zimbabwe, in 1997. A complementary programme, the Elephant Trade Information System 

(ETIS), also established at this time, focuses on measuring levels and trends in ivory trade by 

recording seizures of raw and worked ivory along trade chains (Milliken et al., 2016). 

 

The primary source of MIKE elephant poaching data are elephant carcasses encountered by 

wildlife rangers while on patrol, with ranger-based monitoring currently operating at over 80 

MIKE sites in Africa and Asia (CITES Secretariat, 2019). There are currently 63 MIKE sites across 

30 African countries and the database currently stores over 19 00 carcass records for the 

continent2 (Fig. 2.1). Poaching trends from multiple MIKE sites are aggregated to the sub-

regional and continental levels using the PIKE (Proportion of Illegally Killed Elephants) index: 

 
2 Data are available online at 
https://cites.org/eng/prog/mike/index.php/portal#Access%20to%20MIKE%20Data  

https://cites.org/eng/prog/mike/index.php/portal#Access%20to%20MIKE%20Data
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the number of poached carcasses detected per site per year, as a proportion of all carcasses 

detected (including natural mortalities). PIKE data for four African subregions between 2003 

and 2018 are shown in Figure 2.1. PIKE data are summarised by the MIKE Technical Advisory 

Group and presented at key international wildlife trade policy gatherings, such as the triennial 

Conference of the Parties to CITES, where key decisions about ivory trade and anti-poaching 

policy are made by representatives of the signatory governments (IUCN et al., 2017). 
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Figure 2.1. (A) The 63 current Monitoring of the Illegal Killing of Elephants (MIKE) sites (indicated in orange) across 30 African countries3. (B) Trends in estimated 
elephant poaching (measured as PIKE, the proportion of all detected carcasses that were illegally killed) across four African sub-regions. Graphs are copied from 
CITES Secretariat (2019) and are based on 19,139 carcasses detected, mostly by rangers, across 27 countries ). Values represent marginal means with 90% 
confidence intervals. PIKE values greater than an estimated 0.54 indicate potentially unsustainable levels of harvest (Wittemyer et al., 2014). 

 
3 This map was accessed on 10 September 2020 from https://cites.org/eng/prog/mike/index.php/portal. Shades of green are simply to distinguish country boundaries.  

A B 

https://cites.org/eng/prog/mike/index.php/portal
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PIKE data are also used to identify factors associated with higher poaching levels, such as poor 

governance quality at the national level, poverty at the local level, and the demand for ivory at 

the global level (Hauenstein et al., 2019). There are significant causes for concern, however, 

about the reliability of the PIKE index in terms of accurately capturing true poaching rates. An 

advantage of PIKE is that it is, at least partially, independent of the ranger patrol effort invested 

in carcass detection as both the numerator and denominator are affected by effort (Burn et al., 

2011). However, a major disadvantage is that PIKE fluctuates with natural mortality 

independently of the poaching rate, and it assumes equal detectability of poached and natural 

mortalities. In reality, poached carcasses are likely to be significantly easier to detect due to 

cues like gunshots and poachers' spoor, and long-term patrol bias towards poaching hotspots 

(see Chapter 4). PIKE may be subject to numerous other biases such the stochastic effects of 

small carcass sample sizes (Wittemyer et al., 2014).  

 

The goals of the MIKE programme: global and local 

 

The MIKE programme represents a prime example of evidence-based decision-making: “The 

overall aim of MIKE is to provide information needed for elephant range States and the Parties 

to CITES to make appropriate management and enforcement decisions” (CITES Secretariat, 

2017). A comprehensive review of MIKE during the period 2006-2012 (Malpas and D´Udine, 

2013) divided these objectives into two key components:  

 

1. The international policy aim: to inform CITES-level decisions on ivory trade.  

2. The range state management aim: to strengthen capacity to use MIKE data for local 

elephant management and law enforcement.  

Perhaps the most significant challenge for MIKE to date has been the tension between 

achieving these two aims. Malpas and D´Udine (2013) conclude that MIKE had contributed well 

to international CITES policy but had largely failed to address the local management needs of 

elephant range states. A new five year (2014-2018) programme, MIKES (Minimizing the Illegal 

Killing of Elephants and other Endangered Species)4, was developed partly to address this 

limitation by including investment in both baseline monitoring and local law enforcement at 

eight focal African MIKE sites (CITES Secretariat, 2016).  

 

 
4 https://cites.org/eng/prog/mike/proj/mikes [Accessed 25 April 2018] 

https://cites.org/eng/prog/mike/proj/mikes
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2.2. Case study site: The Mana-Chewore World Heritage Site  

 

An important decision I needed to make at the beginning of my research was whether to pursue  

a ‘narrow and deep’ approach in which I would  investigate a single case study in-depth, or a 

‘broad and shallow’ approach in which I collected data from several case study sites for a 

shorter period at each site. The latter approach would be achieved by visiting several 

designated MIKE sites at which rangers collected data on elephant poaching and would have 

the advantage of greater generalisability of my findings. In the end, however, I decided that an 

adequate understanding of the factors affecting the reliability and use of ranger collected data 

(my main research questions) would require in-depth investigation through several phases of 

field work at the same site. A single-site focus also allowed me to conduct extensive 

quantitative and qualitative work at the same site, thus allowing truly interdisciplinary work 

where these different methods informed each other. Partly because I am myself Zimbabwean 

and have research and practical conservation experience there, I chose as my study site the 

Mana-Chewore World Heritage Site in northern Zimbabwe.  

 

This site comprises three adjacent protected areas (PAs): Mana Pools National Park and the 

Chewore and Sapi Safari Areas (Fig. 2.2). These three PAs together form the Zambezi Valley 

MIKE site and cover an area of 6 678 km2 (Fig. 2.2). The region is designated as a World Heritage 

Site under the United Nations Scientific and Cultural Organisation (UNESCO), and also forms 

part of a wider ‘Man and the Biosphere Reserve’, another UNESCO designation. Several private 

ecotourism ‘safari’ camps exist in the Mana Pools National Park and the Sapi Safari Area (mainly 

along the Zambezi river). The Chewore Safari area is managed primarily for trophy hunting, 

with several private firms leasing land and operating camps in the area. The wet season is 

relatively short (November to March), with a longer dry season (April to October), mean annual 

rainfall of 650-750mm, and a mean annual temperature of 29oC. Vegetation is a mosaic of 

mopane woodland (Colophospermum mopane), miombo woodland (Brachystegia and 

Julbernardia spp.), open savannah, and Setaria grassland (Matawa et al., 2012). The perennial 

Zambezi river in the north is the main water source, with several seasonal rivers and pans 

further inland (Fig. 2.2).  

 

The Zambezi Valley elephant population (spread across these three PAs and an additional 8000 

km2 of adjacent protected land) was estimated at 11 656 in 2014 (Dunham, 2015), down 42% 

from an estimated 19 981 in 2003 (Dunham, 2004). The primary cause of decline was poaching 
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(ZPWMA, 2015). This large elephant population and high poaching rate means that it is one of 

only 12 MIKE sites with large enough annual carcass sample sizes for robust inference 

(Wittemyer et al., 2014). Furthermore, the site is one of only eight focal sites at which the new 

MIKES programme is being implemented (see above) and should therefore illustrate a ‘best-

case’ example of the integration of elephant mortality data into local management.   

 

 

 

Figure 2.2. My field site in northern Zimbabwe: The World Heritage Site encompassing three 
protected areas. The four ranger bases at which I conducted field work are also shown.  

 

The Mana-Chewore site is managed by the Zimbabwe Parks and Wildlife Management 

Authority (ZPWMA or simply Zim Parks). Around 140 rangers work at the site, based at four 

main ranger stations, which are the management centres for the different regions of Mana-

Chewore (Fig. 2.2). At each station, an individual in the position of ‘area manager’ is responsible 

for overseeing management, together with 2-4 additional staff responsible for ranger 

supervision and several sub-areas of management. Primary manager responsibilities include 

ranger supervision, law enforcement, and the management of resources (vehicles, fuel, patrol 

equipment, etc.). The primary responsibility of rangers is to conduct field patrols, which last 

several days and focus on monitoring and deterring illegal activities. Chapter 5 provides an 

extensive overview of ranger patrols in Mana-Chewore, the various forms of data that rangers 
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collect on patrol and how elephant  poaching data are recorded and reported. Chapter 6 

provides a similar overview of the various ways that park managers use ranger-collected data 

on elephant poaching.  

 

Field work and in-country collaborations  

 

I conducted an initial scoping trip to Zimbabwe in January 2018 to develop collaborations and 

apply for research permission. Two extensive data collection trips were then conducted: the 

first from July to September 2018 and the second from July to August 2019. During these trips, 

I spent several weeks living alongside rangers at each of the four main ranger stations in Mana-

Chewore (Fig. 2.2). At two of the stations, I lived in unused ranger accommodation (a small 

house within a broader complex), and at the two remaining stations I camped in a tent near 

the rangers’ houses. This afforded me the opportunity for many informal interactions with 

rangers and management staff, helping me to build rapport as well as providing candid insights 

not possible during the formal interviews I conducted. Several photographs taken during 

fieldwork in Mana-Chewore in 2018 and 2019 are shown in Figure 2.3 below.  

 

I registered this research project with the Research Council of Zimbabwe in 2018 (certificate 

no. 03211),  and secured research authorization from the Zimbabwe Parks and Wildlife 

Management Authority (Permit no: 23(1)(C) 43/2018). My research forms part of a new 

collaboration with the Chinhoyi University of Technology (CUT) in northern Zimbabwe, with 

Prof. Victor Muposhi and Prof. Edson Gandiwa of CUT visiting Oxford in July and October 2018, 

respectively.  Furthermore, the research has been guided and supported by the directors of 

two local conservation NGOs, the Zambezi Society and the Tashinga Initiative.  
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Figure 2.3. Several photographs from fieldwork trips to Mana-Chewore (used with permission). 
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2.3. Methods overview  

Conservation scientists are increasingly embracing robust techniques to deal with the 

observation and implementation uncertainties that I identified in Chapter 1, which I described 

as particularly important in the context of ranger-based monitoring. A better understanding of 

these uncertainties will help ranger-collected data contribute more effectively to biodiversity 

conservation outcomes.  Below, I provide a broad overview of the quantitative and qualitative 

methods I have use to better understand these uncertainties and address my main research 

questions.  

 

Quantitative tools for understanding and addressing observation uncertainties 

 

The mathematical and statistical approaches discussed below offer significant promise in 

understanding and accounting for bias and uncertainty in ranger-collected data, thus increasing 

the usefulness of these data for biodiversity management. In Chapter 4, I used the virtual 

ecologist approach (described below) to understand the factors affecting the power of ranger 

patrols to detect changes in elephant poaching. In Chapter 3, I used statistical modelling 

approaches to account for ranger patrol bias when inferring spatial patterns in poaching from 

ranger-collected data.  

 

The virtual ecologist framework: mathematical simulations to understand data bias 

 

It is essential to understand potential bias in the monitoring process before making inferences 

about underlying system processes (Nuno et al., 2015). An obvious challenge is that the true 

system properties are often not known (e.g., the true number and distribution of poached 

elephant carcasses), and so there is no reference against which to assess the reliability of 

monitoring data. One approach is to validate simple cost-efficient monitoring protocols 

through comparison with the results of more robust surveys of the same study system (Houser 

et al., 2009). However, such data are costly to collect and even when available they are, to a 

lesser or greater degree, partial representations of the truth (Fulton et al., 2005). A promising 

complement to obtaining robust and independent empirical data on the true system state is to 

simulate a virtual version of the ‘truth’. This ‘virtual ecologist’ approach involves generating 

virtual data by simulating both ecological processes (e.g. the true number and distribution of 

individuals in a population), and the observation process used to collect data on these 

processes (Zurell et al., 2010). The goal of this approach is to better understand the likely 
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effects of different realistic scenarios or strategies of monitoring (e.g., low or high patrol effort 

in the case of ranger-based monitoring) on the reliability of monitoring data (i.e., how closely 

these data represent the "true" state of the system). By overlaying the monitoring process onto 

the simulated reality in a hierarchical way, virtually observed data can be evaluated against the 

‘true’ properties of the system (which the researcher has full access to through simulation). 

The strength of this approach is that it allows the performance of sampling methods to be 

rigorously tested against a known truth, and it has come to be used widely for evaluating and 

optimising monitoring protocols (Ficetola et al., 2017; Shannon et al., 2014; Thanopoulou et 

al., 2018). The approach both acknowledges and seeks to measure the effects of observation 

error when inferring patterns and process from observational data (Grimm, 1999). 

 

Two sub-models are typically constructed; a resource operating model to simulate the 

underlying socio-ecological system being observed, and an observation or monitoring model 

to simulate the process by which data on the system are gathered (Fig. 2.4). I will illustrate the 

approach using an example from the literature. Nuno et al. (2013) used the virtual ecologist 

framework to examine the influence of sampling effort and observer biases, as well as 

simulated population characteristics, on the accuracy and precision of antelope population 

estimates from aerial surveys in the Serengeti. The effect of ungulate population characteristics 

(spatial aggregation, average herd sizes, and proportion of juveniles) on survey performance 

was also tested.  They used empirical data on various antelope population characteristics to 

build a spatially explicit  "resource operating model" , a term used in fisheries science (Fulton 

et al., 2005; Fig. 2.4, step 1). This model was then used to create a simulated set of data on 

antelope abundance and spatial distribution (Fig. 2.4, step 2). Next, an "observation model" 

was built to simulate the process of collecting data on this underlying ‘true’ system state. In 

this case, the simulated process was an aeroplane flying over the Serengeti along transects and 

(imperfectly) counting antelopes (Fig. 2.4, step 3). Thus an ‘observed’ state was generated (the 

simulated counts of antelope) for comparison against the underlying ‘true’ state (Fig. 2.4, step 

4).  
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Figure 2.4. An illustration of the virtual ecologist framework, using a case study of monitoring 
antelope populations in the Serengeti. I developed this diagram based on the description of 
the methods in Nuno et al. (2013).  

 

Nuno et al., (2013) found that survey effort (distance between flight transects) had a large 

influence on survey precision, but not accuracy. Ungulate population characteristics (spatial 

aggregation, average herd sizes, and proportion of juveniles) were also shown to have marked 

effects on survey precision, independently of the observation process. The power of the virtual 

ecologist approach thus extends beyond evaluating the monitoring process itself, it can also 

elucidate how underlying processes in the system being observed affect monitoring results. 

Similarly, Dobson et al. (2019) showed that the magnitude of changes in illegal snaring that 

occur independently of changes in patrol effort can influence the reliability of catch-per-unit-

effort indices for tracking trends in illegal activity based on ranger-collected data.  

 

Since the data collection process is itself modelled, the virtual ecologist technique allows for 

the experimental variation of key features of this process (e.g., sampling intensity, detectability 

biases) and interpretation of how each of these affects the performance of monitoring data as 
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a representation of the simulated reality. This has the distinct practical advantage of generating 

recommendations on which elements of survey design should be prioritised to improve 

monitoring efficiency, and enabling the implications of different budgetary scenarios on 

monitoring performance to be evaluated (Kinahan and Bunnefeld, 2012). Rachowicz, Hubbard 

& Beissinger (2006), for example, used simulations of seabird abundance trends, coupled with 

simulations of different observation transect layouts and replication intensities, to help select 

a sampling design that had enough power to detect trends while still remaining logistically 

feasible. Jones et al., (2017) built spatially explicit simulations of systematic surveys of illegal 

activities in Gola NP in Sierra Leone. They found that unrealistic levels of survey effort would 

be required to detect changes in rule-breaking over time; for example, >200 x 1km2 survey cells 

(30% of the study area) would need to be visited multiple times to detect a 50% decline in 

hunting activities with reasonable power. This would require an unreasonable amount of 

resources. 

 

Since the virtual ecologist framework does not depend on independent empirical survey data, 

it may be more widely applicable as a monitoring validation technique than methods that do 

require such data. It is important to note that the focus here is less on precisely representing 

the true state of a particular system, but rather on creating a realistic set of possible true 

scenarios and then testing whether data collected according to a defined observation process 

are a robust representation of these scenarios. However, the reliability of conclusions will 

depend on how well the operating and observation simulation models represent processes 

occurring in the real world (Fig. 2.4, step 1).  

 

In addition to quantifying bias in the observation process, simulations provide a means for 

identifying optimal levels of monitoring effort that maximise rigour (e.g., the power to detect 

trends) while minimising cost. Cost estimates for different sampling protocols enable their 

relative cost-effectiveness to be assessed  (Elphick, 2008). Field et al., (2005) simulated the 

process of collecting data on declining populations of species of varying prevalence and 

detectability in a virtual landscape, and then evaluated the power of different survey protocols 

(number of sites visited and number of repeat visits at each site) to detect these declines. Such 

evaluations allow managers to identify the resources required to reach an acceptable level of 

statistical power, thus avoiding both over- and under-investment in monitoring. Importantly, 

simulations may reveal results that are not intuitive (for example Field et al., 2005 found that 

common species often require more stringent survey designs), and therefore may lead to 

recommendations that are unlikely to arise from expert knowledge and intuition alone.  
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Similarly, Tyre et al. (2003) used simulations of biological surveys to demonstrate the strong 

effects of false negatives (failure to record a species when it is actually present) on the bias and 

precision of inferences from these surveys. Such an approach allows the researcher to conduct 

experiments (e.g., how does survey effort affect abundance estimates?) that would be difficult 

and expensive to carry out in the real world (Milner-Gulland and Shea, 2017). 

 

The virtual ecologist approach has also been applied to data collected by park rangers. Whether 

or not ranger patrols are effective at deterring poaching activity is important but difficult to 

measure because data on changes in illegal activity typically come from patrol records 

themselves (Moore et al., 2018). By using simple mechanistic simulations of ranger deterrence 

of poachers under different levels of ranger patrol effort, alongside exogenous changes in the 

prevalence of illegal activities, Dobson et al. (2019) were able to identify robust metrics that 

are able to identify deterrence from existing patrol data. Keane (2010) similarly used a virtual 

ranger approach to critically assess the reliability of catch-per-unit-effort (CPUE) indices in 

detecting trends in illegal activities.  

 

In Chapter 4 of this Thesis, I used the virtual ecologist approach to better understand and 

quantify the factors that influence the reliability of ranger-collected data (i.e., how close the 

data capture true poaching trends).  

 

Statistical methods for robust inference from messy data 

 

While mathematical simulations can help us understand the underlying processes producing 

bias in observational datasets like ranger patrol records, statistical models can help account for 

these biases during the analysis stage. The first step is to understand the process by which data 

are collected, and the various potential ways that bias might be introduced (Dobson et al., 

2020; Fig. 2.5A). For example, observers (such as rangers on patrol) may sample some areas 

more than others, or sample more intensively at certain times compared to others. Also, 

certain species or threats might be preferentially recorded over others, or detectability might 

vary across space and time. Once the observation process is properly characterised, the next 

step is to develop tools for accounting for the identified biases (Fig. 2.5B). This is the point 

where statistical models are particularly useful, providing a method for correcting bias and 

improving the reliability of inferences from messy data (Dobson et al., 2020). In Chapter 3 of 

this Thesis, I use a simple statistical method for correcting spatial bias in ranger patrols in order 
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to generate more robust maps of the distribution of elephant poaching in my study area (Kuiper 

et al., 2020). 

 

 

Figure 2.5. Understanding and accounting for biases in observational data: (A) Questions to ask 
in order to better understand the observation process and its biases, and (B) strategies for 
accounting for these biases. Copied with permission from Figure 3 in Dobson et al. (2020).  

 

As discussed in Chapter 1, uncertainties arise when trying to determine patterns of illegal 

activity in protected areas from encounters of such activities during ranger patrols (Jachmann, 

2008). It can be difficult to determine whether observed changes in illegal activities are due to 
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actual changes in poaching or changes in patrol effort (Moreto et al., 2014). Similarly, high 

detections of illegal activities in a particular part of a protected area might simply reflect higher 

patrol effort in that area. It is therefore crucial that true patterns in underlying data are 

distinguished from those due only to variation in patrol effort across time and space.  

 

Statistical models have been developed to adjust estimated trends in illegal activities by 

explicitly measuring and accounting for this biased observation process (i.e., uneven patrols). 

Critchlow et al. (2015), for example, developed estimates of the true distribution of illegal 

activities (e.g., bushmeat hunting and grazing encroachment) in Queen Elizabeth NP in Uganda 

by combining an occupancy model of detected illegal activities with a model of survey effort, 

within a Bayesian hierarchical model framework. The robustness of these results was 

evidenced in a follow-up analysis in which these bias-adjusted maps of illegal incidents were 

used to guide ranger patrols, leading to a doubling in detections of similar incidents (Critchlow 

et al., 2016). Similar reasoning is applied in the use of catch-per-unit effort indices to account 

for changes in effort through time (see Jachmann, 2008). However, bias in observational data 

may remain even when using encounter rates per unit effort, because the efficiency of the 

same amount of patrol effort may vary in different habitats, or at different times (Keane et al., 

2011). Therefore O’Kelly et al. (2018b) used novel N-mixture hierarchical models to model both 

factors affecting snare detectability and those affecting snare abundance, in order to generate 

more robust poaching estimates.  

 

Bias in the observation process and the methods used to correct it are not unique to ranger 

patrols. A prominent example of messy observational data (and the advanced statistical 

methods used to make sense of these data) is citizen science, whereby members of the general 

public make observations of biodiversity and submit these to scientific databases. This has 

many parallels with ranger patrol observations in that the observation process is often non-

random, may produce false absences and detections, and is vulnerable to spatial correlations 

in the data (Altwegg and Nichols, 2019). An example is the South African bird atlas project, used 

to model the distribution of hundreds of species of birds across the country. Altwegg and 

Nichols (2019) describe the development of specialised occupancy models to strengthen 

inference from bird observations submitted by the general public, emphasising the need to 

tailor statistical methods to the structure of the data.  

 

As a final example relevant to the methods I use in Chapter 3, the species occurrence records 

used to build species distribution models may also be subject to bias in the sampling process, 
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with greater sampling near roads, for example (Gelfand & Shirota, 2019). When these data are 

combined with randomly sampled background data (as is often the case when building species 

distribution models), this can lead to over-predicting/fitting of spatial patterns (Brown & Yoder, 

2015). In these cases, Barbet-Massin et al. (2012) recommend using geographically-biased 

sampling of background data to match sampling bias. This is the method I apply in Chapter 3, 

to account for the constrained geographical extent and variable spatial intensity of ranger 

patrols in my study area.  

 

In all the case studies considered in this section, different conclusions would have resulted had 

detectability and observation bias not been considered. These examples illustrate the power 

of advanced and tailored statistical techniques to enhance the reliability of conclusions drawn 

from messy data, such as ranger patrol observations. Indeed, such techniques are crucial in this 

context. Managers may resist changing the pattern of ranger patrols so that they are random 

and less biased, because the aim of patrols is to focus on certain areas such as poaching 

hotspots. This is why innovation and improvement are often only possible at the analysis stage, 

and hence why statistical methods are so important to develop.  

 

In this DPhil, I have sought to integrate the insights from both mechanistic and statistical 

modelling to help understand and overcome data bias and uncertainty in ranger-observed 

data.  

 

Qualitative research: understanding implementation uncertainty   

 

Although this is rapidly changing  (Bennett et al., 2017), qualitative research is often still seen 

by conservation biologists as more prone to bias or less rigorous compared to quantitative 

research (Anderson, 2010). Yet biodiversity conservation challenges inevitably have both social 

and ecological dimensions, so conservation science requires interdisciplinary approaches. 

There is increasing recognition of the importance of the human elements of conservation, and 

hence social science research (Pooley et al., 2014). Furthermore, much of the criticism levelled 

against qualitative work within conservation biology fails to distinguish between the purposes 

of qualitative and quantitative methods. Quantitative methods provide a powerful framework 

for testing specific hypotheses and making focused statistical inferences. Many conservation 

problems, however, cannot be reduced to experimentally testable hypotheses. In such cases, 

qualitative methods often provide more appropriate insights (Newing, 2010). The aim of 
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qualitative research is not to ‘prove’ anything, but rather to provide a narrative account that 

does justice to the nuances of the study system in relation to the research questions.  

 

In the context of my case study, quantifying the effect of ranger patrol effort on the accuracy 

and precision of estimated poaching levels using simulation models is one approach to 

assessing data reliability. Understanding the reasons behind low patrol effort, on the other 

hand, requires an appreciation of the priorities and constraints faced by managers and rangers. 

Both approaches are necessary to advance understanding and, crucially, tailor solutions. More 

broadly, both the reliability and management use of ranger-collected data (the focus of my 

primary research questions) are influenced by human behaviour. The main qualitative tool I 

use in this Thesis is the semi-structured interview (although I also used focus groups and 

participatory modelling in Chapter 3). To help address my research questions, I interviewed a 

total of 52 respondents in seven stakeholder groups (23 rangers, eight park managers, eight 

senior staff at the Zimbabwean wildlife authority, three local wildlife consultants, two local 

Zimbabwean academics, four local NGO leaders, and four higher-level staff of the MIKE 

programme).  Interviews were conducted in English. Although most respondents did not speak 

English as a first language, all had a good command of the language because English is the 

standard medium for education in Zimbabwe, and is also used in all documentation (e.g., 

ranger patrol reports). Interviews were the main method employed in Chapters 5 and 6 and 

were also used to provide contextual information for Chapters 3 and 4.  

 

Interviews: a powerful tool to engage stakeholder perspectives 

 

Qualitative interviews are a powerful and widely used method within conservation science, 

allowing for in-depth analysis from relatively small sample sizes  (Newing, 2010). Interviews 

typically focus on the experiences of the participants, helping the researcher to understand 

stakeholder perspectives on what is important and relevant (Young et al., 2018). Given that 

stakeholders may have significant agency in relation to the research question (e.g., in my case 

study rangers and managers are directly involved in collecting and using elephant poaching 

data), such perspectives are crucial. The flexible probing that interviews afford can help 

construct an accurate account of the institutional and socio-political context of the study, which 

may also have a strong bearing on the research question. Further, interview responses may 

also help contextualise quantitative methods by showing which quantitative questions are 

important and later helping interpret quantitative results (Drury et al., 2011).  Nuno et al. 

(2014) used semi-structured interviews with key stakeholders to investigate the 
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implementation of policies to manage bushmeat hunting in the Serengeti, finding that 

institutional complexity between and within actor groups hindered effective implementation. 

Addison, Flander & Cook (2015) were able to demonstrate the limited use of long-term 

monitoring data to inform decisions within the management of marine protected areas in 

Australia by interviewing key scientists and managers.  

 

I selected interview informants using targeted sampling of individuals with relevant and 

intimate knowledge around each of my chapter-specific research questions (Ritchie et al., 

2013). In the case of interviews with rangers (Chapter 5) and park managers (Chapter 6), I 

sought to interview as many individuals as possible at each ranger station, up to a point of 

‘saturation’. This is the point where the major ideas and patterns in relation to the research 

question have been identified and any further interviews are unlikely to contribute new 

information (Ritchie et al., 2013). I used a semi-structured interview structure, meaning that I 

had a core of key questions and areas for discussion, but conversation was allowed to flow 

freely in out and out of these discussion areas. This provided a useful balance between 

focus/comparability (the same basic set of open-ended questions were asked in each 

interview), and flexibility (I asked different questions as new ideas came up in conversation) 

(Young et al., 2018). 

 

Analysing interviews: transcription and thematic analysis 

 

In each interview, I took notes while simultaneously audio-recording, followed by partial 

transcription. This process provided a good balance between efficiency and accuracy (Newing, 

2010). Halcomb et al. (2006) argue that full verbatim transcription is not always necessary, 

especially when interviews are more structured and thematic analysis is guided by clear 

research questions. My analysis sought to address specific research questions, rather than give 

a complete account of all that was said. It was difficult to justify full transcription of parts of 

the interview in which participants diverged clearly from topic or provided superfluous detail.  

Also, each interview included periods where factual information was sought (such as the length 

of patrols, particular park manager duties, the types of information gathered on patrols) for 

which only basic summaries were necessary. Finally, I wanted to complete transcription as soon 

as possible after each interview (I did this mostly on the same day). Partial transcription made 

this achievable. This was to ensure I captured the ‘feel’ of the interview and made correct 

interpretive notes while my memory of the interview was still fresh. In the end I decided that 

the costs of verbatim transcription outweighed its potential benefits. Furthermore, audio 
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recordings allowed me to check the accuracy of partial transcription and note-taking, where 

needed.  

 

The interview responses used in Chapters 5 and 6 were analysed using thematic analysis, with 

the aim of identifying “patterns of meaning” in the interview responses (Braun and Clarke, 

2006). The goal was to develop a narrative account of key themes in the responses that spoke 

to the particular research questions in each chapter. I started with a period of familiarising 

myself with the interview data as a whole by reading through all the transcripts (immersion). 

Next, I started making flexible annotations and notes across a handful of transcripts, which 

slowly developed into a set of initial codes which I then re-applied to the data (Newing, 2010). 

Both my general research questions, and my specific interview questions, naturally led to a set 

of pre-defined codes, although new and important themes also developed “bottom-up” from 

the data (Bernard, 1991). I moved between codes, transcripts and recordings to iteratively 

refine codes and ensure that they represented the data. The importance of a theme was judged 

either by its prevalence (repeat occurrence across and within respondents) or by how 

informatively it spoke to the research questions (Braun and Clarke, 2006). Data were managed 

and analysed with the help of the software NVivo (QSR International Pty Ltd, 2018). In the 

results section I use both short quotes and longer quotes in context (Moreto et al., 2017). To 

avoid the risk of quoting out of context, I was careful to use only those short quotes whose 

meaning in isolation closely matched their meaning in context (Bernard, 1991).  

 

Paradigm and epistemology 

 

The researcher plays an active role in the themes that emerge from qualitative data analysis 

due to their particular epistemological stance (Braun and Clarke, 2006). Following Lloyd (2018),  

I am explicit about my epistemological and theoretical stances in three main areas as described 

below. First, I combined a primarily deductive approach to theme identification, with some 

indicative elements. On the one hand, I used thematic codes driven by a specific set of clear 

prior research questions (deductive). On the other hand, wildlife ranger perceptions and 

experiences are a little-studied field and I wanted to remain open to unexpected themes 

emerging from the data that were less related to my prior interest as an analyst but that might 

still have had an important bearing on the research question (inductive). While combining 

induction and deduction, or theory building and theory testing, in a single study is unusual,  it 

can be useful in some contexts (see Ross & Staw, 1993). Overall, my goal was a detailed account 

of particular aspects of the data pertinent to the research question (whether these were 
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arrived at deductively or inductively),  rather than a rich and broad account of the entire 

dataset.  

 

Second, I adopted an essentialist epistemology that assumes a straightforward relationship 

between language, meaning and experience, as opposed to a constructionist perspective which 

focusses on the underlying socio-cultural context that enables the participants’ accounts 

(Braun and Clarke, 2006). I was interested in the individual motivations, experiences and 

psychologies of rangers and take what they say more as an accurate reflection of these, and 

less as a reality constructed by their context. Thirdly, concerning the depth of analysis, I sought 

first to identify basic and descriptive semantic categories in the data and then interpret their 

significance in light of the research questions. However, I also sought to identify latent themes 

(underlying ideologies and systems that drive what the respondents say), leading to a 

combined approach of semantic and latent pattern identification (Burr, 2006).  

 

Respondent and researcher bias  

 

I identified several likely sources of respondent bias which may have affected results. Despite 

my explanations that I was in no way involved with MIKE or CITES, I occasionally got the sense 

with some respondents that they felt I was some sort of ‘watchdog’ seeking to evaluate how 

well they valued and implemented ranger-based monitoring. Thus, positive sentiment may 

have been overstated, and problems and challenges understated. Despite these concerns, 

many other respondents were free in their negative sentiment towards MIKE. I sensed that 

they perhaps saw the interview as an opportunity to express honest concerns about MIKE in 

the hope that the dissemination of my research results might improve matters. Triangulation 

across interviews, informal discussions and document analysis helped identify and minimise 

inaccuracies and bias in my interpretation of the responses (Newing, 2010). Also, I learned to 

position myself as a young student with no agenda beyond research and no affiliation with 

MIKE. Spending informal time with respondents, and returning for a second field trip, also 

helped minimise this bias. Continued reflection while conducting, transcribing and interpreting 

interviews revealed a number of my own biases. At times I was guilty of prompting too strongly 

to elicit an expected response, rather than letting the respondent guide the conversation and 

give an unforced account. For example, I asked things like “so you don’t get much feedback on 

the data you collect?” or “does it motivate you when you do get feedback?”. I did, however, 

try to keep such prompting to a minimum and use it only when I felt the respondent was too 

strongly biased in the other direction.  
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My positionality as the researcher will also have influenced results (Bourke, 2014). I came to 

this DPhil from a quantitative natural science background and I was learning qualitative 

approaches for the first time, so my ability to elicit and interpret meaningful information from 

interviews developed ‘on the job’. Also, I am an ethnically white Zimbabwean, which will have 

created a certain dynamic given most of my respondents were black and given the racialised 

history of Zimbabwe. Depending on the respondent, my race may have meant that I was 

variously viewed with a certain degree of submissiveness (however inappropriate) or subtle 

contempt (Krauss et al., 1997). The racial difference between my respondents and I may also 

have led to a certain level of formality and guardedness on the part of respondents. For my 

part, this racial difference opened up the challenge of accessing and properly understanding 

the world of the ‘Other’ without mis-representing it (Agyeman, 2008). Finally, I came to this 

work with great enthusiasm about the potential value of ranger-based monitoring for 

conservation, and so I may have been biased against results that did not align with this 

enthusiasm.  

 

Ethical considerations for this research 

 

Conducting conservation research that involves people raises a number of ethical 

considerations that may go beyond established ethical protocols and must therefore be 

carefully navigated (Brittain et al., 2020). My research involved questions around elephant 

poaching, which is a criminal activity. I was therefore very aware of the sensitivity of the 

broader socio-political and legal issues surrounding this research. However, my research focus 

was not elephant poaching itself, but rather the collection and use of elephant poaching data 

by rangers and park managers. Nonetheless, there was a small possibility that the ethical issues 

could have arisen during interviews, concerning information or comments that may indicate 

certain parties as being complicit in poaching. Before conducting interviews, I had resolved to 

keep any implicating information confidential and not disclose it to the authorities (Brittain et 

al., 2020). In order to mitigate this possibility, I held extensive discussions with local 

stakeholders in Zimbabwe around the sensitivity of the topic during a scoping trip to Zimbabwe 

in January 2018. I spoke with local NGO leaders, government officials, and local consultants to 

introduce my research and get their insights. During these exchanges I described the types of 

research and interview questions I hoped to ask and sought advice about the sensitivity of the 

topic. I was assured that there was no cause for concern.   
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Regarding more standard ethical procedures, interview participation was voluntary, and this 

was made clear to all participants. However, some rangers may have felt pressurised to be 

interviewed because their peers had been interviewed too, and because their supervisors said 

that I had been granted permission to conduct interviews.  I was also aware that the time 

participants would need to take to be interviewed may have interfered with their duties at 

work. I therefore endeavoured to set meeting times that were suitable to the participants and 

interfered minimally with their work schedules. Prior and informed consent was ensured by 

giving respondents time to read through a participant information sheet indicating the purpose 

of the study and how their data would be used. This information was then re-iterated verbally 

and each respondent given the chance to ask any questions, before signing a written consent 

form. Interview recordings were stored in an encrypted computer folder and on a cloud server. 

To protect the personal data of participants, all identifiers within the transcript were 

anonymised. All qualitative work was approved by the Human Research Ethics Committee at 

the University of Oxford  (CUREC REF: R58336/RE001). 
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Chapter 3: Rangers and modellers collaborate 

to build and evaluate spatial models of 

elephant poaching  

3.1. Introduction  

Monitoring trends within socio-ecological systems (species populations, illegal harvest rates, 

etc.) is essential for adaptive management, helping managers understand and manage change 

(Nichols and Williams, 2006). Evaluating anti-poaching strategies, for example, requires reliable 

measurement of real poaching trends. Data on biodiversity and threats are however difficult 

to gather at relevant scales, and are often biased and imprecise (Field et al., 2007). Time and 

resource constraints often mean that monitoring data are collected by people doing other jobs, 

such as wildlife rangers detecting snares while on patrol or fishers providing records of bycatch 

species landed. Such opportunistic data present unique challenges to interpretation (Keane et 

al., 2011). A drop in the detection of poachers’ snares, for example, may reflect a shift in 

patrolling to a ‘non-hotspot’ area, rather than an actual change in poaching levels.  

 

Another challenge to interpreting observational data is the complexity of the underlying 

mechanisms generating the data. The behaviours of data generators (e.g. poachers), data 

collectors (e.g. rangers) and species of concern (e.g. elephants) are likely to interact in complex 

ways and their relative influence is difficult to disentangle. Dobson et al., (2019), for example, 

show how deterrence of poachers by rangers can confound inferred trends on the prevalence 

of illegal activity. Imperfect detectability of illegal activity (like bushmeat snares in thick forest; 

O’Kelly et al. 2018), and patrol observations that are biased towards certain areas (Critchlow 

et al. 2015), may similarly confound true patterns.  

 

Participatory modelling is a promising way to design quantitative models that are robust to 

uncertainty arising from the bias and complexity discussed above (Voinov and Bousquet, 2010). 

Bringing together people familiar with the system of interest provides essential qualitative 

context to modelling (Milner-Gulland and Shea, 2017). These may be fishers, wildlife rangers, 
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or protected area managers that have a grounded understanding of how a system works (e.g., 

where elephant poaching happens) and how data are collected (e.g., what affects ranger 

movements). Participatory or collaborative modelling involves using the qualitative insights of 

on-the-ground practitioners and stakeholders in both the design and validation stages of 

statistical/mathematical modelling (Voinov and Bousquet, 2010). Quantitative models are 

vulnerable to the data and assumptions used to build them, while qualitative insights are often 

subjective or incomplete. Combining multiple lines of evidence (statistical outputs and 

interview responses) is a useful way of addressing this uncertainty. Engaging practitioners in 

modelling may also create a sense of ownership that amplifies its real-world relevance (Basco-

Carrera et al., 2017). 

 

Globally, tens of thousands of park rangers spend significant amounts of time on patrol, 

encountering plants, animals, and illegal activities.  Such data are becoming an increasingly 

important source of information for both science and conservation (Gray and Kalpers, 2005; 

Moore et al., 2018). The MIKE programme (Monitoring of the Illegal Killing of Elephants), is a 

high-profile example of the use of data collected by ranger patrols to inform local and 

international conservation policy (CITES Secretariat, 2019). MIKE covers 60 sites across Africa, 

within which >19,000 elephant carcasses have been detected by rangers to date. The data have 

been used in high profile global and continental analyses (Hauenstein et al., 2019; Wittemyer 

et al., 2014), but less so at the local site level. In this chapter, I investigate spatial patterns in 

poached elephant carcasses detected by rangers at a MIKE site in the Zambezi Valley, 

Zimbabwe. I combine quantitative models with interviews with wildlife rangers and their 

supervisors to address the following research questions:  

 

(1) What spatial patterns are evident in poached elephant mortalities at the case study 

site? 

(2) How are these patterns influenced by monitoring bias?  

3.2. Methods 

Study area 

 

The Chewore Safari Area MIKE site (3390km2; hereafter Chewore) in Zimbabwe is part of the 

World Heritage Site comprising three adjacent protected areas (PAs): Mana Pools National Park 

and the Chewore and Sapi Safari Areas (Fig. 3.1). The elephant population in the broader 

Zambezi Valley declined by an estimated 42% (19,981 to 11,656) between 2003 and 2014, 
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primarily due to poaching (Dunham, 2015; ZPWMA, 2015). Chewore is divided into two 

management units (north and south) and is also a sport hunting area, with several operators 

hunting over the dry season (April to October). Elevation varies widely (350-1200m) and the 

wet season is short (November to March) with average annual rainfall of 730mm (Sibanda et 

al., 2015).  Chewore is dominated by miombo (Brachystegia julbernardia) and mopane 

(Colophospermum mopane) woodland. The area is well-drained, and rivers are mostly seasonal, 

apart from the Zambezi. There are two main ranger stations, and three sub-stations, with a 

total of 58 rangers as of July 2018 (Fig. 3.1).  

 

 

 

Figure 3.1. Study area: The Chewore Safari Area in the Zambezi Valley region of northern 
Zimbabwe. 

 

Participatory modelling  

 

I engaged practitioners to help build and evaluate spatial ensemble models of elephant 

poaching, with different scenarios to account for ranger patrol bias. Practitioners were engaged 

at two stages: (1) model construction, and (2) model interrogation (Fig. 3.2). More details are 

provided under the subheadings below.  
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Figure 3.2. The participatory modelling approach by stages, showing where practitioners 
contributed to model building and interrogation.  Preliminary interviews with rangers and park 
managers were used to build a grounded understanding of poacher, ranger and elephant 
movement dynamics, and better understand spatial patrol patterns and bias. This aided model 
construction. To discern among the different modelling scenarios, results were presented to 
rangers and managers who critically interrogated model predictions based on their on-the-
ground experience.   

 

Elephant mortality data  

 

Rangers recorded elephant carcasses encountered during patrols (Jan 2000 - Dec 2017). 

Rangers recorded both poached (n=201) and other (n=390) elephant mortalities (the latter 

including natural, sport-hunted, and problem animal-control mortalities,  as well as carcasses 

categorised as ‘unknown mortality’). Several patrol types were employed, the most common 

being seven-day extended patrols away from ranger stations, during which rangers either 

moved between temporary bases on a daily basis or remained at the same base for the seven-
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day period. Also, one ranger was always present on each sport hunting trip (7-21 days), with 

poached and natural mortalities occasionally encountered. The cause of death, the GPS 

location of the carcass, the sex and age category of the animal when it died, the age (state of 

decomposition) of the carcass, and the status of the ivory (removed or present) were recorded 

(MIKES Programme, 2015). 

 

Ranger and manager insights for model construction.  

 

Before model construction, I conducted semi-structured interviews with 14 rangers and four 

managers at two ranger stations in Chewore in August 2018 (see Chapter 5 for details). Each 

participant was interviewed individually in a private room, with interviews lasting between 30 

minutes and 2 hours (average 58 minutes). Rather than seeking to elicit particular answers, I 

sought to stimulate discussion by asking broad questions in three main areas:  

 

(a) Ranger patrol patterns: questions around spatial patrol strategies, fine scale patrol 

patterns, stories of recent patrols, and areas difficult to access by patrol.  

(b) Perceived patterns of poacher behaviour: questions around perceived hotspots of 

poaching, and perceived poacher strategy.  

(c) Observations of elephant movements: questions around local knowledge of elephant 

movements and habitat preferences.  

Next, a conceptual framework of factors affecting the distribution of detected poached 

elephant carcasses was developed based on these qualitative data and the broader literature 

(Table 3.1; Fig. 3). Respondent descriptions of patrol patterns also provided valuable context 

to help develop the quantitative scenarios for accounting for patrol bias. Interviews were 

audio-recorded and transcribed, followed by focussed coding to identify patterns of meaning 

in relation to the factors of interest (patrol patterns, elephant movements, and poacher 

behaviour) (Newing, 2010). 
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Table 3.1.  Predictors of the spatial distribution of poached elephant carcasses detected by rangers, with their hypothesised effect on elephant, ranger and poacher 
behaviour. Variable selection was guided by interviews with rangers and managers (statements marked with *), as well as the academic literature. Blank cells are where 
there is no prior hypothesis. Detail on the data source for each variable is included in the supplementary material.  

 

Predictor Elephant behaviour Ranger behaviour Poacher behaviour 

Distance to (km):    

River (mostly seasonal) Surface water availability a strong determinant of 
elephant ranging patterns in similar systems (Redfern 
et al., 2003) 

Occasionally conduct river patrols or use 
rivers for navigation* 

 

Permanent water 
(mostly springs) 

As above  Perceived as hotspots for poaching and 
therefore frequently patrolled. Also, need 
access to water on extended patrols* 

 

Road  May occasionally use roads for 
navigation* 

Accessibility and navigation  

Communal land 
(human settlement) 

May avoid areas nearer densely populated communal 
areas (particularly the southern boundary of 
Chewore)* 

 Infiltration point, affects travel cost and 
accessibility (Beale et al., 2017). See Figure 
3.1.  

International border   Poachers from Zambia and Mozambique 
documented* 

Ranger camp  Often patrol more intensely nearer camps 
due to logistical constraints (e.g., vehicle 
limitations)* 

Avoid ranger camps to minimise detection 
(Beale et al., 2017; Moore et al., 2018) 

Elevation (m) Elephants generally avoid high, steep elevations due to 
poor navigation, but avoid low-lying muddy areas 
during the wet season (see TRI below)* 

Highest elevations infrequently patrolled 
due to logistical challenges (steep and 
difficult terrain)* 

Higher elevations are difficult to access 
and navigate through* 

Topographic Wetness 
Index (TRI) 

Measure of soil moisture and thus forage availability 
(Redfern et al., 2003). Elephants may avoid wet/muddy 
areas due to slow navigation and risk of getting stuck* 
(Douglas-Hamilton and Wall, 2008) 

Patrol extent is limited in the wet season 
due to muddy/flooded roads that are not 
navigable by vehicle* 

 

Slope Harder to navigate steeper areas.  Harder to patrol if slope is higher*  Harder to navigate areas of steeper slope* 

Percentage Tree Cover  Forage availability (Asner et al., 2016) Harder to detect carcasses in woodland* 
(O’Kelly et al., 2018) 

Cover for poachers (Sibanda et al., 2015) 

Normalized Difference 
Vegetation Index (NDVI) 

Proxy for forage availability. Indicator of elephant 
abundance in other studies (Duffy and Pettorelli, 2012) 

Harder to detect carcasses in thicker 
vegetation* (O’Kelly et al., 2018) 

Provides cover. May also obstruct poacher 
movement and lower elephant visibility 
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Figure 3.3. A conceptual diagram showing the processes underlying the observed distribution 
of poached elephant carcsses detected by rangers, based on ranger and manager interviews as 
well as the literature (information sources and references in Table 3.1). I hypothesized that the 
behaviours of all three agents (elephants, rangers and poachers) are affected by both other 
agents and certain environmental and anthropogenic spatial predictors (square boxes). Line 
thickness represents the hypothesized relative strength of the association.  

 

Ensemble distribution models 

 

I employed ensemble species distribution modelling (Thuiller et al., 2009) to relate the 

distribution of detected poached elephant carcasses to the spatial variables identified above 

(Table 3.1). In total, 187 poached carcasses had accurate location data and so could be used in 

the models. Details on the datasets used for predictors are in the supplementary material at 

the end of this Chapter, along with raster plots showing their values across Chewore (Fig. 3.S1). 

Ensembles have the advantage of incorporating results from a range of modelling techniques 

based on their explanatory power, frequently performing better than single models (Araújo 

and New, 2007; Marmion et al., 2009).  

 

The locations of poached carcasses were compared to randomly generated background 

locations. Following Barbet-Massin et al., (2012) I generated 1000 absences across Chewore. I 
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used a set of four machine-learning algorithms (including random forests and generalised 

boosted models) and four regression techniques (including generalised linear and additive 

models) to build my ensembles (see supplementary material). I used the R package ‘biomod2’ 

for analysis (Thuiller et al., 2016). For model evaluation, the full dataset was randomly divided 

into training and test datasets using a 70:30% split, with 20 different training sets produced by 

repeated splits (thus capturing model uncertainty). Thus 140 single models were run (seven 

modelling techniques x 20 splits). Model accuracy was measured using the area under the 

receiver operating characteristic curve (AUC) as well as the True Skills Statistic (Thuiller et al., 

2009). Only those single model runs which performed well (>85% of the AUC of the highest 

single model run) were used in the ensemble by weighted average consensus (Marmion et al., 

2009). Predictor pairs with correlations r>0.60 were excluded (Dormann et al., 2012). Predictor 

strength in explaining carcass distribution was determined using ‘variable importance’ (the 

correlation between the prediction of the full model and a model without the predictor in 

question; Thuiller et al., 2009) 

 

Accounting for patrol bias 

 

Background data in species distribution models are often sampled randomly from the full study 

area, whereas sampling of occurrence data is often spatially biased (focussed on certain areas), 

leading to biased inference (Marmion et al., 2009). Ranger patrols are a typical case, given how 

variable they are in time and space (Critchlow et al., 2015). In such contexts, Barbet-Massin et 

al. (2012) recommend using geographically-biased background data sampling to match 

sampling bias.  

 

Phillips et al. (2009) achieve this by using as background data a ‘target group’ of occurrences 

of additional observations obtained through similar sampling methods, and thus with similar 

bias. They show, for 226 species from diverse global regions, that target group sampling 

significantly improves model performance. Mathematically, occurrence records are not 

samples from the true distribution of poached carcasses (), but from the distribution , 

where  is the biased sample distribution (e.g., ranger patrols). The target group represents a 

set S of independent samples from , so when it is used as background data the resultant 

estimated distribution approaches the true distribution , for large S (Phillips et al., 2009). MIKE 

data are useful here because rangers record other (natural, unknown, and management-

related) elephant mortalities while on patrol, providing a useful target group.  I used the 

location of other mortalities detected by rangers in Chewore over the long term (2000-2017, 
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n=318 records) as a surrogate for patrol locations. A caveat is that the unknown mortalities 

may contain poached mortalities, but this number is probably low because poached carcasses 

are mostly detected early, and evidence of poaching is clear. To understand the effect of patrol 

bias on conclusions about spatial patterns in poaching, I produced three scenarios of 

background data sampling: a null scenario and two bias-corrected scenarios:  

 

(1) Null scenario: generate background points across the entire polygon of Chewore.  

(2) ‘Target group’ scenario: non-poaching elephant mortalities used as background data.  

(3) ‘Circular buffer’ scenario: generate background data within a buffer of known patrol 

locations.  

The latter two bias-corrected scenarios mitigate against concluding that an area is free of 

poaching when it is in fact simply seldomly patrolled.  For (3), I generated background points 

within a patrol region defined by circular buffers around confirmed patrol locations (all 

locations where carcasses were detected, both poached and other mortalities; n=557). This 

approach is intermediate to the target group and null scenario in that background locations are 

constrained by confirmed patrol locations, but also generated more widely. Thus, data from 

regions where rangers are likely to have been present, but where their location was not 

formally recorded through a carcass record, are included. Three buffer diameters were chosen 

(1, 3, and 6km) to adequately represent a range of assumptions about true ranger patrol 

patterns. Thus, five background data sampling sets were generated (Fig. 3.4). I generated the 

same number of random points within each circular buffer so that more points were generated 

in areas with more confirmed  patrolling (Fig. 3.4).  
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Figure 3.4. Different scenarios to understand the effect of patrol bias on spatial patterns in 
elephant poaching. The distribution of (A) poached carcasses in Chewore (2000-2017), (B) the 
null scenario background data, (C) the target group scenario background data (non-poaching 
elephant mortalities), and (D-F) the background data for the circle method with different buffer 
radii.  

 

I acknowledge that a more robust approach to accounting for patrol bias would be to directly 

weight model predictions by fine scale patrol effort data, using approaches like hierarchical 

modelling (as in Critchlow et al. 2015). Such data were however not  available at my site. 

Indeed, in many developing country protected areas, patrol effort data are seldom consistently 

and reliably available over wide areas and time periods (Dancer, 2019).  

 

Rangers and mangers interrogate model predictions 

 

Results from the various modelling scenarios were presented to two separate groups of rangers 

and managers at two ranger stations in Chewore in July 2019, using a focus group format 

(Newing, 2010). Participants included eight rangers and two managers at Kapirinhengu base, 

and seven rangers and one manager at Mkanga base (average experience at site: 5 years). A 

large computer screen was used to present graphs and maps of the modelling results to each 

group, with a focus on the graphs of the effect of each spatial predictor on the  probability of 
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 points (n=1000)
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(n=370 other carcasses)
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D: 1km circles(n=1000)
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E: 3km circles(n=1000)
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F: 6km circles(n=1000)
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poaching (Fig. 3.5 below). Participants were encouraged to interrogate model predictions, 

giving reasons for supporting or not supporting predictions. This led to extensive discussions 

about the credibility of the different scenarios. Responses were audio-recorded and 

transcribed, followed by coding relevant to the theme of model interrogation (Newing, 2010). 

Interview protocols were reviewed and approved by the Human Research Ethics Committee at 

Oxford University (CUREC REF: R58336/RE001).  

 

Critical reflection on model scenarios 

 

The final stage involved the lead author critically reflecting on the strength of the different 

modelling scenarios in light of both practitioner responses to their predictions and the internal 

logic and assumptions of each scenario.  

3.3. Results 

In all scenarios, the random forests and generalized boosted models performed best at 

predicting poached carcass distribution (AUC/TSS scores, Fig 3.S2 supplementary material). The 

ensemble model in each scenario performed markedly better than the single models (Fig. 3.S2). 

NDVI and tree cover were correlated (r=0.69). I excluded NDVI because it varies widely 

between seasons whereas the models averaged 17 years of data. All other predictor pairs had 

r < 0.6. 

 

The effect of each predictor on poached carcass distribution varied according to the scenario 

of bias-correction (Figures 3.5 and 3.6). In the target group scenario, poached carcasses were 

detected with higher probability at higher elevations, lower topographic wetness, further from 

ranger camps, and closer to communal land (while distance to rivers and permanent water had 

no effect; Figures 3.5 and 3.6). Distance to permanent water and rivers were the strongest 

predictors in the null scenario (Figures 3.5 and 3.6). The buffer scenario predictions were 

intermediate between the target group and null scenarios, with elevation and wetness 

becoming increasingly less important and distance to water and rivers becoming more 

important from the 1km (most like the target group scenario) to the 6km (most like the null 

scenario; Figures 5 and 6) scenario. The variable importance scores were low for most variables 

in each scenario (<0.05). The combined effect of predictors is represented in the probability 

maps of poached carcass distribution, with different approaches to bias-correction leading to 

different inferred patterns (Fig. 3.7).  
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Figure 3.5. The spatial relationship between the probability of elephant poaching and each of 
10 environmental and anthropogenic predictors, for each scenario of background data 
sampling. The lines for each scenario are derived from an ensemble model representing the 
consensus among the top performing of 140 single model runs (7 model techniques with 20 
iterations each). 
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Figure 3.6. The variable importance (VI) scores for each of the predictors in the ensemble 
model in each scenario of background data sampling. VI scores are computed as 1- r, where r 
is the correlation coefficient between the predictions of the model without the predictor in 
question. Note that values are comparable among predictors within a model, but not among 
models. Refer to Table 3.1 for details on each variable.  

 

 

 

 

 



 61 

 

 

Figure 3.7. The relative probability of elephant poaching across Chewore Safari Area based on 
caracsses detected by rangers, for each scenario of background data sampling. Predictions in 
each scenario are based on an ensemble model representing the consensus among the top 
performing of 140 single model runs (7 model techniques with 20 iterations each). 

 

 The influence of patrol monitoring bias  

 

The shape (Fig. 3.5) and strength (Fig. 3.6) of the effect of each predictor on spatial patterns of 

poaching differed between the null and bias-corrected scenarios, providing evidence for how 

patrol bias influences inference about spatial patterns of poaching. In particular, the large 

differences in the effect of elevation among the different scenarios suggest that that elevation 

has a strong influence on ranger movements, and hence spatial patterns in what they observe.  

This accords with rangers own descriptions of avoiding hilly areas (see below). Overall, 
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however, many of the predictor effects did not differ significantly among the scenarios, 

suggesting that patrol bias may not have as large an affect as originally expected. Small 

differences did combine to produce larger differences in final predictions, however, as 

evidenced by the quite different spatial patterns shown in Figure 3.7.  

 

Rangers and managers interrogate model predictions 

 

More time was spent discussing the distance to water and elevation effects as these were 

simultaneously the strongest and most contentious. The target group predictions were the 

most strongly questioned by rangers and managers. The predictions of higher levels of 

poaching at higher elevations, and the absence of distance-to-permanent-water and distance-

to-river effects, were particularly challenged because they did not make sense in light of 

rangers' understanding of elephant distribution, developed over multiple years. Participants 

described routinely tracking elephants, “that is the tactic we use, we follow the elephants…so 

when the poachers want to poach an elephant we will be there” (R4). “We focus where there is 

more concentration of elephant” (R11). Participants agreed that poachers target areas where 

they can reliably find elephants, “Where elephants are more concentrated, there are poachers 

there” (R9).  

 

There was strong consensus among participants that elephant abundance was low at high 

elevations: “The area is mountainous, so it is very difficult for elephants to navigate, so they 

avoid it” (R13). When questioned whether carcasses (poached and other) in mountainous areas 

remain undetected because patrols avoid these areas, rangers again invoked elephant 

distribution. While admitting they spend little time at higher elevations (“the area is very 

difficult for rangers to access and patrol” [R6]), rangers said that when they do visit these areas, 

they find little evidence of elephant presence (visual, spoor, etc.). “There might be some 

poached carcasses in the mountains, but the probability is very low…the area is difficult for 

animals and people” (R1). Rangers also suggested that mountains limit poacher access; “those 

mountainous areas…even the poachers can hardly move there” (R16). Rangers also pointed out 

that the extensive mountain escarpment along the southern boundary of the park (see 

supplementary material Fig. 3.S1, elevation) is adjacent to densely populated communal land. 

Human incursion into Chewore for bushmeat hunting and wood collection was described as 

another reason why elephants avoid the mountains. Finally, they referred to a 2014 aerial 

survey which reported very few live elephants or carcasses in the mountainous regions (Fig. 
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3.S3 supplementary material). Thus, while low patrol effort may play a role, low carcass 

detections at higher elevations is likely to be principally driven by low elephant abundance.  

 

Participants repeatedly cited permanent water points as key hotspots for elephant abundance 

and poaching, and thus ranger deployments. “We go along covering the water points... because 

poachers don’t go where there are no animals…so we concentrate on those areas. Elephants 

don’t move very far from water” (S2). “Elephants are abundant there because of water” (R15). 

Participants therefore supported scenarios that predicted high levels of poaching near 

permanent water (the null and circular scenarios), and strongly questioned the weak distance-

to-permanent-water effect in the target group scenario. They were similarly unsupportive of 

the neutral distance-to-river effect on poaching in the target group scenario, while supporting 

the positive effect observed in the circular buffer scenarios (again due to elephant distribution). 

“These elephants will be moving along those riverine areas looking for those ilala palms, most 

rivers have ilala palms…elephants love those… they also like the shade of the riverine 

vegetation” (S3). Rangers do not routinely patrol along rivers (“Most of the time we don’t follow 

roads and rivers because you can be easily detected” [R1]), suggesting therefore that this effect 

is not due to patrol bias.  

 

Critical reflection on modelling scenarios 

 

Elephant distribution effects on poaching patterns was a common thread in participants’ 

responses, suggesting that elephant distribution is a strong driver of spatial patterns in 

poaching. This led to my critical reflection on the target group method, exposing a particular 

weakness. The target group background dataset is composed of elephant carcass locations and 

is therefore heavily dependent on elephant distribution.  By comparing poached carcass 

locations to the locations of other elephant mortalities (which may be considered a coarse 

proxy of live and poachable elephant distribution), the effect of elephant distribution on 

poaching patterns is controlled away. This explains the predictions of higher-than-expected 

levels of poaching in areas of low perceived elephant density (higher elevations) and lower-

than-expected levels of poaching in areas of perceived higher elephant density (near water). 

Thus, while the target group may act as a proxy for patrol locations and bias, it negates elephant 

abundance effects. This is problematic for managers, because anti-poaching strategies should 

target areas of higher poaching regardless of the underlying cause (in this case, higher elephant 

density). Conversely, greater practitioner support for the predictions of the circular buffer 

scenario may be because it is a better reflection of reality. This may be because using random 
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locations within the vicinity of carcass detections is a robust approach to accounting for patrol 

bias (unlike the null scenario), while not being too tied to elephant distribution (as in the target 

group scenario).   

3.4. Discussion  

Uncertainty is recognised as an important topic within socio-ecological systems research. These 

systems comprise complex and uncertain linkages between human behaviour and natural 

systems (Milner-Gulland and Shea, 2017). In line with this, applied ecologists are developing 

more robust tools for dealing with one particular class of uncertainty: observation uncertainty, 

the discrepancy between the true and observed states of the natural system under 

management (Bunnefeld et al., 2017). However, we should be careful not to introduce another 

class of uncertainty, through modelling bias, in our quest to correct for observation 

uncertainty. This Chapter demonstrates the power of combining statistical tools to correct for 

observation bias with participatory approaches to guide us away from model bias, thereby 

reducing uncertainty in inference on spatial patterns of poaching. Using practitioner 

perspectives and the literature to generate hypotheses to guide model construction, and then 

comparing the different scenarios generated by the model with practitioners, helped us tease 

apart real patterns from those explainable either by patrol bias, or by model assumptions. Bias 

correction and qualitatively-guided model interpretation revealed water distribution as a key 

driver of poaching patterns.  

 

Patrol bias and inferred spatial patterns of poaching 

 

Our second research question sought to understand how spatial patrol bias affects conclusions 

made from patrol observations. Overall, the differences in the predictions of the null and bias-

corrected scenarios indicate that patrol bias does indeed influence inferred spatial patterns of 

poaching. In particular, the avoidance by rangers of higher elevation areas had a large effect 

on conclusions drawn (see below). Apart from elevation, however, the predictions of the null 

and circular buffer scenarios were similar for most other predictors (Fig. 3.5), suggesting either 

the buffer scenario does not adequately account for bias or the effect of patrol bias on 

inferences may in fact not be large. The fact that the 1km buffer predictions (reflecting the 

strongest assumption about patrol bias) were similar to those of the null scenario predictions 

suggests the latter may be  true.  Carcass data are aggregated from 17 years of patrols, so many 

of the carcasses from elephants poached outside heavily patrolled regions would eventually be 

detected, thus reducing patrol bias effects. While both the target group and circular buffer 
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scenarios aim to account for patrol bias, both are influenced to some degree by elephant 

distribution as they rely on elephant carcass data.  Practitioners helped us discern that this was 

more of a problem for the target group method, with the circle method less affected.  

 

Practitioners help distinguish true patterns from those explained by patrol bias 

 

The marked effect of higher predicted levels of poaching closer to water in the null scenario 

was weaker in the  target group scenario, suggesting that the effect may be due to high patrol 

intensity near water. The water effect remained positive in all three scenarios that corrected 

for patrol bias through circular buffers, suggesting that higher detections near water are not 

solely due to patrol bias. This result, together with practitioner insights (which favoured the 

circular buffer method and pointed to predictable elephant abundance near water) suggests 

that higher detections of poaching near water may in fact primarily be driven by elephant 

distribution. Practitioners explained these patterns as poachers targeting water sources as sites 

of high and predictable elephant abundance. This result is in line with previous studies: Sibanda 

et al. (2015) predicted higher levels of elephant poaching near rivers in a Zimbabwean 

protected area. Beale et al. (2017) similarly found elephant poaching to correlate with elephant 

abundance in the Ruaha system in Tanzania, while Critchlow et al. (2016) found that spatial 

hotspots of large animal poaching in a Ugandan PA to coincided with high density of target 

species.   

 

The higher predicted levels of poaching at higher elevations in the target group scenario, 

questioned by practitioners, was also likely also due to the target method weakening the effect 

of elephant distribution. This argument cannot however explain why all the circular buffers 

scenarios also predicted a positive, albeit weaker, elevation effect. Rangers said that they rarely 

patrolled higher elevations due to navigation challenges, so the bias-corrected methods will 

have better captured the true bias in ranger patrols by excluding the infrequently patrolled 

highest elevations. Thus, the existence of an elevation effect seems credible, despite 

practitioner objections and lower elephant abundance at higher elevations. This demonstrates 

how, while practitioners must rightly interrogate model predictions, non-intuitive model 

predictions must also be allowed to challenge practitioner experience. Background data in all 

the bias-corrected scenarios was, however, scant at the highest elevations (>800m), so 

extrapolation of a positive elevation effect to these highest elevations may be tenuous.  
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Do we trust models or practitioners?  

 

Model results should not simply be disregarded if their predictions are non-intuitive to those 

with intimate knowledge of the systems they represent. Otherwise, modelling would simply be 

a confirmatory exercise. A strength of quantitative models is their ability to predict outcomes 

of complex interactions that would be impossible to predict non-mathematically (Dobson et 

al., 2018). Models might also be more objective than practitioner predictions (Addison et al., 

2013). For example, practitioners may fall into a confirmation trap whereby perceived poaching 

hotspots are reinforced by intense patrolling. On the other hand, model predictions are only as 

good as their input data and assumptions. The sensitivity of predictions to the different 

scenarios of background data sampling  in this study is illustrative of this. Practitioners helped 

identify a weakness in the target group modelling scenario which may otherwise have gone 

unrecognised. Participatory modelling helps minimise those assumptions that are too abstract 

and identify those that are tenuous, while maximising those that align with on-the-ground 

reality. The key, then, is to retain the power of models to interrogate data and test 

assumptions, while not producing insights that are based on abstract notions rather than on-

the-ground realities. 

 

Complex mechanisms and randomness  

 

The pattern of poached carcasses observed by rangers was produced by a complexity of 

processes representing the interactiona of elephants, rangers, and poachers with each other 

and their environment (Fig. 3.3). Ranger presence can, for example, deter poachers and thus 

override the effect of other spatial predictors (Moore et al., 2018). Furthermore, spatial 

predictors may be mediated by the effects of agents on each other. If elephants are attracted 

to water, poachers will learn to target waterholes. Interactions can also involve negative 

feedbacks; poachers may prefer to use roads for quick access, but rangers may also use roads 

for navigation, possibly leading to poachers avoiding roads. Without robust data on these 

behaviours, interpretation of the mechanisms behind observed patterns will be uncertain.  

 

A notable result is the low variable importance scores for most variables (<0.10), showing they 

had only small effects on poaching distribution. This suggests some level of randomness in the 

spatial distribution of poaching, with consistent patterns difficult to elucidate. Critchlow et al. 

(2015) concluded that the lack of strong predictor effects on the spatial distribution of illegal 

activity may be due to complexity in how these covariates affect poachers and wildlife. The 
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effect of predictors may also change over time or operate at different temporal scales, leading 

to further complexity. Variation in the spatial pattern of poaching through time (i.e. space-time 

clusters in poaching at monthly or yearly scales) may have confounded the effects of spatial 

predictors. The upshot of this randomness and complexity is that the predictors of poacher 

behaviour can be difficult to unmask, and therefore it may not be possible to make simple 

management recommendations about patrol targeting.  

 

Key priorities for future research  

 

I acknowledge a number of limitations with my analysis. The target group method, while 

demonstrated to work in other contexts, is a crude measure of patrol effort. A more robust 

target group will have included the locations of additional ranger patrol observations (e.g., all 

animal sightings). Ideally, model results would have been weighted by fine grain data on spatial 

patrol effort. Critchlow et al. (2015), for example, used hierarchical models to develop 

estimates of the true distribution of illegal activities in Queen Elizabeth National Park in Uganda 

by combining an occupancy model of detected illegal activities with robust measures of survey 

effort (per PA grid cell). The effort data needed for these approaches are however only 

available at well-managed sites with the capacity and resources to collect them (Dancer, 2019). 

I also do not consider changes in the spatial patterns of poaching among years and seasons -

the results presented here represent average effects over several years. In this study, only 

elephant carcasses detected fresh (66 records) could reliably be assigned to seasons,  so robust 

seasonal ensemble models were precluded. Finally, I do not explicitly account for the effects of 

elephant distribution on poaching patterns. Aerial survey data from my study area could have 

been used as a proxy for this, but these surveys sample only 15% of the land area, have only 

been conducted twice in the last 20 years, and offer only a dry season snapshot of elephant 

distribution.  

 

Application to conservation management: implementation in the real world 

 

Our results demonstrate the importance of accounting for observer bias when drawing 

inferences from observational data. The patterns of elephant poaching documented here show 

a high degree of sensitivity to spatial ranger patrol bias.  Management strategies, such as the 

deployment of patrols in areas of highest illegal activity, should not be uncritically based on 

raw patrol data. Patrol deployments that account for patrol bias can lead to significant gains in 

detection of illegal activities; Critchlow et al. (2016) demonstrated as much as a 250% increase 
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in detections compared to the baseline, using the same amount of effort and resources. 

Without some measure of patrol effort, it is impossible to draw robust conclusions about 

poaching trends and hence predict where and when future poaching might happen. This 

underscores the importance to PA management of collecting regular patrol effort data at a 

relevant scale. An obvious challenge is developing capacity and resources for robust data 

collection. Interviews at my study site show that data collection is only one among many, often 

more pressing, responsibilities like anti-poaching. The collection and integrated analysis of 

effort and observational data is a large undertaking that will require a step-change in resource 

allocation. Ultimately, developing an organizational culture that values and prioritises data 

collection, analysis and use for adaptive management is perhaps the biggest obstacle to robust 

monitoring (Field et al., 2007).  I suggest that investment in such structural changes is 

worthwhile. Robust monitoring can also lead to more resource-efficient anti-poaching 

strategies in the long term. Yet there exists a trade off between allocating resources to more 

efficient monitoring versus direct anti-poaching (McDonald-Madden et al., 2010). The simple 

scenarios of patrol bias correction employed here offer promise for spatial analysis at other 

MIKE sites, since more fine-scale data on patrol effort has already been identified as logistically 

infeasible at the majority of MIKE sites (Malpas and D´Udine, 2013).  

 

Finally, the participatory modelling approach employed here may prove useful in other socio-

ecological research contexts. Both quantitative models and practitioner insights can be biased, 

so integrating these alternate lines of evidence is likely to lead to stronger evidence and better 

management (Voinov and Bousquet, 2010). This is  important in contexts such as ranger-based 

monitoring, where data are not collected systematically and where results are of distinct 

practical relevance (Keane et al., 2011).  Participatory modelling is also more likely to lead to 

actual use of models in conservation management because end users are already engaged and 

less likely to see models as detached abstractions (Addison et al., 2013). Finally, this work 

emphasizes the importance of recognising the knowledge and analytical agency of wildlife 

rangers. Their perspectives  should be sought, rather than seeing them as passive implementers 

of conservation work or science planned by others (Moreto and Lemieux, 2015).  
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3.5. Supplementary material  

Supplementary methods: ensemble distribution models 

 

A variety of techniques for modelling the distribution of species exist (regression, machine 

learning, classification techniques, etc.). The literature suggests that the performance of 

different models is context- and species-dependent (Segurado and Araújo, 2004).  I used a set 

of three regression techniques (generalised linear models [GLM], generalised additive models 

[GAM], and multivariate adaptive regression splines [MARS]), as well as four machine learning 

techniques (maximum entropy [MAXENT Tsuruoka method], artificial neural networks [ANN], 

generalised boosted models [GBM, also referred to as boosted regression trees], and random 

forests [RF]). Model details are in Thuiller et al. (2009). I chose to exclude other techniques 

(classification tree analysis, mixture and flexible discriminant analysis (MDA), and rectilinear 

envelope models) due to consistent and significant low performance in earlier runs.   

 

Elevation and slope were calculated from a digital elevation model (USGS, 2004). I used the 

SAGA-GIS software to create the wetness index from the elevation model (Conrad et al., 2015). 

Tree cover data were derived from Landsat 5/7 based rescaling of MODIS satellite imagery 

(Sexton et al., 2013) while NDVI data were derived directly from the Landsat 7 Tier 1 32-day 

composite NDVI collection  (U.S. Geological Survey). Google Earth Engine was used to extract 

the mean tree cover value for the period 2000-2010 (the data are not available for later 

periods), and the mean NDVI value for the period 2000-2017. All layers were available at a 

native resolution of 30m, and the distance raster layers were created using this resolution. The 

locations of permanent water points were based on ranger station records, with additional 

points identified with the help of experienced rangers pointing them out on GIS maps.  

 

Barbet-Massin et al. (2012) suggest using the same number of background and occurrence 

points for machine learning techniques, and a large number of background points (10 000) for 

regression techniques. I ran initial tests using 10 replicates (training sets) of each modelling 

technique for each of five possible numbers of background points (200, 500, 1000, 5000 and 

10 000), and computed AUC scores. Scores did not vary widely across the different background 

sets (differences in AUC <0.05), and for simplicity I decided to use 1000 background points for 

all analyses as this sample performed best most consistently.   
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The bias-corrected models had lower predictive accuracy than the models with background 

data sampled from the full study area (Table 3.3 main text and Fig. 3.S1 below). However, this 

probably arose because of easier prediction of background points which were generated 

further from the ranger patrol area when random background sampling was used. Lobo, 

Jiménez-valverde & Real (2008) have established that AUC is sensitive to geographical extent, 

such that models with background data further from occurrences have artificially inflated AUC 

scores. The target group and 1km/3km circular buffer scenarios have extents less than half that 

of the random background data, so I do not discount the bias-corrected models based on their 

lower AUC scores.   

 

While the predictive accuracy of all the models was very high, it must be noted that the within-

sample model testing (no independent data used) used here tends to provide overly optimistic 

model evaluation compared to independent data (Araujo et al., 2005). 
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Supplementary figures 

 

 

Figure 3.S1. The variables used to predict the distribution of detected poached elephant 
carcasses via the ensemble distribution models. Values for each 30m raster pixel across 
Chewore are shown. Distances are in kilometres.  
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Figure 3.S2. Model performance scores (Area Under the Receiver Operating Curve [ROC] and 
True Skills Statistic) for each of the seven single modelling techniques in each scenario of 
background data sampling. Mean scores (±SD) across 20 iterations are shown. ROC/TSS values 
should be compared within, not among, plots (Lobo et al. 2008). RF=random forests, 
GBM=general boosted models, ANN= Artificial Neural Networks, GLM= Generalised Linear 
Models, GAM = General Additive Models, MARS = Multiple Adaptive Regression Splines). 
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Figure 3.S3. The distribution of elephant herds (top) and elephant carcasses (bottom) in 
Chewore Safari Area based on results from an aerial survey in August 2014 (Figures copied from 
Dunham et al., 2015). Notice the low density in the mountainous regions (elevation insert). 
Transect sampling intensity was around 10% of the area, with extrapolation based on the Jolly 
method (see Dunham et al. 2015 for full details).  
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Chapter 4: The reliability of ranger patrols for 

detecting spatial and temporal trends in 

elephant poaching  

4.1. Introduction 

 

Reliable data on trends in biodiversity can help managers and policy makers make decisions 

that improve conservation outcomes (Canessa et al., 2015). For example, basic data on 

temporal changes in the prevalence of illegal activities within a protected area can help 

managers evaluate and improve upon current management strategies (Critchlow et al., 2016). 

However, as discussed in the introduction of this Thesis (Chapter 1), socio-ecological systems 

are only partially observable and field monitoring data is often biased and imprecise. This is 

particularly the case with non-systematic forms of data collection such as ranger patrols or 

citizen science, where sampling bias may be particularly problematic (Altwegg and Nichols, 

2019). This does not mean that “messy” data cannot be useful for conservation, but it is 

imperative that bias and uncertainty in monitoring data is properly understood and accounted 

for before conclusions about underlying system processes are drawn (Dobson et al., 2020). 

Crucially, monitoring programmes themselves (whether systematic or opportunistic) must be 

carefully evaluated to ensure they have sufficient power to answer key questions that 

managers hope to ask of them. Given limited resources,  monitoring must be designed to meet 

particular goals (Field et al., 2005; Pollock et al., 2002). One might ask, for example, whether 

current ranger patrol strategies in a particular protected area are likely to yield poaching data 

that reliably represent underlying poaching dynamics.  

 

A significant challenge is quantifying data bias and imprecision, identifying which factors most 

influence them, and understanding how these uncertainties affect our ability to reliably answer 

key questions from monitoring data. This is because underlying system processes (e.g., the true 

number of elephants poached in a particular year) are often only partially observed, so it is 

difficult to know how close monitoring data are to the truth. The virtual ecologist approach 

described in the methods section of this Thesis (see Chapter 2) presents a promising solution. 

The approach involves simulating both underlying socio-ecological processes (e.g., elephant 

poaching), as well as the observation process (i.e., the ranger-based monitoring), thus yielding 

both the ‘true’ and ‘observed’ states of the system (Zurell et al., 2010). The approach has been 
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used in many different contexts to understand observation bias and optimise the design of 

monitoring programmes (Ling and Milner-Gulland, 2007; McConville et al., 2009; Nuno et al., 

2015; Rachowicz et al., 2006). Nuno et al. (2013) used the virtual ecologist framework to 

examine the influence of sampling effort and observer biases, as well as simulated population 

characteristics, on the accuracy and precision of ungulate population estimates from aerial 

surveys in the Serengeti. Similarly, Jones et al. (2017) simulated virtual ecologists conducting 

systematic surveys of illegal activities in Gola National Park, Sierra Leone, to test the level of 

survey intensity required to reliably detect changes in poaching over time.  

 

Crucially, the ‘true’ and ‘observed’ states are in the model, not in the real world. The reliability 

of virtual ecology model simulations is thus proportional to how well the model represents 

realistic system dynamics.  In the context of this Thesis, I have gathered and analysed 

quantitative and qualitative data that has helped me build a good understanding of my study 

system in Zimbabwe, particularly the dynamics of elephant poaching and ranger-based 

monitoring (see Chapters 3 and 5 in particular). In this Chapter, I use this understanding to build 

realistic scenarios of elephant poaching and ranger detection of poached carcasses in order to 

understand the performance of different patrol strategies in terms of capturing underlying 

patterns in poaching. I also explore how various uncertainties in my understanding of the 

system and alternative possible ‘truths’ alter my conclusions. My aim is to better understand 

the drivers of data reliability under realistic scenarios of poaching and patrols, rather than 

seeking to represent the exact ‘true’ system state. Following Getz et al. (2017), I seek to 

construct models that are complex enough to capture underlying processes that are 

hypothesised to affect the accuracy of observations, but not more complex than necessary to 

answer my research question or too complex for the information used to parameterise them. 

I first design a generic simulation modelling framework to assess the performance of ranger-

based monitoring strategies for answering management-relevant questions around trends in 

biodiversity or threats. I use the term “virtual ranger model” to describe this framework and 

design it to be flexible enough for broad application to a variety of different contexts involving 

rangers patrolling and collecting key ecological data. I then demonstrate the utility of the 

framework by applying it to ranger-based monitoring of elephant poaching in my case study.  

The practical outcome of this approach is to provide insights for park managers seeking to 

manage trade-offs between data reliability and resource allocation.  

 

My aim in this Chapter is to better understand and quantify the factors that influence the 

reliability of ranger-collected data on elephant poaching (i.e., how well these data capture 
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‘true’ spatial and temporal patterns of poaching). Factors investigated include those related to 

(1) the ranger patrol observation process (e.g., patrol effort, coverage, and spatial pattern), and 

(2) elephant poaching dynamics (e.g., poaching intensity, temporal trend and spatial pattern of 

poaching).  These two processes are both potentially under management influence and are 

therefore management relevant. To address this aim, I use the virtual ranger framework to 

simulate both (a) realistic scenarios of varying elephant poaching intensity across space and 

time, and (b) realistic scenarios of varying ranger patrol effort and pattern, and carcass 

detection, across space and time. Given the importance to managers of detecting changes in 

poaching over time and across space, I measure reliability as the power of various patrol 

scenarios to identify simulated ‘real’ changes in poaching across time and space. I develop 

ranger patrol and elephant poaching sub-models and parameterise them to my case study site 

based on extensive quantitative and qualitative data.  

 

4.2. Methods 

 

Broad modelling approach 

 

I followed a two-stage modelling approach to address the above objectives. First, I designed a 

generic modelling framework to evaluate the performance of different ranger-based 

monitoring strategies in terms of answering specific management-relevant questions. A 

particular question might be: “What level of patrol effort is required to successfully detect a 

50% decline in elephant poaching that occurs over 2 years?”. However, the framework is 

generic in that it may be applied to answering questions about the role of rangers in collecting 

key ecological data in a broad variety of contexts. Second, to meet the objectives of this 

Chapter, I adapt this generic framework to the context of rangers collecting data on elephant 

carcasses in my study area of the Zambezi Valley, Zimbabwe. I used this case study-

parameterised model to test the effect of various factors (related to both ranger patrols and 

underlying poaching dynamics) on the performance of ranger patrols at detecting spatial and 

temporal patterns in poaching (Fig. 4.1).  
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Figure 4.1. Various features of ranger patrols and poaching dynamics that I hypothesized would 
affect the accuracy and precision with which patrols detect underlying spatial and temporal 
patterns in elephant poaching. Factors were identified using a combination of qualitative 
knowledge from my field site (see below) and the literature. 

 

The generic virtual ranger model 

 

For simplicity, I use the language of ranger-based monitoring of elephant poaching to describe 

the virtual ranger modelling approach, but the same approach is equally applicable to other 

contexts where rangers move across time and space collecting data on a process (in this case 

elephant poaching) which itself varies across time and space.  I first constructed a mechanistic 

elephant poaching sub-model to simulate realistic scenarios of elephant poaching, leading to a 

defined number and spatial distribution of poached elephant carcasses in the landscape (Fig. 

4.2, step 1). Next, I constructed a ranger patrol sub-model to simulate the detection of some 

of these carcasses by rangers (Fig. 4.2, step 2). I then constructed various scenarios of elephant 

poaching and ranger patrols (varying key processes such as the poaching rate, the spatial 

distribution of carcasses, the number of patrols per month, and the spatial pattern of patrols). 

Finally, I assessed how accurately and precisely the observed data collected by these simulated 

ranger patrols captured actual poaching patterns (Fig. 4.2, step 3).
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Figure 4.2. The virtual ranger approach for evaluating the performance of ranger patrols at capturing spatial and temporal patterns in underlying elephant 
poaching.
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Study area and model parameterisation 

 

My case study site is the 3390km2 Chewore Safari Area (hereafter Chewore) in northern 

Zimbabwe (Fig. 4.3). The elephant population in the broader Zambezi Valley region declined 

from an estimated 19,981 in 2003 to 11,656 in 2014, mainly due to poaching (ZPWMA, 2015). 

Chewore is divided into two management units, Chewore North and Chewore South, each with 

a main ranger station (Fig. 4.3). Since 2000, Chewore has been a designated site under the 

global programme for MIKE (CITES Secretariat, 2019). Rangers encounter elephant carcasses 

on regular anti-poaching patrols and record, among other things, the cause of mortality, the 

animal’s sex, its age at death, and estimated time since death.  

 

 

 

Figure 4.3. The Chewore Safari Area in the Zambezi Valley region, Zimbabwe. Quantitative data 
on real poaching trends, and qualitative interviews with rangers in Chewore were used to 
parameterise simulations. 

  

I conducted semi-structured interviews with 26 rangers and 10 supervisors at the study site in 

2018 and 2019 as part of complementary qualitative work (see Chapters 5 and 6 for details). 

Interviews provided general information that helped guide model- and scenario-building. 
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Respondents described current and historic levels of patrol effort, spatial patrol strategy (e.g., 

the degree to which patrols focus on perceived hotspots of poaching), factors limiting patrol 

coverage, and seasonal changes in patrolling. Secondly, interviews provided specific 

information on (a) current ranger patrol characteristics and (b) carcass detections: 

 

a) Each ranger narrated detailed accounts of 1-3 recent patrols (length of patrol, area 

covered, daily route taken, etc). Rangers indicated routes on a map. A total of 36 

independent recent patrol stories were gathered, providing details of how patrols 

operate at the site, in the absence of reliable geospatial data on actual patrol routes.  

b) Each ranger provided details of carcass detections they were involved in and could 

remember (type of mortality, area, what cues were used to find carcass, etc.). A total 

of 56 independent detection stories were compiled, where one or more carcasses were 

detected. This provided essential information on the conditions under which carcasses 

are found.  

In addition to interview data, I accessed a long-term (2000-2017) database on elephant 

mortality in Chewore. This included details on the cause of mortality, GPS location, age, sex, 

and estimated time since death for a total of 596 carcasses (201 poached, and 395 natural and 

management-related mortalities). I also used a raster map of elephant poaching hotspots 

generated from patrol bias-corrected statistical models that I developed in Chapter 3 (Kuiper 

et al. 2020). 

 

Ranger patrols in Chewore  

 

Routine ranger patrols are regularly conducted across Chewore as part of ongoing monitoring 

and anti-poaching efforts. The majority of patrols are extended 7-day patrols, with a group of 

3-4 rangers deployed by vehicle from one of the two main stations to a particular location for 

six nights. Rangers set up a temporary camp where they stay for the duration of the patrol, 

with the aim of monitoring the surrounding area for signs of illegal activity. Each day rangers 

patrol out in a different direction before moving back to the camp using a different route 

(resulting in a fan-like patrol pattern radiating out from the camp). The first day is spent 

patrolling the immediate vicinity of the camp, the last day involves rangers being picked up by 

vehicle, and one day is typically spent conducting observations from the camp (looking out 

from a higher point or listening). This leaves four main patrol days, with an average radius 

moved out from the camp each day of 3-8km (see parameterisation section below). Thus, one 

7-day patrol covers a roughly circular area with a typical size of between 28km2 and 201km2 
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(radius 3-8km). Given that rangers follow defined patrol routes and given the existence of a 

maximum distance beyond which carcasses will not be detected, the actual square meterage 

covered will be a fraction of this larger area. For more details on ranger patrol dynamics in 

Chewore, see Chapter 5. 

 

Spatial and temporal resolution for virtual ranger model  

 

I chose spatial and temporal units small enough to adequately represent realistic variation in 

elephant poaching and ranger patrols and detections across Chewore. I chose a spatial unit of 

5km2, resulting in a grid of 712 cells across Chewore (Fig. 4.3). This size allowed for adequately 

fine-scaled modelling of patrol coverage (an average 7-day patrol covers approximately 20 of 

these 5km2 cells) and was also a suitable scale at which to define carcass detectability (see 

below). The cell size also allowed variation in the underlying poaching intensity across space at 

a reasonably fine scale (Fig. 4.4). A unit of one month was chosen to reflect the temporal scale 

at which patrol decisions and deployments are made by management (e.g., a certain number 

of 7-day patrols are planned each month). It also allowed for stochasticity in poaching rates to 

be simulated at an appropriate scale. A one-month scale also allowed for an adequate time-

series data length for post-hoc evaluation of patrol performance. Finer spatial and temporal 

scales could have been used, but the trade-off with model complexity and computing time was 

considered unjustified. Carcass generation and detection were simulated each month, such 

that the total number of carcasses present in each grid cell in any one month was determined 

by the number of elephants poached and detected in that cell in previous time steps. Each 

model scenario was run for 10 years and data from years 5-10 were used for analysis, to allow 

transient dynamics to run through.  

 

The elephant poaching sub-model 

 

I modelled elephant poaching directly using a simple carcass-generating model. The number of 

carcasses generated each month was determined by the annual poaching rate and multiplied 

by the elephant population size. The poaching rate was treated as a model parameter and set 

to 1% or 3% of all individuals, to represent the likely range at Mana-Chewore (see scenarios 

below). Given that the focus of this analysis is the assessment of patrol performance under 

different scenarios, I was interested only in changing poaching intensity across space and time, 

rather than modelling elephant population dynamics (age and sex structure, response to 

harvest, etc.). Therefore, I used a fixed population size and varied the poaching rate over time 
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according to the poaching trend in each scenario. Generated carcasses were then distributed 

spatially - the number of carcasses generated each month in each of Chewore’s 712 grid cells 

(Np) was computed as a negative binomial random variable: 

 

Np ~ Negative Binomial( , k) 

 

The mean number of carcasses per cell () was determined by the number of carcasses 

generated per month, divided by 712 (the number of cells). The aggregation parameter (k) 

determined how clustered carcasses were in space. The negative binomial distribution is 

commonly used in ecology to describe the aggregation of individuals across space, with a single 

parameter mediating the level of aggregation (Nuno et al., 2013). Lower k values result in 

‘hotspots’ of carcasses, while higher values resulted in a more uniform distribution. To ensure 

simulations represented realistic spatial patterns in poaching, I parameterised k using the 

predictions of previously developed ensemble spatial distribution models of poaching across 

Chewore, based on 17 years (2000-2017) of ranger-collected data on actual poaching incidents 

(Kuiper et al., 2020). These models, presented in Chapter 3 of this Thesis, used patrol bias 

correction and participatory modelling to produce robust raster maps of poaching intensity 

across space. Parameterisation involved two stages: first, k was determined from the shape of 

the frequency distribution (histogram) of poaching intensity scores. Next, the per-cell 

realisations of the negative binomial distribution were probabilistically assigned to grid cells 

based on their poaching intensity score. Grid cells with a higher intensity score were more likely 

to be assigned the higher realisations of the negative binomial distribution (i.e., to receive more 

poached carcasses). To illustrate, Figure 4.4 shows the simulated distribution of 100 poached 

carcasses and the underlying raster map of poaching intensity.  
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Figure 4.4. A simulated distribution of poached elephant carcasses (white dots, n=100) across 
the 712 grid cells of Chewore, overlaid onto the raster map of poaching intensity that was used 
to parameterize the simulation. The raster map was developed from actual poaching data (see 
Kuiper et al., 2020 - Chapter 3 of this Thesis). Within individual grid cells, dots are plotted 
randomly to aide visualisation.  

 

Simulating space-time variation in poaching: hotspot locations changing through time 

 

Poaching data from Chewore suggest that the spatial distribution of poaching changes over 

time (i.e., there is space-time dependence in the data), so I sought to construct separate 

simulation scenarios with such dependence built in. This was achieved by representing 

poaching intensity as a point process (Baddeley et al., 2015) using the R package ‘splancs’ 

(Rowlingson et al., 2013). I generated separate kernel density maps from actual poaching data 

for 10 different 6-month periods between July 2010 and June 2015 (Fig. 4.5). Only carcasses 

for which the date of poaching could be determined with reasonable reliability (i.e., those 

marked as ‘fresh’ or recent’ by rangers) were used (n=96). After examining results from shorter 

and longer periods, a 6-month period was chosen as it ensured sufficient underlying data  (i.e., 

enough poaching incidents in each period), while also representing real changes in poaching 

across periods (Fig. 4.5). Data were too sparse to produce patrol-bias corrected maps for each 

6-month period but are likely to represent the broad space-time variation in true poaching. 

Finally, the same parameterisation procedures as described above (see Fig. 4.4) were used 
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within the model to assign poaching incidents to cells based on poaching intensity scores. Every 

6 months, the model cycled through each of the 10 intensity maps presented in Figure 4.5. The 

data in Figure 4.5 were used only in the scenarios with simulated changing hotspots, otherwise 

the poaching intensity map in Figure 4.4 was used to parameterise simulations.  

 

 

 

Figure 4.5. (A) Changes in the spatial location of real (empirical) poaching incidents in Chewore 
for 6-month periods between 2010 and 2015. (B) Kernel density plots representing the 
intensity of the estimated point process that generated the observed poaching pattern. Colour 
pixels represent density of points per unit area and range from low (blue), through pink 
(medium), to high (yellow).  

 

The ranger patrol sub-model 

 

Each month, a set number of 7-day extended patrols were simulated based on a qualitative 

understanding of patrol deployment practices (see “Ranger patrols in Chewore” above, as well 

as Chapter 5). Each 7-day patrol was first assigned to a single 5km2 grid cell to represent the 

location of the central temporary camp from which the patrol was conducted, and then 15-25 

surrounding cells were sampled to represent a total area of 75-100km2 covered over the 7-day 

patrol (the average coverage estimated for patrols in Chewore above; Fig. 4.6). Cells for 

patrolling were sampled iteratively from adjacent cells (without replacement), with a higher 

probability of sampling cells closer to the temporary camp. Details of the approach used are 

included in the model code (see Thesis Appendix 1).  

A B 



 85 
 

 

Figure 4.6. (A) Simulating the coverage of a single 7-day patrol from a central temporary base. 
(B) A representative scenario of six individual patrols in a particular month, showing patrol 
coverage, and poached carcasses available and detected in that particular month (this is from 
the 5th year of a scenario with an average of seven elephants poached a month; most available 
carcasses are old and therefore have very low detectability – see main text).  

 

I modelled the number of carcasses detected by a patrol in a particular cell, Nd, as a binomial 

function of the number of carcasses available in the cell (Np; determined by the elephant 

poaching sub-model), and the baseline carcass detection probability (Dp; defined below): 

 

Nd ~ Binomial (Np , Dp) 

 

This random variable allowed for realistic variation in the number of carcasses detected: patrols 

operating in the same 5km2 cell, with the same number and age of actual carcasses available, 

may nevertheless detect differing numbers of carcasses, with detections varying randomly 

around a mean. The random variable thus indirectly captures some of the variation due to the 

particular direction taken through the grid cell, and the sinuosity of the route followed. 

Importantly, freshly poached carcasses were assigned a higher detectability than older 

carcasses (see the next section). Patrol effort was varied directly as the number of 7-day patrols 

carried out each month. I tested a number of different scenarios for the spatial patterning of 

patrols among grid cells: 
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a) Random patrols: the central temporary patrol camp is assigned randomly for each 

patrol. 

b) Targeted patrols: rangers are more likely to patrol areas where they have detected 

carcasses before. Grid cells with a higher number of carcasses detected in previous time 

steps are more likely to be selected as the central patrol camp. The number of previous 

time steps over which earlier detections are ‘remembered’ is treated as a parameter 

variable called ‘memory length’.  

c) 50% random and 50% targeted patrols: rangers employ a combined approach of 

spending half their patrols targeting perceived poaching hotspots and half their patrols 

randomly exploring new areas.  

d) Constrained patrols: patrols are more likely in areas closer to the main ranger stations. 

Interviews indicate that, at certain times, vehicle and fuel limitations constrain patrols 

to areas nearer the main ranger stations (Fig. 4.3). I used a simple half-normal 

probability function to assign lower probabilities of patrolling to grid cells further from 

these stations (Fig. 4.S1; supplementary material is included at the end of this Chapter). 

Constrained patrols could either be random or targeted.  

For patrols that were both constrained and targeted, I calculated relative probability of a 

patrols in each cell by multiplying the probability based on previous detections by the 

probability based on distance to ranger station.  

 

I decided not to explicitly test and present results on the effect of patrol effort changing over 

time because data from Chewore suggest that monthly patrol effort is fairly consistent within 

years. Also, I ran various test simulations in which I varied patrol effort randomly through time 

and found little effect on temporal trend detection performance.  

 

Modelling reduced detectability of older carcasses 

 

Interview data suggest that fresher carcasses are markedly easier for rangers to detect due to 

various cues such as gunshots, poachers’ foot spoor, vultures circling above the carcass, and 

smell. As carcasses age, these cues disappear, and they become more difficult to detect. Data 

on the age of carcasses detected in Chewore confirm that fresh carcasses are more commonly 

detected than older carcasses (Figure 4.7A).  
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Figure 4.7. (A) The estimated age at detection for 195 poached elephant carcasses detected in 
Chewore between 2000 and 2017. Categories represent those used by rangers to estimate carcass 
age in the field. (B) The parameterised exponential decay function relating carcass detectability to 
age, when assuming a higher (70%; red line) and lower (50%; blue line) baseline detectability of 
fresh carcasses.  

 

Age categories and estimated boundaries represent those used by rangers to estimate carcass 

age in the field (fresh, recent, old, very old). The decline in detectability of carcasses with age 

is likely to be steeper than Figure 4.7A suggests because the three older categories have wider 

age brackets compared to the 1-month bracket for fresh carcasses, and thus greater numbers 

of carcasses will have been generated and remained undetected from several months of 

poaching. For example, even if 70% of all newly poached carcasses are detected within 1 month 

of poaching, the undetected 30% will accumulate for 5 months in the 2-6-month category. In 

order to simulate these effects within the virtual ranger models, I weighted the data in Figure 

4.7A by the length of the age bracket in months to calculate relative differences in estimated 

detectability for each age category. I then conservatively assumed a baseline detectability of 

freshly poached carcasses of 70% (i.e., a patrol in a 5km2 grid cell would detect a carcass 

poached in the same month as the patrol with a probability of 0.7). This 70% value is based on 

ranger descriptions of carcass detections (see above). Then, starting with this assumed baseline 

detectability, I fitted an exponential decay function to these relative difference data (Figure 

4.7B). Total carcass detections were sensitive to this baseline detectability and resultant 

detection-age function, so I created a scenario with a reduced baseline detectability of 50% to 

test the effects on trend detection performance (Figure 4.7B). A Leslie matrix formulation was 

used to model the number of carcasses available in each of 48 one-month age classes (Caswell, 
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2001). For each month, the number of carcasses available in each age class, in each cell, was 

the number of carcasses of the immediate younger age class that were available in the previous 

month, minus the number detected in that age class in the previous month.  Then, based on 

the parameterised value, carcasses of different ages were assigned a different detection 

probability value in the binomial detection function (Figure 4.7B). Following the relationship in 

Figure 4.7B, carcasses “disappear” after 4 years (in the sense of no longer being detectable).   

 

Designing model scenarios to address key questions and test model sensitivity 

 

The virtual ranger model developed here is able to test hundreds of parameter combinations 

(with variations in baseline poaching levels, trends in poaching over time, spatial patterns in 

poaching through time, patrol effort, patrol pattern, and detection probabilities). However, 

rather than simulating all possible combinations of poaching and patrol dynamics, I designed a 

handful of key scenarios that would provide the most useful insights for park managers. This 

involved modelling poaching and patrolling scenarios that were realistic for Chewore (though I 

also tested random patrols to give context for the performance of more plausible scenarios).  

 

For all scenarios, I simulated six different levels of patrol effort (1, 3, 6, 9, 12, and 15 patrols 

per month), three different spatial patrol patterns (random, targeted or mixed), and seven 

different temporal trends in poaching (no change, 25% increase/decrease, 50% 

increase/decrease, and 75% increase/decrease). Temporal trends were simulated to occur over 

a 2-year period (see Fig. 4.8). In all scenarios, the aggregation of poaching incidents was 

parameterised using real carcass data from Chewore (see above). A baseline poaching rate of 

3% was used, as well as a baseline detectability of freshly poached carcasses of 70% (see section 

2.9). I then designed four ‘standard’ scenario variations according to patrol coverage and 

whether or not there was space-time variation in the underlying poaching pattern (i.e., 

poaching hotspots change over time; see above). These were: 

 

1. The baseline scenario in which poaching hotspots were simulated to remain constant 

through time, and with no constraints on the coverage of patrols.  

2. A scenario in which poaching hotspots were simulated to change through time, and 

with no constraints on the coverage of patrols. 

3. A scenario in which poaching hotspots were simulated to remain constant through 

time, and with patrols constrained to areas closer to the main ranger stations. 
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4. A scenario with poaching hotspots changing through time, and with patrols constrained 

to areas closer to the main ranger stations. 

 

I also tested the effect of three additional key parameters by varying their values from the 

baseline value, and then comparing the results in each case to the results with the baseline 

values. These were: (1) The annual poaching rate (testing 1% in addition to the baseline 3% ); 

(2) The baseline carcass detectability (testing 50% in addition to the baseline 70%; see above); 

and  (3) The period over which the temporal changes in poaching were simulated (testing 1- 

and 3-year periods in addition to the baseline 2-year period).  

 

Measuring the performance of ranger patrols under different scenarios 

 

Note the terms “real” and “detected” poaching are used when presenting data on patrol 

performance, but it must be noted that all data are simulated and are therefore not real data 

in the empirical sense. Poaching trends were simulated for defined periods (1-3 years 

depending on the scenario). For each scenario, temporal trend detection performance was 

measured as the proportion of simulation replicates in which patrols successfully detected the 

real trend in poaching (following Jones et al., 2017). For declining trends, a replicate was 

categorised as achieving successful trend detection if the mean number of poached elephants 

detected by patrols in the 12 months after the simulated trend was significantly lower than the 

mean number detected in the 12 months before the trend (and vice-versa for increasing trends, 

Fig. 4.8). A t-test was used to assess significance, defined as p<0.10.  I chose not to use a p value 

of 0.05 because the threshold of required proof is likely lower for a precautionary park manager 

who does not want to miss any large change in poaching. I considered the t-test method to be 

closest to what managers might ask in the real world, i.e., ‘are poaching levels this year lower 

than they were in previous years?’  
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Figure 4.8. Calculating power to detect change: (A) The simulated ‘real’ trend in poaching (75% 
decline in this example),  and (B) The subsequent simulated number of poached carcasses 
detected by rangers, for three random simulation replicates from a typical model scenario. The 
simulated trend starts at the start of the second year and ends after 2 years (see dotted lines). 
Power was determined as the proportion of replicates (n=50) for which the number of poached 
elephant carcasses detected per month was significantly lower in year 4 versus year 1 (P<0.10). 
Replicates 13 and 7 would have been classified as successful trend detection in this case. Data 
are means and standard deviations.  

 

Spatial trend detection performance was measured as the spatial congruence between real 

and detected poaching in simulation scenarios with no temporal changes in poaching over 

time. Managers in Mana-Chewore do not identify spatial poaching hotspots at the fine scale of 

5km2 used for grid cells in these simulations, neither do they assess hotspots at very large 

spatial scales. I therefore chose to measure congruence at a management-relevant spatial scale 

of 45km2 (representing 3x3 clusters of nine 5km2 park grid cells). Congruence was calculated as 

the Pearson’s correlation coefficient between the simulated real number of elephants 

poached, and the number detected by patrols, for each 45km2 grid cell covering Chewore 

(Figure 4.9). Overall spatial detection performance was measured using the mean and standard 

deviation of the correlation coefficient across all simulation replicates in each scenario. Spatial 

correlation was measured for a three-year period in the middle of the simulation period, to 

represent an average period of management interest. Results were similar when a 1-year and 

2-year period were used. Next, to visually represent how spatial patterns of real poaching 

differed from observed poaching for different levels of patrol effort, I produced kernel density 
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plots from the real and observed carcass data in each scenario. I used the simple kernel density 

function in R (density) with Gaussian smoothing.  

 

Figure 4.9. An illustration of the method used to assess spatial congruence between true and 
detected poaching. The correlation between the true and detected number of elephants poached 
in each 45km2 grid unit across Chewore (n=79 units), over a 3-year period in the middle of the 
simulation period (see main text). Each unit is a cluster of 9 park grid cells. Illustrative data are 
shown for the baseline scenario with a poaching rate of 3% and 6 spatially random patrols per 
month, for four of the 50 simulation replicates. It is possible for detected carcass numbers to exceed 
poached numbers as rangers detect carcasses poached outside of the 3-year correlation period.  

4.3. Results 

The effects of patrol effort, coverage and pattern on the power to detect temporal changes in 

poaching  

 

In all scenarios, the proportion of poached carcasses detected by ranger patrols approximately 

doubled when effort was increased from 3 to 9 patrols/month and doubled again when effort 

was increased to 15 patrols/month (Fig. 4.10). Targeted patrols tended to detect a lower 

proportion of carcasses than random or mixed patrols (5-25% less depending on the scenario). 

The best patrol performances were achieved when poaching hotspots were consistent through 

time and patrols were unconstrained (scenario 1, Fig. 4.10). When poaching hotspots were 

simulated to change through time, overall detections of targeted patrols relative to random 
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and mixed patrols declined slightly (scenarios 2 & 4), while spatial constraints on patrols 

(patrols limited to areas nearer the ranger bases) markedly reduced overall detections 

(scenarios 3 & 4).  

 

Figure 4.10. The effect of various patrol characteristics on the mean number of carcasses 
detected by ranger patrols across years, as a proportion of all poached elephant carcasses 
‘available’ (undetected or newly poached) in Chewore each year. Data are shown for the 
scenario with no temporal change in poaching intensity over the simulation period. Patrol 
characteristics include effort (patrols per month), spatial patrol pattern (random, targeted to 
areas of high previous detections, or a 1:1 mix of the two), and patrol coverage (constrained to 
areas near the main ranger stations or not). The effect of space-time variation in poaching 
(where the locations of poaching hotspots change over time) is also shown.  

 

Across all scenarios, the spatial pattern of patrols (random versus targeted to areas of high 

previous detections) had no noticeable effect on the power to detect temporal trends in 

poaching of different magnitudes (Fig. 4.11; supplementary material Fig. 4.S2). At a 25% 

simulated change in poaching, the power to detect change was around 20% whether it was an 

increase or a decrease (Fig. 4.11). While at 75% change, the decrease was almost 100% 

detectable, while the increase was both less detectable and increased slightly with patrol effort 

(from about 0.7 to 0.85). Only at intermediate change (50% change) did the patrol effort make 



 93 
a major difference, and then more for a decrease in poaching than an increase - where the 

power increased by 50% from about 10% at 1 patrol a month, to about 65% at 15 patrols per 

month (Fig. 4.11).  

 

 

Figure 4.11. The effect of patrol effort on the power of ranger-collected data to detect temporal 
trends in elephant poaching of different magnitudes, in the baseline scenario. Trends were 
simulated to occur over 24 time-steps (representing a 2-year period), from a baseline poaching rate 
of 90 elephants p.a. (3% of the population). Power is measured as the proportion of simulation 
replicates for which a statistically significant change in ranger-detected carcasses was observed in 
the year before versus the year after the trend in poaching (see methods).  

 

Compared to the baseline scenario with consistent poaching hotspots, changes in the locations 

of underlying poaching hotspots led to only slight, non-significant changes in the power to 

detect change, even for targeted patrols (Fig. 4.12: “Changing hotspots”). The constraint of 

patrol coverage to areas closer to the main ranger stations had a slightly larger effect on the 

power to detect changes in poaching, with high variability in power for temporal changes of 

50% (Fig. 4.12: “Constrained patrols”). A combination of changing poaching hotspots and 

constrained patrol coverage had a more notable effect on power to detect change, particularly 

for increasing trends in poaching (Fig. 4.12: “Both”). This discrepancy between increases and 

decreases is discussed more below (Fig. 4.13). 
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Figure 4.12. The effect of changing poaching hotspots, and constraints on patrol coverage, on 
the power of patrols to detect temporal changes in poaching of different magnitudes. Data 
represent mean changes (across three average levels of patrol effort: 3,6 and 9 patrols/month) 
in power to detect temporal changes in poaching in each scenario relative to the baseline 
scenario. The baseline scenario has consistent poaching hotspots and no constraints on patrols. 
Only data for targeted patrols are shown (results were similar for random and mixed patrols).  

 

Increasing trends in poaching were generally less detectable than decreasing trends of the 

same magnitude, particularly in scenarios with poaching hotspots changing over time and/or 

constrained patrols (Fig. 4.13). Similar to previous trend detection results, differences were 

most noticeable for 50% changes in poaching in the baseline scenario. In this scenario, 50% 

increases in poaching were detectable with only a third to half of the power with which 50% 

decreases were detectable (Fig. 4.13 “Baseline”). When both changes in poaching hotspots and 

constrained patrols were simulated, increases in poaching were detectable with only  a small 

fraction of the power of decreases in poaching, regardless of the spatial pattern of patrols (Fig. 

4.13 “Baseline”). 
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Figure 4.13. Differences in the power of ranger patrols to detect increasing versus decreasing 
temporal trends in elephant poaching, for different patrol types and scenarios. Data are shown 
only for a patrol effort of 9 patrols per month (the approximate current effort level in Chewore).  

 

Unlike the Type 2 error rate (1-power), which was variable depending on the scenario in 

question, the Type 1 error rate (detecting a trend when there was none) was consistently low 

(around 20%) in most scenarios. (supplementary material Fig. 4.S3). Type 1 error rates were 

highest when patrols were targeted to areas of high previous detections, especially in scenarios 

where poaching hotspots changed over time (Fig. 4.S6). This is likely to be because targeted 

patrolling is more ‘hit and miss’ compared to random patrols and may thus result in increases 

or decreases in detections over time, independent of the temporal trend in poaching. Changes 

occurring over both shorter (1-year) and longer (3-year) periods were detectable with similar 

power to the changes over a 2-year period in most scenarios (supplementary material Fig. 

4.S4). However, simulated 3-year trends in poaching were markedly more detectable than 1 

and 2-year trends for larger increases in poaching (50% and 75%) in the scenario with both 

changing poaching hotspots and constrained patrols (Fig. 4.S4).  

 

The effect of patrol effort, patrol pattern, and patrol coverage on the spatial correlation 

between real and detected poaching 

 

In the baseline scenario, there was a large increase in the spatial congruence between real and 

ranger-detected poaching with increasing patrol effort (Fig. 4.14). The rate of increase in spatial 

Baseline Changing hotspots (CH) Constrained patrols (CP) Both (CH & CP)

R
a

n
d
o

m
T
a
rg

e
te

d

25% 50% 75% 25% 50% 75% 25% 50% 75% 25% 50% 75%

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

Simulated change in poaching

P
o
w

e
r 

to
 d

e
te

c
t

re
a

l 
tr

e
n
d

 i
n
 p

o
a
c
h

in
g

Decrease Increase

*Data shown for patrol effort of 9 patrols per month



 96 
congruence with patrol effort tended to be highest for lower effort levels, with congruence 

increasing by about 50% (0.45 to 0.65) between 3 and 9 patrols per month but only by another 

15% (0.65 to 0.75)  between 9 and 15 patrols/month (Fig. 4.14). The variability in spatial 

congruence also declined with effort. The spatial pattern of patrols did not affect how closely 

spatial patterns in detected poaching matched real poaching, with random, targeted and mixed 

patrols performing very similarly in all scenarios. These patterns held true for the changing 

hotspot and constrained patrol scenarios (supplementary material Fig. 4.S5).   

 

 

Figure 4.14. The spatial congruence between real and detected poaching (means and standard 
deviations across 50 simulation replicates). The effect of patrol effort and patrol type (spatially 
random, targeted to areas of previous detections, or mixed) on the spatial correlation between 
the real number of elephants poached and the number of poached elephant carcasses 
detected in each of 79 45km2 grid units across Chewore’s. Simulated poaching intensity was 
constant at 3% (90 elephants per year) and correlation was determined for a 3-year period in 
the middle of the simulation period (see methods).  

 

Visual comparisons of underlying poaching intensity and that inferred from ranger patrols 

suggest that spatially random and spatially targeted patrols performed similarly in terms of 

capturing spatial patterns of poaching (Fig. 4.15).  
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Figure 4.15. A visual representation of the simulated underlying poaching intensity (“Real 
Baseline”) and how closely the poaching intensity as inferred from ranger-collected data 
(“Inferred”) matches this baseline, for different levels of patrol effort and patrol types (spatial 
random or targeted to areas of high previous detections).  Data are shown for only a single 
simulation replicate at each effort level and for each patrol type (results were however similar 
for several other visualised replicates). Poaching intensity values represent kernel density 
estimates generated from the underlying distribution of simulated real and detected poaching 
(see methods).  

 

The constraint of patrols to areas closer to the main ranger stations led to a notable decline in 

the spatial congruence between real and detected poaching (Fig. 4.16). Spatial congruence 

between real and detected poaching increased slightly when poaching hotspots changed over 

time, even when patrols were targeted to areas of high previous detections (Fig. 4.16). This was 

surprising as one would expect spatial targeting to lead to biased results, because past carcass 

locations (the information used by patrols to target future patrols) would not be a good 

predictor of future carcass locations when poaching hotspots change over time. The fact that 

targeted patrols performed similarly to random patrols in temporal trend detection was also 

surprising. I hypothesised that these unexpected results may be because poaching in Chewore 

is not sufficiently spatially clustered to lead to ‘bad learning’ through targeted patrols (Fig. 

4.17). This explanation was borne out in that, when the level of aggregation of underlying 

poaching incidents was simulated to be significantly higher than that observed in Chewore, 

targeted patrols became significantly less effective (relative to random patrols) in the scenario 

with poaching hotspots changing through time (Fig. 4.17). This suggests that targeted patrols 

do not strongly bias inferred spatial or temporal patterns in poaching in contexts where 

poaching is not highly clustered (as in Chewore). 
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Figure 4.16. Differences among scenarios in the spatial congruence between real and detected 
poaching, showing the effect of constrained patrol coverage and changes in underlying 
poaching hotspots over time (means and standard deviations across 50 simulation replicates). 
Data are shown for the represent. Only data for spatially targeted patrols are shown (results 
were very similar for random and mixed patrols). 

 

 

 

Figure 4.17. Testing the effect of the simulated aggregation of poached carcasses on the 
relative performance of targeted and random patrols at capturing spatial patterns in poaching 
when poaching hotspots are simulated to change through time. (A) Simulating different 
aggregation levels by varying k in the negative binomial model used to set the carcass 
distribution (see methods ). A distribution of 300 carcasses is shown for illustration. (B) Overall 
carcass detections (means per year across replicates) for targeted and random patrols. (C) 
Spatial congruence between real and detected poaching measures as Pearson correlation 
across 80 grid units of 45km2 (see Methods).  

6 patrols/month 9 patrols/month

0.0

0.2

0.4

0.6

0.8

Scenario

S
p

a
ti
a

l 
c
o

n
g

ru
e

n
c
e

 b
e

tw
e

e
n

re
a

l 
a

n
d

 d
e

te
c
te

d
 p

o
a

c
h

in
g

 

Scenario:

Baseline
Changing hotspots (CH)
Constrained patrols (CP)
Both (CH & CP)

*Data are shown for targeted patrols only

Medium aggregation High aggregation

3 6 9 12 3 6 9 12

0.0

0.2

0.4

0.6

0.8

No. patrols per month

P
ro

p
o

rt
io

n
 o

f 
a
ll 

p
o

a
c
h

e
d

  
c
a
rc

a
s
s
e

s
 d

e
te

c
te

d

Random Targeted

●

●

●

●

●

●

●

●

Medium aggregation High aggregation

3 6 9 12 3 6 9 12

0.4

0.5

0.6

0.7

0.8

No. patrols per month

S
p

a
ti
a
l 
c
o
rr

e
la

ti
o
n

 b
e
tw

e
e

n
 

re
a
l 
a

n
d

 d
e
te

c
te

d
 p

o
a

c
h

in
g

●Random Targeted

B C



 99 
 

The effect of poaching intensity on patrol detection performance 

 

When the baseline poaching rate was reduced from 3% to 1%, patrols tended to detect a lower 

proportion of the available carcasses, across most scenarios (Fig 18A). The likelihood of patrols 

detecting temporal changes in poaching reduced significantly when the baseline poaching rate 

was lower (Fig. 4.18B). Even relatively high levels of effort (9 patrols/month) could not detect 

large changes in poaching with more than 50% power (Fig. 4.19B). This is likely due to sample 

size effects: only around 30 elephants (1% of a population of 3000) are poached per year in the 

1% scenario (versus 90 per year in the 3% scenario), so a 50% decline would represent a decline 

from an average of 30 to 15 elephants poached per year (see Fig. 4.19 for an illustration of this 

effect). In contrast to temporal trend detection, a lower baseline poaching rate had only a small 

adverse effect on the spatial congruence between real and detected poaching (Fig. 4.18C).  

 

 

 

Figure 4.18. The effect of the baseline poaching rate on (A) overall carcass detections, and on 
the performance of ranger patrols at capturing (B) temporal and (C) spatial patterns in 
poaching. Data are shown for an intermediate level of patrol effort of 9 patrols per month (the 
closest to the current reality in Chewore), and only for targeted patrols (results for spatially 
random and mixed patrols were similar).  
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Figure 4.19.  The effect of small sample sizes in the low poaching scenario on temporal trend 
detection performance, showing the trend detection calculation for three illustrative replicates 
(randomly selected) in a representative scenario (50% simulated decline in poaching with 
baseline poaching of 1%, and 3 patrols per month).  Compare with Figure 4.8 (see methods) 
which shows the same plot for the 3% scenario.  

 

The effect of reduced carcass detectability on patrol detection performance 

 

When the simulated baseline detectability of freshly poached carcasses was reduced (see 

methods for a full explanation), a significantly lower proportion of carcasses was detected (Fig. 

4.S6A). Despite this, patrols for which the carcass detectability was lower performed only 

slightly worse than patrols with higher detectability at detecting temporal changes in poaching 

(Fig. 4.S6B).  However, patrols with lower carcass detectability performed significantly worse 

at capturing spatial patterns in poaching than patrols in the higher detectability scenario (Fig. 

4.S6C).   

 

Table 4.1 presents a summary of all the results presented in this Chapter, showing how various 

features of ranger patrols and underlying poaching dynamics affect trend detection 

performance.
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Table 4.1. A summary of the effect of key features of (a) ranger patrols and (b) poaching dynamics on the performance of patrols at detecting spatial and temporal 
patterns in poaching. The size of the effect is indicated (none, small, medium, or large), along with details of the overall effect of each feature, across scenarios.  

 

Feature Effect on temporal trend detection Effect on spatial pattern detection 

 Effect Details Effect Details 

(A) Ranger patrol characteristics 

Patrol effort 

 
Med. 

Only affects the power to detect medium (50%) changes in poaching. 

  
Large 

Markedly increases spatial congruence between real and 

detected poaching. 

Spatial pattern of 

patrols  
None 

Targeted and random patrols achieve very similar power to detect trends. 
None 

Random and targeted patrols perform very similarly at 

detecting spatial patterns in poaching. 

Constrained patrol 

coverage  
Med 

Significantly reduces carcass detections and the power of patrols to detect 

50% temporal changes in poaching (no effect for 25% and 75%).  
Med 

Causes small declines in detection performance. Further 

declines when combined with changing hotspots. 

Lower carcass 

detectability 
Small 

Does not affect detection of small (25%) and large (75%) changes in 

poaching. Only slightly reduces power to detect medium (50%) changes. 
Large 

Leads to large declines in performance. Further declines 

when combined with changing hotspots. 

(B) Elephant poaching dynamics 

Reduced poaching 

rate 

 

Med. 

Reduces power to detect medium (50%) and large (75%) temporal changes 

in poaching, but no effect for small (25%) changes. 

 

Small 

Negligible effects. 

Changing poaching 

hotspots 

 

Small 

Depending on the scenario, zero or only very small effects on the power to 

detect temporal trends. 

 

None 

Does not significantly change spatial pattern detection 

performance. 

Direction of trend in 

poaching 

Med Increases in poaching are less detectable than decreases, particularly when 

the magnitude of change is medium or large (50% or 75%).  

NA NA (spatial performance is measured for the no trend 

scenario). 

Period over which 

change occurs 
Small 

Changes in poaching occurring over 1, 2 or 3 yrs were detectable with 

similar power 
NA 

NA (spatial performance is measured for the no trend 

scenario). 
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4.4. Discussion 

 

Monitoring data are essential to evaluating what does and what does not work in conservation 

(Sutherland et al., 2004). Yet monitoring programmes may be expensive to implement 

effectively, and the value of information they provide needs to be carefully considered in the 

context of limited protected area management budgets (Canessa et al., 2015). In situations 

where monitoring data are both necessary to effective decision-making and require significant 

investment to collect, it is imperative that the monitoring design yields enough power to 

accurately detect trends of management interest at relevant scales. If not, limited conservation 

funds would be wasted only to provide unreliable information for decision-making. 

Understanding the factors that drive the accuracy and precision of monitoring data is therefore 

crucial (Collen and Nicholson, 2014; Field et al., 2007; Legg and Nagy, 2006). In this Chapter I 

used a simulation modelling approach to explore the power of ranger patrols to detect spatial 

and temporal patterns in elephant poaching under various patrol strategies and poaching 

scenarios.  

 

Begin with the end in mind  

 

The virtual ranger model developed here provides a useful tool for identifying the patrol 

strategies necessary to answer focussed management-relevant questions. Too often 

monitoring programmes are implemented without proper consideration of whether or not 

they are adequate to address the key management questions for which they were designed 

(Chee and Wintle, 2010). Indeed, often the management questions are not well articulated 

beforehand. A critical step in achieving the goal of better integration of monitoring results with 

conservation management decisions is that management questions are clearly articulated, so 

that monitoring is designed to provide data that can reliably answer these questions (Ficetola 

et al., 2017; O’Kelly et al., 2018). This is particularly important in the context of ranger-based 

monitoring, because observational data from patrols are often seen only as an ‘add-on’ to the 

primary law-enforcement element of patrols (Keane et al., 2011).  

 

My results are sobering in that many common management questions relating to spatial or 

temporal trends in poaching would be difficult to answer well with ranger-collected data in 

Chewore. Often high levels of patrol effort, wide patrol coverage, and high levels of poaching 

(leading to higher carcass sample sizes) are required for patrols to accurately capture even 
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short term and relatively extreme spatial and temporal trends in poaching (Table 4.2). In her 

review of the role of ranger-based monitoring in informing tiger conservation across 8 Asian 

sites, Stokes (2010) suggests that various biases in patrol pattern and detectability mean that 

ranger-collected data may not be appropriate to answer questions around long term (>1 year) 

trends in conservation threats. She suggests such data might be more appropriate as a source 

of immediate data on the presence/absence of illegal activities so that managers can respond 

directly to present threats. These intuitive suggestions can be rigorously assessed using a 

virtual ranger approach as developed here and may be sensitive to the nature of the underlying 

threat (illegal hunting of tigers in Asia will be different from elephant poaching in Zimbabwe). 

In either case, it is crucial that the use for which ranger-based monitoring data is intended, and 

the particular questions that managers or ecologists hope to answer from the data, are clear.  

 

For monitoring more generally, various other factors will affect whether collected data are 

suitable to answer the particular question of interest. In her case study of species and threat 

monitoring in Madagascar, for example, Earle (2016) found that the monitoring programme 

lacked power to detect trends, but could provide reliable information of the presence or 

absence of species and threats. Similarly, in her study of local knowledge for wildlife monitoring 

in Cameroon, Brittain (2019) found that power to detect trends in populations of particular 

forest species depended on the method of sampling, the characteristics of the observer, and 

the particular species in question.  These examples again illustrate the importance of defining 

the goal of the monitoring programme a priori, and being specific about what species, which 

threats, and what trends are important.  

 

Using ranger-collected data to capture temporal trends in poaching 

 

The ability of patrol effort to detect temporal patterns in poaching depended strongly on the 

magnitude of the underlying trend in poaching. Even very high effort (more than 15 seven-day 

patrols/month) was not sufficient to detect small (25%) declines and increases in poaching, 

while large (75%) declines/increases were detectable with very low effort (1-2 patrols per 

month). The significant management relevance of this is that small and large changes in 

poaching are likely to be either virtually undetectable or confidently detectable (respectively) 

regardless of patrol effort. Therefore, decisions about allocations of budget to patrol effort are 

more important in the context of detecting intermediate changes in poaching levels (50% over 

2 years).  
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Table 4.2. The patrol strategies that a park manager in Chewore would require in order to achieve various management goals or answer questions related to 
detecting temporal and spatial trends in poaching. Required strategies are shown for standard as well as non-favourable conditions.  

 

 
Management goal/question Overall 

Difficulty 

Patrol effort/strategy required to achieve goal 

(1) To detect temporal patterns 

in poaching: 

 Under standard conditions Under less favourable conditions (low baseline poaching rate or detectability, 

constrained patrols, or hotspots changing over time) 

To detect small (25%) declines in 

poaching with 70% power* 

Very high Not detectable, even with high patrol 

effort (15 7-day patrols/month). 

Not detectable in all scenarios, even with high patrol effort (15 7-day 

patrols/month). 

To detect medium (50%) declines 

in poaching with 70% power 

Medium to 

Very high 

Requires high patrol effort (12 or more 7-

day patrols/month). 

Achievable  in most scenarios with high effort (12 or more patrols/month). 

However, 50% declines are not detectable when the poaching rate is low. 

To detect large (75%) declines in 

poaching with 70% power 

Very low to 

medium 

Very low patrol effort required (one 7-

day patrol/month). 

Requires only low effort in most scenarios. However, 75% declines are only 

detectable with 60% power or less when the baseline poaching rate is low. 

To detect small (25%) increases in 

poaching with 70% power 

Very high Not detectable, even with high patrol 

effort (15 patrols/month). 

Not detectable in all scenarios, even with high patrol effort (15 7-day 

patrols/month). 

To detect med (50%) increases in 

poaching with 70% power 

High to 

Very high 

Not possible. Only detectable with 60% 

power and  high patrol effort. 

Not detectable in most scenarios. Detectable with high patrol effort when the 

increase occurs over 3 years (as opposed to 2 years).  

To detect large (75%) increases in 

poaching with 70% power 

Low to 

High 

Requires only low effort (3 or more 

patrols/month). 

Requires low-med effort when hotspots are changing or patrols constrained, 

and very high effort when both. Not detectable when baseline poaching is low. 

(2) To detect spatial patterns in 

poaching: 

 Under standard conditions Under less favourable conditions (low baseline poaching rate or detectability, 

constrained patrols, or hotspots changing over time) 

Moderate (>60%) spatial overlap 

between real and detected 

poaching 

Low-

Medium 

Requires moderate effort (6-9 

patrols/month), with random or targeted 

patrols. 

Robust to changing hotspots but requires high effort (12 patrols/month) when 

patrols constrained. Robust to lower poaching rate. Requires very high patrol 

effort (15 patrols/month) when carcass detectability lower. 

Good (>70%) spatial overlap 

between real and detected 

poaching 

Medium to 

Very high 

Requires high effort (>9 patrols/month), 

with random or targeted patrols. 

Robust to changing hotspots but requires very high effort (15 patrols/month) 

when patrols constrained. Robust to lower poaching rate. Not achievable with a 

lower baseline carcass detectability. 

Notes: Recommendations hold true regardless of spatial patrol pattern (random or targeted to areas of high previous detections), unless otherwise indicated. *A level of power 

of 70% was chosen for this table, because this level of confidence is likely sufficient for a park manager for whom the cost of not responding to trends may be higher (Field et 

al., 2004). 



 105 
 

In a similar study, Jones et al., (2017) built spatially explicit simulations of systematic surveys 

of illegal activities in Gola NP in Sierra Leone. They found that unrealistic levels of  

survey effort would be required to detect changes in poaching over time; more than 200 1km2 

survey cells (30% of the study area) would need to be visited at frequent intervals to detect a 

50% decline in hunting activities with reasonable power. This would be unreasonably resource 

intensive, so the authors recommend the collection of data through existing ranger patrols. 

However, my analysis here shows that ranger patrols too would not be able to detect changes 

in hunting activities.  

 

The general results about the effect of patrol effort on trend detection interacted with other 

patrol characteristics and underlying poaching dynamics in complex ways. For example, in 

scenarios where patrol coverage was constrained or there were low baseline poaching levels, 

large (75%) changes in poaching might only be detectable at high patrol efforts. This finding 

highlights an important advantage of simulation models – they are able to capture the effect 

of important interactions between different system components, thereby yielding a more 

realistic understanding of the effect of individual factors like patrol effort.  

 

Interestingly, targeted patrols did not significantly alter trend detection performance, even 

when underlying poaching hotspots were simulated to change over time.  In a simulation model 

of ranger-based monitoring in a reserve in Madagascar,  Keane (2010) found that spatially-

biased patrols can confound temporal trends in snare detections. In a broader review, Keane 

et al. (2011) discuss how spatially-biased patrols can alter detection efficiency through time, 

confounding temporal trends. In Chewore, however, elephant poaching is not strongly 

clustered into hotspots, such that patrols based on previous detections are less susceptible to 

bias than in other contexts. A combination of changing hotspots through time and targeted 

patrolling in Chewore did, however, lead to a slight increase in the likelihood of detecting 

trends when there were none (Fig. 4.S5). Targeted patrols are more ‘hit and miss’  compared 

to spatially random patrols, in the sense that they may lead to large increases or decreases in 

detections over time independent of real changes in poaching, depending on the location 

patrolled.  Lower baseline carcass detectability had only a small adverse effect on temporal 

trend detection, compared to the large effect observed for spatial trend detection. This may 

be explained by smaller sample sizes of detections in this scenario still being able to capture 

relative changes in poaching over time, whereas these same small sample sizes are not 

adequate to capture underlying spatial variation in poaching. When the absolute level of 
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poaching was reduced from 1% versus 3%, however, reliable temporal trend detection from 

ranger patrols became almost impossible, even for large (75%) simulated trends in poaching. 

This is another sobering result; a 1% poaching rate per year translates to 30 elephants in 

Chewore, which may still be considered unacceptably high.  

 

A particularly interesting result was that increases in poaching were consistently harder to 

detect than decreases in poaching (Fig. 4.13). Under constrained conditions, even large 

increases in poaching were almost undetectable even with reasonably high levels of patrol 

effort. This has important management implications in that an intensifying poaching threat may 

be hard to detect. Why was this effect observed? The discrepancy is due to important statistical 

anomaly which may be explained by the fact that, when investment in gathering evidence is 

low (as is the case with ranger patrols covering only a limited area of a large park), it is harder 

to find evidence of a real increase (i.e., find more carcasses) than it is to find evidence of a real 

decrease (i.e., find fewer carcasses over time). This is because, as detectability is not perfect, 

modelled patrols are generally biased towards not finding carcasses, independent of the 

magnitude and direction of the trend in poaching. This bias improves the power to detect 

decreasing trends but reduces the power to detect increasing trends.  For simulated increases 

in poaching, it may take a while before patrols (even random ones) happen to encounter cells 

where poaching increases are happening. Even when they do, carcasses might have decayed 

by then and become less detectable. Therefore, it is difficult for patrols to perform well in this 

scenario. However, with declining trends, it is not a case of trying to find new poached carcasses 

and failing. Even if declines are not happening in patrolled areas, carcasses are decaying quickly 

and becoming less detectable, so declines in detections happen both in areas where decline 

are actually happening, and in other areas. Supporting this idea, examination of trends in 

detected carcasses in a number of simulation replicates across different scenarios show that 

ranger carcass detections take a while to increase after the simulated increase in poaching 

starts, whereas ranger detections decline more immediately after a declining trend in 

poaching. This reasoning is also supported by the fact that increases in poaching simulated to 

occur over 3 years (rather than the 2 years used for all other simulations) were more 

detectable, because patrols were allowed more time to detect the change (Fig. 4.S5). These 

results are similar to that of (McConville et al., 2009) , who found that the magnitude of declines 

in saiga antelope populations can be overestimated by aerial surveys because true population 

sizes are underestimated at lower population densities.   
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Using ranger-collected data to measure spatial patterns in poaching 

 

Of all patrol characteristics and strategies, patrol effort had the largest overall effect on spatial 

detection performance. At low patrol efforts, small increases in effort led to large increases in 

performance (e.g., increasing effort from 3 to 9 patrols/month led to a 50% increase in spatial 

congruence between real and detected poaching). Notably, however, increasing patrol effort 

beyond 9 patrols per month (a medium level in the context of Chewore) led to only very small 

increases in how well reported poaching captured true spatial patterns in poaching. This held 

true when there were additional constraints on detections (e.g., lower detection probabilities 

and constrained patrols). Thus, park managers with limited patrol budgets need not invest in 

very high patrol effort to adequately capture spatial patterns in underlying poaching. This is a 

significant result when one considers how important understanding spatial patterns in 

poaching is to the patrol strategies developed by park managers (Critchlow et al., 2015). 

Indeed, identifying spatial poaching hotspots is the most common use of ranger-collected data 

in Chewore (see Chapter 6, Table 6.1). This result that spatial pattern detection requires a 

threshold sample size of detections in order to adequately capture the range of spatial variation 

in underlying poaching patterns. This is also borne out in the observed effect of reduced carcass 

detectability having a significant adverse effect on spatial detection performance. Similar to 

the effect of patrol effort, this is likely due to small sample sizes that are inadequately 

representative.   

 

Constraining patrols to areas closer to ranger stations had a notable (and perhaps obvious) 

adverse effect on spatial trend detection, as carcasses in less frequently patrolled areas were 

not accounted for. This may be an important driver of spatial bias in actual ranger-collected 

data in Chewore. Indeed, the empirical data set of 187 poaching incidents in Chewore revealed 

large spatial gaps in detections and Chapter 3 confirmed that these were in areas that are 

difficult to patrol and therefore less often visited (Kuiper et al., 2020). Surprisingly, patrols 

simulated to target areas of higher previous carcass detections performed very similarly to 

spatially random patrols.  One of the most common criticisms of ranger-based monitoring data 

is that it is typically gathered from spatially biased patrols and so needs to be interpreted with 

caution (Critchlow et al., 2015). In a comprehensive review of ‘messy data’ for conservation, 

Dobson et al. (2020) highlight spatial bias as a common problem with ranger-collected data and 

other similar datasets like citizen science observations. Indeed, accounting for this spatial bias 

was a primary motivation for the methods developed in Chapter 3 of this Thesis (Kuiper et al., 

2020). The virtual ranger model presented here, however, shows that basing patrols on 
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previous detections does not lead to significant patrol bias if the underlying distribution of 

poaching is sufficiently spread out, as is the case in Chewore. This is discussed further below.  

 

Spatially targeted patrols do not bias results 

 

Scenarios in which patrols actively targeted areas where there were high detections of poached 

carcasses in the past performed very similarly to patrols that were completely spatially random. 

One might expect that the targeted strategy would result in ‘confirmation trap’ effects whereby 

detections are biased away from true patterns and towards a set of high patrol/detection areas 

(Dobson et al., 2020). This would have obvious effects on how closely the spatial pattern of 

detections match true spatial patterns (see Chapter 3; Kuiper et al., 2020), but would also 

confound temporal trend detection in cases where targeted areas do not adequately represent 

park-wide trends. Yet no evidence was found for these effects in my model, even though the 

probability of patrolling a cell was directly proportional to previous detections (a cell in which 

three carcasses had been detected in previous time steps was three times more likely to be 

patrolled than a cell in which one carcass had been detected).  Even when hotspots were 

simulated to change through time (which would be expected to cause targeted patrols to 

perform particularly badly as previous detections would not be a good predictor of future 

poaching locations), no such effect was observed.   

 

Scenario exploration helped determine that this was due primarily to the relatively low levels 

of aggregation in the underlying poaching data, whereby simulated poached carcasses were 

fairly well spread out across Chewore based on parameterisation using the spatial models of 

empirical data from Chewore (Chapter 3; Kuiper et al., 2020). When the aggregation of 

carcasses was simulated to levels much higher than observed for Chewore (Fig. 4.17), then 

targeted patrols performed more poorly. Thus, unless carcasses are highly aggregated in space, 

targeted patrols are unlikely to focus exclusively on a few ‘hotspots’ of high previous detections 

because previous detections are likely to be more spread out in the first place. These results 

challenge the commonly cited critique of ranger patrol data and indeed many other forms of 

sampling – that is, spatial bias towards areas of expected high detections. The suitability of 

spatially targeted sampling will be context-specific and must be weighed up against the obvious 

advantages of potentially higher detections or poacher apprehensions from well-informed 

biased sampling (Critchlow et al., 2016). The intuitive negative effects of spatially targeted 

patrols did become apparent in the simulation with highly clustered carcasses (i.e., when there 

were distinct poaching hotspots), which may be the reality in many contexts (see Rashidi et al., 
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2017). Also, as discussed above, targeted patrols may be more susceptible to detecting trends 

when there are none, even when carcasses are not heavily clustered.  

Importantly, this result demonstrates a key advantage of the virtual ranger simulation 

approach: it can produce non-intuitive results that challenge the simplistic assumptions we 

make about expected effects, suggesting that decisions based on intuition alone can be 

misleading in some contexts. Furthermore, the mechanisms behind unexpected effects can be 

better understood through virtual experimentation (as I have done through altering the 

simulated level of the spatial clustering/spread of carcasses). Finally, this result also provides 

evidence that the virtual ranger model is functioning as expected and accurately representing 

interacting processes. Targeted patrolling would be expected to produce more biased results 

when hotspots are more concentrated as patrols are more likely to ‘latch on’ to particular areas 

of high poaching intensity and keep patrolling there.  

 

Critical reflection on the virtual ecologist approach 

 

The virtual ranger model developed here may be considered a general framework with 

potential  application to a wide variety of contexts. The essential elements are (a) an ‘operating 

model’ that represents the study system, and specifically the underlying spatial pattern and 

temporal trend of the particular system process of interest, and (b) a ranger observation model 

that represents the process by which data on this process are collected. While these essentials 

are common to virtual ecology models already developed for many different types of wildlife 

monitoring (Jones et al., 2017; Ling and Milner-Gulland, 2007; Nuno et al., 2015), the 

framework I develop in this Chapter is tailored to an observation process involving ranger 

patrols, with the unique features that such a monitoring process entails. Various features of 

the ranger patrol process are modifiable within the model (such as effort, coverage, 

detectability, and the size and path of individual patrols), allowing for adaption to ranger-based 

monitoring in other contexts. Similarly, the abundance and spatio-temporal pattern of the 

underlying system process (in my case elephant poaching) can be modified to represent any 

number of biodiversity or threat patterns for which rangers might collect data.  

 

It is important to note that the focus of the virtual ecologist approach is less on precisely 

representing the true state of the system, but rather on creating a realistic set of possible 

scenarios and then testing whether data collected according to a defined observation process 

are a robust representation of these scenarios. The approach allows for the experimental 
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variation of key features of this process (e.g.,  sampling intensity, detectability biases) and 

interpretation of how each of this affects how closely monitoring data represent the simulated 

reality. Indeed, a significant advantage of this method is that it avoids the costs of real-world 

experimentation (Milner-Gulland and Shea, 2017). Nonetheless, the usefulness of the results 

for reality is still dependent on understanding the processes and approximate parameter 

ranges and functional forms that operate in the real world. This is why I chose to closely 

parameterise the models developed here to the current elephant poaching and ranger patrol 

dynamics in Chewore. It follows that the fruitfulness of applying the model developed here to 

other contexts will in large part depend on the quality of data available to parameterise the 

operating and observation models.  

 

One significant process that I did not include in this virtual ranger model is the effect of 

deterrence, whereby the spatial pattern of ranger patrols influences where poachers choose 

to poach (Moore et al., 2018). Such a process may have large implications for patrol-based 

trend detection. The extent to which such a process occurs in Chewore is not clear, however. 

Also, the underlying empirical data used to parameterise the simulated distribution of poached 

carcasses represents the ultimate outcome of several processes affecting the spatial pattern of 

poaching. Thus, the effect of any real-world deterrence will be represented in these data, and 

the simulations based on them.  Another caveat is the method used for measuring the 

performance of spatial trend detection, that is, the correlation between real and detected 

poaching. The challenge with the correlation-based approach I employed is in its 

interpretation. How large must the difference in the spatial correlation performance between 

two patrol strategies be in order to be significant enough for managers? Visual plots of the 

spatial distribution of real versus detected poaching are more helpful in this respect but are 

difficult to turn into measurable quantities.  

 

Similarly, the method used for assessing temporal trend detection performance may be unduly 

conservative (i.e., underestimate patrol performance) when measuring the power to detect 

small to medium temporal changes in poaching. This is because trends in the underlying 

simulated data itself may not be statistically significant. This, in turn, may be due to a 

combination of small sample sizes, random variation in poaching from month to month, and 

the small magnitude of simulated change (see, for example, how the simulated data in the top 

panel of Fig. 4.19 in do not show a statistically significant trend for some replicates even though 

a decline in poaching was simulated). Finally, the methods used to assess spatial and temporal 

trend detection performance take into account all carcasses detected, regardless of how old 
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the carcass is. In reality, managers might use only data on fresh carcasses to detect trends, for 

example. The majority of detections did however constitute carcasses less than a year old (due 

to reduced detectability for older carcasses). Assessing the sensitivity of trend detection to 

whether or not all or only fresh carcasses are used is an area for future exploration. More 

generally, the quantitative criteria used to assess the power of patrols to detect trends may be 

considered too strict, and more qualitative indications of trends from ranger-collected data 

(which may not be statistically significant) are appropriate and sufficient for management.  

 

Conclusions  

 

Under current conditions in Chewore (intermediate patrol effort that is often spatially 

constrained), ranger-collected data are unlikely to have strong quantitative power to detect 

trends in poaching. This finding does depend on aspects of patrol performance that can be 

manipulated by managers, however.  Different patrol characteristics (effort, coverage, spatial 

pattern, etc.) have markedly different effects on the accuracy and precision of patrol data in 

terms of capturing underlying poaching patterns, with some non-intuitive outcomes (such as 

spatially random and spatially targeted patrols performing very similarly or increases in 

poaching being far less detectable than decreases of the same magnitude). Furthermore, the 

relative importance of different patrol characteristics for achieving reliable detection 

performance depends to a large degree on the particular management question (the 

magnitude of change in poaching that managers wish to detect reliably, for example). These 

results emphasize the importance of being clear about what the goals of monitoring are and 

assessing monitoring designs in light of these goals. In the context of Chewore, results caution 

against placing too much confidence in the power of ranger-based monitoring to answer 

certain management questions and encourage more careful consideration of appropriate ends 

for ranger-collected data.  
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4.5. Supplementary Material 

 

 

Figure 4.S1. The half-normal function used to simulate the change in the probability of a park 
grid cell being patrolled as a function of its distance from the nearest main ranger station (see 
Fig. 4.3 in the main text).  

 

 

 



 113 

 

 

Figure 4.S2. The effect of various ranger patrol characteristics on the performance of ranger-
collected data at capturing temporal trends in elephant poaching of different magnitudes. 
Trends were simulated to occur over 24 time steps (representing a 2-year period), from a 
baseline poaching rate of 90 elephants p.a. (3% of the population). Power is measured as the 
proportion of simulation replicates for which a statistically significant change in ranger-
detected carcasses was observed in the year before versus the year after the trend in poaching. 
Patrol characteristics include effort (number of patrols per month), spatial patrol pattern 
(random or targeted to areas of high previous detections), and patrol coverage (constrained to 
areas near the main ranger stations or not). The effect of poaching hotspots changing over time 
is also shown.  
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Figure 4.S3. The effect of patrol characteristics on the probability of ranger patrols making the 
error of recording a significant change in poaching levels when in fact there was no temporal 
change in poaching. Measured as the proportion of simulation replicates for which a 
statistically significant trend in carcass detections was observed. A poaching rate of 90 
elephants per year (3%) was simulated and remained constant. Lines represent simple linear 
model fits.  

 

 

Figure 4.S4. The effect of the period over which the simulated poaching change occurs, on the 
power of patrols to detect temporal changes in poaching (25%, 50%, and 75% increases and 
decreases from the baseline). Scenarios with and without poaching hotspots changing through 
time, and constraints on patrols, are shown. Data are shown only for targeted patrols (results 
for random patrols were very similar). 
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Figure 4.S5. The spatial congruence between real and detected poaching: the effect of various 
patrol characteristics on the cell-wise spatial correlation between the real number of elephants 
poached and the number of poached elephant carcasses detected in each of Chewore’s 712 
grid cells. Simulated poaching intensity was constant at 3% (90 elephants per year) and 
correlation was determined for a 3-year period in the middle of the simulation period.  
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Figure 4.S6. The effect of the baseline detectability of poached elephant carcasses (Higher - 
70% and Lower -  50%, see methods text) on (A) overall carcass detections, and on the 
performance of ranger patrols at capturing (B) temporal and (C) spatial patterns in poaching.  
Data are shown for an intermediate level of patrol effort of 9 patrols per month (the closest to 
the current reality in Chewore), and only for targeted patrols (results for spatially random and 
mixed patrols were similar). 
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Chapter 5: Ranger perceptions of, and engagement 

with, monitoring of elephant poaching 

5.1. Introduction 

Monitoring changes in biodiversity and threats within protected areas is essential for 

understanding their status and evaluating conservation interventions. Collecting systematic, 

robust data on features like wildlife distribution or poaching levels requires technical capacity 

and resources, as do later analytical stages in the adaptive management cycle (Canessa et al., 

2015). Therefore, when resources for management are scarce, more direct interventions (like 

anti-poaching operations) may be prioritised over baseline monitoring (Nuno et al., 2017). 

Rangers across the world spend large amounts of time patrolling extensive areas and are 

therefore well-placed to make observations of illegal activities and biodiversity. Ranger-based 

monitoring is thus a valuable management resource, providing a cost efficient alternative to 

skill and resource intensive ecological surveys (Gray and Kalpers, 2005; Kuiper et al., 2020).  

Rangers must, however, balance collecting data with other patrol-based activities such as direct 

law enforcement and anti-poaching (Moreto and Matusiak, 2017; Stokes, 2010). Ranger-

collected data may also be subject to systematic bias because patrols are seldom consistent 

over space and time, and favour certain areas and species over others (Dobson et al., 2019).  

 

I use the term ‘ranger’ to refer to “a field-based operative whose regular work involves 

surveillance, protection and maintenance of species and ecosystems” (Belecky et al., 2019). I 

define ranger-based monitoring as the collection of data by rangers, which may include 

evidence of illegal activity, animal sightings and behaviour, and vegetation status (Gavin et al., 

2010).  The global programme for the Monitoring of the Illegal Killing of Elephants (MIKE) is a 

prominent example of the value of ranger-based monitoring.  Rangers across 90 MIKE sites in 

30 African and 13 Asian countries report elephant mortality data from regular patrols. The 

resultant data is used both for local protected area management and to inform international 

wildlife trade policy (CITES Secretariat, 2019). The large information potential of ranger-

collected data has encouraged quantitative research into understanding and overcoming 

biases inherent in these data, such as effort-adjusted indices (Dobson et al., 2019) and 

hierarchical statistical models (Critchlow et al., 2015). Furthermore, quantitative models have 

been developed for translating biased data into future patrol strategies (Fang et al., 2017). 

Significantly less work, however, has investigated the social and human dimensions of ranger-

based monitoring, such as ranger occupational culture, and how these intersect with the day-
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to-day realities of being a ranger. Therefore, an important prerequisite for understanding the 

mechanisms underlying the process of ranger-collected data is missing; modelling alone cannot 

provide the insights required for more effective protected area management. 

 

A recent survey of over 7100 government rangers across 28 Asian and African countries 

revealed that 50% of rangers lack access to clean water, one in three contracted malaria in the 

preceding year, and less than a fifth of the 74% who are married were able to live with their 

spouses (Belecky et al., 2019). Rangers’ salaries are often low, and they feel under-equipped, 

while 81% of rangers believed their jobs were dangerous.  Seminal qualitative work on ranger 

perceptions has provided rangers’ insights into poacher motivations (Moreto and Lemieux, 

2015), the occupational stresses they face (Moreto, 2016a), their relations with local 

communities (Moreto et al., 2017), and their understanding of professionalism and misconduct 

(Moreto, Brunson & Braga, 2015; Massé, 2020). These studies are unified in their 

demonstration of the value of meaningfully engaging rangers in conceptualising and tackling 

conservation problems, rather than seeing them as passive nodes through which conservation 

strategies are enacted. The well-being and perceptions of rangers are important both ethically 

(they are at the frontline of conservation management), and practically (the sustainability and 

rigour of ranger-based monitoring relies on commitment from rangers).  

 

Drawing on these insights, I argue that understanding the value that rangers ascribe to data 

collection requires understanding the context of their broader occupation, and specifically 

ranger occupational culture. Occupational culture encompasses the shared norms, values, 

beliefs, and priorities of members of a particular occupation (Van Maanen and Barley, 1982). 

The culture developed among a group of people in the same occupation defines what is valued, 

emphasised and accepted in this community, and therefore influences behaviour and conduct 

(Christensen & Crank, 2001; Schein, 1990). Occupational culture focuses on human behaviour 

and social processes through the lens of occupational communities, rather than the lens of the 

organisation, to help explain social behaviour and performance in the workplace (Van Maanen 

& Barley 1982). Glomseth, Gottschalk, & Solli-Sæther (2007), for example, identified four 

dimensions of occupational culture amongst police officers in Norway, finding that the extent 

and nature of ‘team culture’ had a significant influence on knowledge sharing amongst officers 

during police investigations. Importantly, occupational culture has a direct bearing on 

performance at work. Occupational culture is thus a useful lens to understand how members 

of an occupation (rangers) engage with a particular aspect of their work (data collection and 

monitoring), in order to identify pathways to more effective organisational practice.  
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Using a case study of rangers involved in a long-term programme for monitoring and managing 

elephant poaching in the Zambezi Valley, Zimbabwe, I draw on insights from occupational 

culture as well as existing work on ranger perceptions and culture to examine and understand 

a core aspect of rangers’ work, namely data collection and monitoring. I ask the following 

questions:  

 

1. How do rangers perceive their occupation: what values and motivations typify their 

work? 

2. What importance do rangers ascribe to data collection within this broader occupation?  

3. Are rangers involved/aware of how the data they collect are used for conservation 

management?  

4. What influences how engaged rangers are with ranger-based monitoring? 

 

Finally, I discuss how rangers’ level of engagement with monitoring might affect data quality 

and the evidence-based management that depends on it. 

5.2. Methods 

Study area and field work 

 

I conducted research in two adjacent protected areas in the Zambezi Valley, Zimbabwe: 

Chewore Safari Area, and Mana Pools National Park, both managed by the state wildlife 

authority. Together with Sapi Safari Area, these form the Mana-Chewore World Heritage Site 

(see Fig. 5.2 in Chapter 2 for a map of the study area). The elephant population in the broader 

Zambezi Valley has declined from c. 20 000 in 2003 to c. 11 000 in 2014, mainly due to poaching 

(ZPWMA, 2015). Chewore, Mana and Sapi are MIKE (Monitoring of the Illegal Killing of 

Elephants) sites, with large numbers of poached elephant carcasses detected by rangers in 

recent years (CITES Secretariat, 2019). Rangers encounter elephant mortalities (poached and 

natural) while on regular patrols, with data from these sites reported annually to MIKE offices 

at regional and global levels. I visited two ranger bases in each of Chewore and Mana, between 

the 1st and 24th of August 2018, living in ranger accommodation in close proximity to rangers 

themselves. This allowed for many informal conversations with rangers, supervisors, and 

observation of their daily activities (recorded using field notes). I also accompanied rangers on 

two day-long patrols to observe first-hand how rangers collect data.  
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Figure 5.1. The Mana-Chewore World Heritage Site, showing the four ranger bases at which 
interviews were conducted.  

 

Interviews, respondent recruitment and thematic analysis 

 

I conducted individual semi-structured interviews with park rangers and their supervisors 

(Table 5.1). The semi-structured format helped balance the need to stimulate discussion rather 

than elicit particular answers, while also maintaining focus on my research questions (Newing, 

2010; Young et al., 2018). Two types of respondent were interviewed: rangers (n=23) and their 

immediate on-site supervisors (n=8), out of a total of c. 94 rangers and 11 supervisors across 

the two protected areas. Each respondent was interviewed individually in a private room. At 

each of the four ranger stations, rangers were randomly selected for interview from those 

available in camp and not out on patrol (rangers take a few days off between extended patrols). 

I continued sampling until saturation was achieved, i.e. the point where more interviews 

yielded minimal new information (Ritchie, Lewis & Elam, 2013; Table 5.1). Rangers are directly 

involved in the collection and reporting of monitoring data, while supervisors are responsible 

for planning patrol deployments and supervising data collection. Both groups are employed by 

the Zimbabwe Parks and Wildlife Management Authority (ZPWMA). Each ranger interview 

comprised several broad areas of discussion (working conditions, the nature of patrols, 
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perceptions of the value of data collection, and involvement in data management and analysis), 

with several questions in each section (an interview guide is included in Appendix 2 of this 

Thesis). Supervisor interviews focussed on the extent to which elephant carcass data were used 

for management (analysed in Chapter 6), but also included questions on ranger supervision 

and monitoring (analysed here).  

 

Based on triangulation among interviews, personal observations, and the general impression 

given by respondents, I judged that responses were honest and did not find evidence for any 

strong social desirability bias. I established rapport with respondents by approaching them as 

a young student with no ulterior agenda, emphasising that he was not affiliated with any NGOs 

operating in the area or with the MIKE programme, such that respondents were willing to 

candidly share their frustrations. All respondents were male Zimbabwean nationals, except for 

two female rangers (there are very few female rangers overall). The families of the majority of 

respondents lived in towns outside the Zambezi Valley region.  

 

Table 5.1. The number of rangers and their supervisors interviewed at each of four ranger 
stations in the Zambezi Valley, Zimbabwe.  

 

Site and ranger station Rangers interviewed (mean # of 

years working at site) 

Supervisors interviewed (mean # of 

years working at site) 

Chewore safari area   

     Mkanga ranger station 9 (4.2 ± 2.2 years) 2 (1.5 ± 0.7 years) 

     Kapirinhengu station 5 (10.3 ± 5.0 years) 2 (4.6 ± 6.0 years) 

Mana pools national park   

      Mana pools station 7 (9.4 ± 4.0 years) 3 (5.63 ± 5.1 years) 

      Zavaru station 2 (9 ± 3.2 years) 1 (9 years) 

 

I analysed interview responses using thematic analysis to identify patterns of meaning in the 

data and then developed a narrative account of key themes in relation to the research 

questions (Braun and Clarke, 2006). Analysis started with a period of immersion in the data 

followed by the generation of flexible notes and annotations (Newing, 2010).  Nvivo software 

(QSR International Pty Ltd, 2018) was then used for thematic analysis, using a combination of 

deductive (focussed on my prior research questions) and inductive (bottom-up) coding (Braun 

and Clarke, 2006). The importance of a theme was judged either by its prevalence (repeat 

occurrence across and within respondents) or by how informatively it spoke to the research 
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questions (Braun and Clarke, 2006). This process was repeated once to check for reliability. I 

also categorized ranger respondents based on whether or not greater knowledge of how the 

data they collected are used would motivate more engaged future data collection. This 

involved coding the responses of each respondent (across a number of questions) that spoke 

directly to this theme, and then making a categorization assessment that reflected their overall 

sentiment. A conservative approach was taken to increase reliability, by including ‘mixed 

sentiment’ and ‘uncategorised’ categories for cases where the sentiment of the respondent 

was not clear. Responses were kept confidential and anonymous, and each respondent gave 

prior and informed consent for their participation. All procedures were granted ethical 

approval by the Human Research Ethics Committee at Oxford University (CUREC REF: 

R58336/RE001).  

5.3. Results  

Overview of ranger-based monitoring in the Zambezi Valley  

 

Rangers described having diverse duties, including patrols, law enforcement, fire management, 

road maintenance, monitoring of trophy hunts, and office duties (amongst others). Their 

primary responsibility was routine multi-day patrols. Typically, four rangers are deployed by a 

vehicle to a particular area of the park, either at a temporary or permanent camp, and remain 

for seven days. Each day is spent patrolling the surroundings in different directions (4-8 hours 

per day, within 5-10km of the base). A secondary patrol strategy involves rangers changing 

base every night or two, covering a more linear area. Less common patrol types include day-

long foot patrols from the main station, and 1-3-day vehicle patrols. Patrol areas are chosen 

based on expected illegal activity, animal distribution, water availability, and accessibility 

(Table 5.2). Monitoring illegal activities (elephant poaching, fish poaching, subsistence 

bushmeat hunting, gold panning, livestock encroachment, and others) is the main purpose of 

patrols. Rangers record evidence of illegal activity, large animal sightings, and water and 

vegetation status using notebooks (Table 5.2). Handheld devices for recording observations 

and patrol routes have recently been introduced but are not yet widely used. After patrol, 

rangers share results with their supervisors in a debrief session and discuss future patrol 

strategies. The patrol leader then compiles a handwritten report, describing the routes used 

each day and all notable observations (Fig. 5.3).   

 

A review of patrol reports showed that the directions of daily patrol routes and notable 

observations were consistently reported, with variation among stations in the detail provided 
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(Fig.3). GPS records of observations and patrol locations were inconsistent, however. Some 

patrols are not recorded, evident from comparing entries in patrol books to ranger interview 

accounts of recent patrols. Some patrols included future patrol recommendations. Detailed 

recording of elephant mortality is conducted at all stations as part of the MIKE programme (Fig. 

5.4), leading to significantly more detail and consistency (e.g., GPS locations, times and dates, 

auxiliary information) in reporting of elephant mortalities compared to other illegal activities 

and animal sightings.  

 

Table 5.2. A typology of data types collected by rangers in the Zambezi Valley, Zimbabwe. Data 
types are listed in order priority as judged by their frequency in rangers’ responses.  

 

Type of data collected Purpose 

Evidence of illegal activity (carcasses, 

poacher camps, poacher spoor, snares) 

Guide future patrol deployments. Measure anti-

poaching effort and performance 

Key animal species sightings (elephant, 

buffalo, lion, leopard, various antelope) 

An area of higher animal abundance requires more 

frequent patrolling 

Water status (whether rivers and springs 

are dry or active) 

Water points attract animals and are targeted by 

poachers. Rangers may also depend on water 

access during patrols 

Vegetation status Seasonal vegetation change is large and affects 

animal distribution and hence patrol strategies 

Animal behaviour  Distress can indicate poacher presence. 

Animal trophy quality  Discern potential hunting trophies 

Animal health Poor health can indicate water scarcity, disease or 

the need for supplementary feeding 
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Figure 5.2. The data cycle for the ranger-based monitoring and management system, showing 
four distinct stages. Line thickness around each stage represents the level of engagement of 
rangers in that stage (based on interviews and personal observations from Mana-Chewore).  
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Figure 5.3. Example of extended patrol reports from two different ranger stations in Chewore (2018). A1 and A2 constitute one patrol report (8-day patrol), while 
B shows data from three separate 7-day patrols (only the middle report is shown in full). Ranger names and GPS locations have been removed. 

A1 A2 B 
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Figure 5.4. Examples of completed MIKE forms used by rangers in Mana Pools and Chewore to record elephant mortalities. A1 and A2 constitute the older form 
style (used 2009-2016), while B shows the condensed version (used from 2017).  GPS locations and ranger names have been removed.  

 

A1 A2 B 
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Rangers’ appreciation for the broader value of monitoring data 

 

Interviews revealed several possible reasons for poor ranger engagement with monitoring, 

including the time it takes to record data in the field, limited capacity to use devices like GPSes, 

and the feeling that data recording devices were tracking ranger performance. A deeper, and 

perhaps more prominent, reason for poor engagement is a low level of appreciation for the 

broader purpose of data collection. Whilst rangers value data collection as an important duty 

to their supervisors, they tended not to value data for its own sake and tended not to see its 

broader importance for management.  Rangers stated that they received minimal feedback on 

how the data they collect was used by site supervisors. “I can’t lie to you…Since 2014 I have not 

had any feedback” (ranger 1). Yet many rangers were eager to know more about how their 

data were used: “We are the ones who collect, so we want to know, the data we are collecting, 

where is it going and how it helps us?” (ranger 9). This desire for knowledge and feedback might 

be explained by the need for rangers to feel that their work is important and that they are doing 

it well: “Feedback is very very important; it shows that you are doing something very nice…it 

will show that the information I am bringing is vital" (ranger 16). Rangers described how being 

more actively involved in managing and using the data they collected would motivate greater 

effort in data collection: 

 

“It’s good to also know how to enter the same data into the computer…this will 

give you a passion to, you know, do it [field data collection] very very accurately 

since you will be the one who will enter the data. Also, that ranger who provides 

the information should be able to analyse, to explain what is happening pointing 

on the map, not just the supervisors. At the end of the day…you will see 

[understand] what you were doing in the jungle [field]…so your effort will be more.” 

(ranger 23) 

 

“Rangers should know these things [how data are used]…so that they do it in a 

good way…if they don’t have that information, one can leave the carcass without 

recording.” (ranger 21) 

 

Nevertheless, out of deference to their supervisors, some rangers did not expect feedback: "On 

that one I don’t mind… that is all up to him [my supervisor]...I can’t say to him ‘why you are not 

using my information’” (ranger 12). Overall, rangers appear to face a tension between simply 
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fulfilling data collection as a duty, and a desire to know more and be involved in the full data 

cycle:  

 “Now for me I am OK…I collect exact data from patrol and give to our officers here, 

I am happy to just collect the data. And also, to know everything also, from the 

computer and how to send the data...I just want to know, I am interested.” (ranger 

20) 

 

Although most rangers expressed mixed sentiments, a fair proportion expressed the sentiment 

that they would be more engaged with their data collection duties if they knew more about 

how the data they collected were used (Fig. 5.5). Many rangers desired more involvement in 

the full ranger-based monitoring and management cycle. “They [supervisors] must teach us 

that information we keep for the reason A, B, C [management procedure]. Then I know when I 

see another carcass I can come and report with a punch because I know what I am doing” 

(ranger 17). The potential gains from a greater awareness of the value and use of data amongst 

rangers may be significant. Rangers variously said that greater awareness would lead to “more 

precise and more focussed” monitoring (ranger 18), “with a punch” (ranger 17), that is carried 

out “very very accurately” (ranger 23). Supervisor interviews suggested, however, that they 

themselves do not always buy into data-driven adaptive management and may prefer to use 

personal intuition and institutional memory as a guide: “Graph or no graph, I know my area” 

(supervisor 1) (see Chapter 6 for more on manager perspectives).  

Figure 5.5. Based on their answers to several questions, the 23 ranger respondents were 
assigned to four categories based on whether greater involvement or knowledge of how data 
were used for conservation management would likely motivate more engaged data collection. 
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The strategic use of individuals can help catalyse an ethos of ranger ownership of data 

collection and monitoring. During the research, I identified several individuals that I refer 

to as “data champions”, who I define as those who took active ownership of monitoring 

and had the potential to engender a greater appreciation for the value of data among 

the wider ranger group. Feelings of ownership of ranger-based monitoring and 

management must start at higher levels, however, as one supervisor remarked: “Without 

them [supervisors] being interested, I don’t think the rangers will be. You cannot force 

someone to do what you are not doing” (supervisor 9). Another supervisor with 

significant previous experiences as a ranger demonstrated a particularly deep 

appreciation for the value of data: 

 

“Some rangers do not appreciate the use of data…so when you tell them to collect 

data in the field, they end up compromising the whole lot because they don’t see 

the value of the data. They don’t understand the actual essence of data collection. 

We need to involve them [rangers] in whatever we do so they can start to 

appreciate the data collection.” (supervisor 9) 

 

As an example of a data champion, this supervisor organises weekly individual sessions with 

rangers to train them in data entry and show them maps and graphs of the data they collect.  

Rangers may also have an important role as data champions. One ranger was given 

responsibility for managing the SMART data management system at his station and he felt 

strongly about the value of data for management, an attitude he wanted to inspire among 

other rangers:  

 

“When new things come into place [SMART]…there is that resistance…but if 

someone of their rank is doing it and then explains to them, they really understand. 

If you know the importance of the data, then you have to be more precise and more 

focussed. When we started this SMART thing, rangers thought these guys wanted 

to monitor their movements, but then I explained that we need this data for us to 

get donor funding and for us to go to CITES to argue for the process of selling 

ivory…and now they [rangers] are starting to appreciate it.” (ranger 18) 
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Another ranger had experience with patrols and monitoring for 11 years and had recently 

become involved with data management. His experience suggested rangers may become 

apathetic about data collection if they do not see tangible outcomes: 

 

“If you send someone to do data collection at the end of the day you have to come 

back and say, ‘Oh with that data you have collected I have come up with such and 

such...’. If they don’t see a tangible outcome, they will focus only on law 

enforcement and leave this monitoring.” (ranger 21) 

 

Next, I examine how ranger occupational culture might intersect with this mixed engagement 

and appreciation for monitoring.  

 

The occupational culture of rangers  

 

I identified three specific elements of the broader occupational culture of rangers that 

influenced ranger engagement with monitoring: (1) a strong sense of duty and service, (2) 

deference to authority, and (3) rangers understanding their defined role in the organisational 

hierarchy. These are interconnected; rangers see their duty as fulfilling their defined roles 

within the organisation and as a way of serving their supervisors. These three elements 

permeated interview responses. While they do not comprehensively describe the occupational 

culture of rangers at my site, they did have a significant bearing on rangers’ stated motivations 

and behaviours (especially in relation to monitoring but also more generally; Table 5.3).  

 

Rangers have a strong sense of duty 

 

Rangers demonstrated a strong sense of their responsibilities within the organisation, and a 

desire to fulfil them: "I will do any duty assigned to me" (ranger 8). The most commonly 

reported motivation for rangers’ work could be summarised simply as “That is our duty” (ranger 

9). 

“I have a feeling that I need to finish my goal. I need to catch the poacher…I’m just interested 

in doing my job, the results I get motivates me.” (ranger 22) 

 

Rangers described their dominant duties as (1) monitoring and reporting on illegal activities: "I 

will keep on collecting data for them [supervisors], that is my job" (ranger 10), and (2) defending 
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wildlife from poachers: “We are here to conserve, so that no one is going to disturb our animals” 

(ranger 20). Rangers saw their duty as to their supervisors, their organisation, their country, to 

future generations, and to their God (Table 5.3). A sense of duty repeatedly emerged in a 

variety of discussions, from the purpose of patrols and data collection, to the challenges and 

motivations of being a ranger (Table 5.3). The notion of duty was closely tied to deference to 

authority, particularly that of on-site supervisors. This points to the second identified 

dimension of ranger occupational culture: A strong motivation for rangers to fulfil their duties 

is pleasing their supervisors and others above them in their organisation. 

“I make sure everything is in order on behalf of my supervisor…I do good things for my 

supervisors, for the department, and for the country. If I do wrong, I do wrong for 

everyone up the ladder.” (ranger 14) 

 

Rangers defer to authority 

 

Questioning supervisors may occasionally happen but is mostly considered inappropriate: 

“According to the military...it says that the seniors come first, and the juniors follow...if you say 

jump, I will jump.” (ranger 9). Rangers were mostly content with occupying the base of the 

organizational hierarchy: “We are the foundation of the organisation as rangers, that makes 

me enjoy my job" (ranger 14). While supervisors were often authoritative and commanding, 

there was variation among camps in the ranger-supervisor relationship. One supervisor, for 

example, espoused service leadership: “To be a leader does not mean you know everything…I 

am happy to learn from junior staff” (supervisor 4). Rangers perceived this supervisor as 

exceptionally kind and were motivated by his consideration. The role of the character of 

supervisors in influencing ranger motivation was more generally evident: “The sort of response 

we get from the management team whenever we have got some problems… that gives me more 

appetite, that motivates me for my duty.” (ranger 16). Some rangers, however, complained of 

negative judgement from their supervisors, “We need a leader not a judge…who listens to us, 

who asks: ‘Give us your point of views’. Not just someone who says, ‘do this’” (ranger 1). While 

ranger responses indicated a respect for and deference to hierarchy, rangers themselves 

sought respect and recognition by their supervisors: “The bosses must appreciate and say, ‘ah 

guys you are doing a good job’…we need thanks each and every time. For example, if you are 

staying with your children, when the children doing nice for you, we say ‘thank you very much’” 

(ranger 17).  
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Rangers understand their defined role within the organisational hierarchy 

 

Rangers had a strong sense of their defined place in the organisational hierarchy, as distinct 

from their supervisors.  This is tied to their sense of duty: rangers understood that they were 

responsible mainly for patrolling and reporting findings, and their supervisors were responsible 

for planning deployments and anti-poaching strategies. “I do my part, he [the supervisor] has 

got his part, each one has got his role” (ranger 6). Whilst rangers actively participate in verbal 

patrol brief and de-brief meetings, sharing their opinions and concerns, they are generally 

content with leaving the development of management strategies to supervisors. One ranger 

used a powerful analogy, comparing the separate roles of rangers and supervisors to separate 

roles within a family: 

 

“Like in your family there are some things like 'this is for father, this is for mother, 

this is for children’...if I play my role [collect data from the field] it is enough.” 

(ranger 14) 

 

The defined role of rangers, and their responsibility to their supervisors, is reinforced by on-

site supervisors: "I am a senior ranger; my duty is to instil discipline. Before deploying I sit with 

the rangers and then I will tell the guys the role they should play in field. What they should do 

and what they must not do. Then we sign a form, so that we agree that the guys will do their 

duty” (supervisor 7). I now examine how the above aspects of ranger work and culture 

influence data collection practices.  

 

Key elements of ranger occupational culture shape engagement with monitoring 

 

The three elements of ranger occupational culture identified above help explain how rangers 

approach and perceive data collection, the importance they ascribe to it, and their level of 

awareness of and involvement in stages after data collection (Table 5.3; Fig. 5.2). I began this 

work with the expectation that the level of understanding and appreciation of the value of data 

amongst rangers would correlate with their level of engagement with ranger-based 

monitoring. A notable outcome of interviews is the strong theme of data collection as a duty, 

together with the abovementioned calls for more active ownership of the data management 

and use cycle.   
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Rangers perceive data collection as a fundamental duty, to which they ascribed a high level of 

importance. The majority of rangers’ time is spent on patrol, with rangers describing the 

monitoring of illegal activities as the main purpose of patrols. In this context, a sense of duty is 

central: "Whilst you are in patrol you specialise on finding animals and illegal activities, I enjoy 

it because it’s part of my job…I have to.” (ranger 9). Rangers also take pride in their role as the 

‘ears and eyes’ on the ground: “They use our information…because we are the right people on 

the ground” (ranger 12). Relatedly, rangers considered data collection to complement their 

anti-poaching role: " When I am collecting data it can lead me into apprehending a poacher or 

knowing how the poachers are moving" (ranger 13). Reporting data collected on patrols to their 

supervisors, especially illegal activities, is a primary way that rangers demonstrated fulfilled 

duty: “As a duty as a ranger, you would go out on patrol and bring something from the field to 

show you have done your job” (ranger 12). This attitude is re-enforced by supervisors:  

 

“We have standard operating procedures for anti-poaching and data collection. We 

came up with standing orders…it will force rangers to love data 

collection…everyone who goes on patrols, they have to collect data…when they 

come back they have to tell us what they collect.” (supervisor 7). 

 

While the ranger-based monitoring and management cycle involves multiple stages after data 

collection – office data entry, reporting of data to regional and national levels, data analysis, 

and finally the use of data to inform management and patrol strategies (Fig. 5.2) – rangers’ 

involvement in this cycle is limited, and tends to end with data collection. Rangers nonetheless 

have a good basic understanding of why they are required to collect data (Table 5.2):  

 

 “Data collection is needed in the field.  It will be used for management purposes. If 

I go out and don’t collect information, [the supervisors] won’t know what is there. 

So, data collection is very important. You can’t keep deploying people to where 

there is no animal sightings.” (ranger 22) 

 

The most commonly mentioned reason for collecting data was to identify poaching hotspots: 

“The carcasses within the area are the indicators of hot areas” (ranger 13). A few rangers 

described the value of data as a tool for measuring anti-poaching performance: “By looking at 

the carcass numbers you can see this year we have received a defeat…and look at the factors 

which have contributed to your failure, was it a shortage of manpower?” (ranger 16). Yet 
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rangers tend not to know the details of how their supervisors use monitoring data: “I just pass 

the data through to my supervisors. Maybe they are the ones who do that [manage the data]” 

(ranger 10). Rangers generally see the management of data, and its use for future deployments, 

as the responsibility of supervisors: “We can give the information to our bosses, so they know 

where to deploy us” (ranger 2). Whilst rangers did have a good basic understanding of why 

animal sightings and illegal activities were important to report for anti-poaching purposes, they 

generally did not know the details of how supervisors used these data and tended to see stages 

after collection as beyond their remit. Yet, even though many rangers were not aware of how 

the data they collected on patrol were used by their supervisors, they still engaged with 

monitoring as a fundamental duty. The duty and deference elements of occupational culture 

identified here are crucial in explaining this discrepancy. Recording illegal activities and animal 

sightings while on patrol was seen by rangers as an important duty to fulfil and reporting such 

observations to their supervisors was one of the main ways they demonstrated a job well done.  

 

This suggests that data collection would continue even in the absence of a deeper appreciation 

among rangers of its broader purpose, as long as supervisors provide clear imperatives and 

instructions for it. Indeed, the greater consistency in the reporting of MIKE elephant carcass 

data versus regular patrol data (Figures 3 and 4) might reflect a clearer imperative and set of 

instructions to rangers in the case of MIKE data. Nevertheless, a fair proportion of rangers 

reported a desire to know more about how the data they collected were used, saying it would 

motivate more focussed and enthusiastic data collection (Fig. 5.5). The insights of the ‘data 

champions’ also suggested that a greater appreciation amongst rangers for the value of data 

was crucial to engaging them more effectively in monitoring and highlighted the possibility of 

compromised data collection in the absence of such an appreciation. On balance, my results 

suggest that whilst a sense of duty can motivate data collection to a certain extent, the quality 

(consistency, detail, etc.) of data (though not measured here) is likely to be improved when 

rangers appreciate the purpose of these data.   
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Table 5.3. Interview quotes illustrating (A) three elements of the occupational culture of rangers emerging from the interview responses, and (B) how these 
influence the level and nature of engagement of rangers with monitoring. 

DUTY AND SERVICE DEFERENCE TO AUTHORITY KNOWING THEIR DEFINED ROLES 

(A) As key elements of the occupational culture of rangers 

“When you come here, you forget to think about 
everything else, I just focus on doing my work" (R9)   

"I don’t want to lie. I want to tell my bosses exactly what I did on 
patrol” (R20) 

“We don’t choose as rangers…we are given areas to go by 
supervisors” (R3) 

“If I conserve elephants, I do it for the whole country, and 
for younger generations” (R14) 

"If the big bosses are here…we are not alone, we are not lost…his 
presence makes a very good motivation to rangers…we can follow 
that" (R5) 

" They [rangers] are the ones who are always on the ground, 
they are the ones I send on patrol to gather information about 
any illegal activity” (S3) 

 “We have to protect our heritage…that’s what I 
know…that’s what I feel”. (R1) 
 

"I make sure everything is in order on behalf of my senior ranger" 
(R14) 

“It is their [supervisors] duty to compile reports for station 
level and report to higher levels” (R14) 

"Adam was given a duty by God to take care of 
everything...this is the same job we as rangers were given 
to look after our wildlife" (R23) 

"I cannot tell him [supervisor] what to do...It is only I need to do 
what he wants me to do” (R12) 

“We have to learn from somebody, some people are strong, I 
need to follow them” (R12) 

(B) As key factors influencing ranger engagement with ranger-based monitoring 

“We are happy to bring back the information [data from 
field] because that is our duty” (R2) 

"I want to play my side and give my bosses exact information I get 
from patrols” (R20).  

"We collect the data, and we pass it onto our supervisors. 
Then they send it to their superiors at the regional level." (R10) 

“That is an operating procedure ...whoever is in the bush 
will be looking for those things [signs of illegal activity] 
...and informing the office" (S1) 

“I don’t know...the information will help them to supervise us…the 
supervisors know more…I am not sure how they use that 
information” (R19) 

“I have never seen those MIKE carcass forms.…maybe our 
seniors do that…what we do is just give them the loc stats 
[GPS location of elephant carcass]” (R10) 

“Both sides is so good, monitoring and also some anti-
poaching. Both is important, because we are here for that 
purpose” (R17) 

“We sit down, and I tell them to make sure they collect the correct 
carcass information " (S4) 

"It [data] will help us to know even the hotspots, then this will 
make our superiors decide how to do our patrols, where to 
deploy" (R23) 

“Yes it [ranger-collected data] helps management, it is our 
duty" (R20) 

"During briefings I always emphasize to guys [rangers] to collect as 
much information as possible" (S5) 

“Monitoring carcasses is a big part of my job…because I have 
to see everything that is happening in my area” (R2) 

“That is our duty to monitor and report [poached] 
carcasses for management use” (R22) 

“If we come back from the bush with no results, the supervisors can 
say ‘Ah…that guys not going for the bush, just going to the bush and 
sleeping’” (R17) 
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Creating an enabling environment: ranger job-satisfaction and resource/capacity needs 

 

In addition to these three elements of ranger culture at my study site, my interviews and 

observations highlight how the work and living conditions of rangers also help shape 

engagement with monitoring. For example, rangers spoke extensively about job satisfaction 

and well-being.  A love for nature was the most common reason rangers cited for enjoying their 

jobs: “My love for these wild animals motivates me to be a ranger” (ranger 7). While this 

motivated a desire to protect nature, for many rangers it also had a strong intrinsic element of 

enjoying nature for its own sake:  

 

“To start with I love nature…that’s the drive that can motivate me. Spending nights 

in the bush…the sounds of the birds…the sounds of lions…to live with nature, I like 

that.” (ranger 15) 

 

Tied to this love of nature was an eagerness to learn: “I enjoy mountain 

climbing…discovering hot springs, new type of trees and stones…everything is 

fascinating” (ranger 10). “I like to be a ranger because I learn lots from what I do, you can 

learn that long back people used to live here, you can see pieces of clay pots” (ranger 20).  

 

This love for nature and fascination with learning contrasted with the many challenges 

rangers faced. The most commonly described challenge was living away from family. The 

ranger stations are far from the nearest towns, and the need for schooling means that 

most families live away from rangers, some in distant parts of the country. Family 

separation had clear negative psychological effects, such as stress and worry: 

 

 “I want to share with my [spouse] or share with my children when there is a 

problem, but we are living apart so sometimes I get stressed and a high blood 

pressure.” (ranger 17) 

 

“Sometimes you get bored, you need your partner to be close to motivate you…and 

see your child growing up. You get stressed… your mind will be centred there [with 

family], so your duties will be very difficult.” (ranger 18) 
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Living in remote areas means limited leisure opportunities: “It is quite challenging to stay in the 

bush…if you go out there [trips to town] you can meet friends and you will be happy and when 

you come back you will be ready to do your work” (ranger 16). Having no respite from the 

workplace also had implications for rangers’ perspectives and relief from work duties: “If we 

had a vehicle to play a soccer match in the community, it could help us take our mind off patrols” 

(ranger 18). Harnessing the parts of their work that rangers enjoy, while minimising the 

challenges they face, is likely to lead to a more enabling environment in which rangers work 

more effectively (Moreto 2016a; Belecky et al. 2019.; Spira, Kirky and Plumptre 2019). 

 

Adequate resources and capacity for monitoring also emerged as an important theme. 

Regardless of rangers' interest in data collection and use, if they are not appropriately 

resourced it can be challenging for them to fulfil their duties. Where the three elements of 

occupation culture identified here have deeper implications for ranger-based monitoring, 

resource and capacity challenges had more direct, immediate, implications. Patrol and camping 

equipment, communications tools, and vehicles were all limited at the case study site. "So far, 

we have got shortage of equipment, like tents, GPSes, Cybertrackers, batteries..." (ranger 8). 

Notably, a number of rangers reported having to purchase their own tents and resorting to 

cheap options: “We have to buy our own tent because of the economic situation. I had to pay 

$40. I bought one with bright colours…poachers, they will see it.” (ranger 14). This had 

consequences for morale: “If we can get these things [equipment and vehicles] our morale will 

be more” (ranger 5). One supervisor felt strongly about this: “I think the best motivator is to 

equip the ranger with enough apparatus to use in data collection” (supervisor 7). A lack of 

equipment may also compromise data quality: “If the information is to be clear…needs lots of 

equipment on the ground” (ranger 14). Both field and office resources are necessary for proper 

data management, as one supervisor highlighted:   

 

“We need batteries, GPSes, computers in order for MIKE to be moving smoothly. 

There are no batteries for the GPSes…how can I collect data?” (supervisor 4) 

 

Vehicles were identified by rangers and supervisors as the most important resource for general 

operations, yet most stations had only one vehicle and small fuel budgets. Rangers also said 

that vehicle limitations significantly reduced patrol coverage, and hence the accuracy and 

breadth of data collection. Rangers commonly said they felt they did not have adequate 

capacity for monitoring and that they would like more training, specifically in data collection 
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(e.g., how to properly record elephant carcass data, how to use mobile devices such as 

Cybertrackers) and data management (e.g. the use of SMART software). “I have to be educated 

to enter the data on the computer” (ranger 1). “I feel we need more and more training” (ranger 

5). While SMART training workshops are offered through local NGOs, these are infrequent and 

involve few rangers. Those that did attend training reported that they found these mostly 

useful. However, some complained that training sessions were difficult to follow: “I didn’t 

understand what was the database and what was the data model…it was short period over 

which he did all these things…I was entering data but not completely understanding” (ranger 

5). One older ranger was not keen on learning how to use a computer, however, saying “[I will] 

leave for the younger guys to play with the computers” (ranger 16).  

5.4. Discussion   

A theory of change for improving engagement of rangers in data collection and monitoring  

 

Drawing on my results and existing literature, I develop a theory of change for engaging rangers 

more meaningfully and effectively in data collection. A theory of change describes how an 

initiative or intervention achieves its stated goal, or the particular assumptions, steps and 

outcomes between the particular initiative and the final goal (Stein and Valters, 2012). The 

theory of change identifies two drivers of engagement and two enabling conditions for 

achieving the overall goal of more meaningful engagement of rangers in monitoring. I see the 

achievement of this goal as itself contributing towards more effective species and habitat 

conservation through adaptive protected area management (Fig. 5.6). I first discuss two main 

drivers of ranger engagement with data collection. These are:  

 

1. The occupational culture of rangers: particularly a strong sense of duty, deference to 

authority, and knowing their defined role within the organizational hierarchy.  

2. Seeing the value of data: understanding the broader purpose of data (how it is used) 

motivates data collection.  

These two drivers may be thought of as distinct sources of motivation for effective data 

collection, and I argue that both are important to understand and engage if the goal of effective 

and sustainable ranger-based monitoring is to be realised. The importance of each of these 

motivations, and how they might be encouraged, is discussed below.  
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Figure 5.6. A theory of change for more meaningful engagement of rangers in ranger-based 
monitoring, highlighting key drivers of engagement and additional conditions that 
enable/disable such engagement. Possible actions to leverage these drivers and enabling 
conditions and achieve the overall goal are also indicated (these are only illustrative and more 
focussed action development is recommended).  

 

Engaging ranger culture 

 

The elements of ranger occupational culture identified here are crucially important because of 

how embedded I observed them to be within the ranger community in the Zambezi Valley. 

Interventions to better engage rangers with ranger-based monitoring will work best if they are 

sensitive to these aspects of existing occupational culture, and have incentives that work with, 

and not against, them (Fig. 5.6).  An important implication of the strong themes of duty and 

deference is that recognition of the work that rangers do, particularly from their superiors, is 

essential to their motivation. Results indicate that rangers were eager to work well for their 

supervisors, and hence were encouraged when their good performance was valued and 

rewarded. This may be as simple as a ‘well done’ from the supervisor. A survey of 570 rangers 

across 60 sites in Africa, for example, demonstrate that ‘little or no recognition as a 

professional’ was one of the most commonly cited  answers to the question of what the worst 
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aspect of rangers’ jobs was (Moreto, 2016b). A key strategy for engaging rangers more 

effectively in ranger-based monitoring is to recognise good practices, such as a high volume or 

quality of raw data collected, consistent GPS recording of patrol routes, or a clearly written 

patrol report. This might be in the form of simple verbal affirmation and encouragement, the 

award of a good service certificate, notching towards promotion, or even recognition in the 

form of monetary incentives. 

 

The themes of duty and deference identified here begin to shed light on rangers’ attitudes 

towards, and practices of, monitoring, as well as what motivates rangers to work, how they 

perceive their occupation and what is and is not important within it, and how they see 

themselves within their broader organisational hierarchy.  Rangers in this case study knew their 

place within the organisational hierarchy. We see this in other conservation contexts as well. 

Clear hierarchies and authority structures are common within the law enforcement and 

conservation agencies that rangers work for globally. In a study of ranger occupational stress 

in a Ugandan protected area, Moreto (2016) found that rangers felt the pressure of needing to 

please supervisors: ‘Even you get pressurized, eh? And think that if they (management) come 

and find illegal activity near my area, then they might think that I am not doing [...] work’. A 

multi-site study in South Africa similarly describes an organisational hierarchy of a section 

ranger at the top, who ‘has command’ over rangers in the rank of corporal and sergeant, 

through to lower level field rangers (Warchol & Kapla (2012). One of the authors of this current 

study (FM) confirms similar working dynamics in Mozambique (unpublished observation), 

while others describe similar working hierarchies in the USA (Charles 1982). Dynamics of 

authority and deference can likely be traced to the paramilitary training that many rangers 

receive at Mana-Chewore (two weeks of such training was mandatory for all rangers at this 

site). Such training is becoming increasingly common for rangers (Duffy et al., 2019).  

 

Fostering a greater appreciation of the value of data 

 

I find the rangers' appreciation for the value of the data they collect to be important for two 

main reasons. First, most rangers interviewed expressed a desire for feedback on how the data 

they collected were used, with seven expressing clearly that this would create strong incentives 

for engaged data collection in the future (Fig. 5.5). Of these seven, three ‘data champions’ 

expressed the desire (and showed the potential) to influence other rangers to appreciate the 

broader value of data, through peer-to-peer training (Fig. 5.6). Secondly, interview responses 
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suggested a deeper level of appreciation of the value of data is likely to affect the accuracy and 

consistency of data collection, where ranger culture alone may not. While my data does suggest 

a sense of duty alone can motivate data collection, data also suggest that this will not guarantee 

consistency and accuracy in data recording. If the requirement is simply to report data, there 

may be no incentive to report accurate, consistent and comprehensive data (e.g. rangers may 

become selective in what they record and how they record it). Furthermore, such an approach 

may not be sustainable because it relies on supervisors continually enforcing the imperative to 

collect data. Authority structures and division of duties mean that the ranger-based monitoring 

and management cycle itself is divided, with little interaction and feedback between the 

collection of data by rangers and the use of these data by supervisors. Data champions were 

the rare exception. There is a danger that rangers will not take ownership of data collection if 

they don’t understand its broader purposes. This might lead to rangers prioritising other duties 

for which the broader purpose is clearer, such as anti-poaching operations and less on 

biological monitoring (see for example Warchol & Kapla, 2012).  

 

The appreciation for data might also drive higher levels of engagement in the international 

MIKE programme. Office hardcopy and computer records of patrol observations at each station 

show that data on elephant carcasses were the most clearly and consistently recorded 

(compared to other illegal activities and animal sightings). With the MIKE programme, rangers 

are given specific instructions for what to record when encountering an elephant carcass and 

are then required to report this for data storage. Moreover, rangers are aware of how this data 

fits into and contributes towards a bigger objective at the local, national and even global level. 

One senior ranger highlighted the excitement of rangers when he told them how the elephant 

carcass data they collect are used to make international decisions concerning ivory trade. 

Research on ranger-based monitoring across eight sites in India similarly emphasises that data 

collection has potential to empower and motivate rangers if regular feedback on monitoring 

results is given (Stokes, 2010). One strategy that could contribute towards fostering greater 

data appreciation is active feedback workshops in which managers (or representatives of 

external bodies like MIKE) explain to rangers how field data are used, thereby giving rangers 

the sense that their data is making an important contribution.   

 

Knowing how data are used not only ties into sentiments of wanting to be recognised as a 

professional, but to a sense of pride among rangers in fulfilling their various services to society. 

My observations of this are mirrored amongst rangers in other contexts as well (Spira, Kirkby 
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& Plumptre 2019; Charles 1982). In a study of the job satisfaction of rangers in Uganda, for 

example, Moreto, Lemieux & Nobles (2016) found that rangers saw their work as serving future 

generations and supporting national development by conserving wildlife. This sense of service 

was a key factor determining their job satisfaction. Helping rangers understand how their day-

to-day data collection and monitoring fits into a bigger local, national, and even global picture 

and decision-making, such as is the case with MIKE, can help foster a greater appreciation for 

data collection and more effective collection and monitoring practices.  

 

Engaging the elements of ranger occupational culture identified here and fostering a greater 

appreciation for the value of data amongst rangers will depend on good site-level leadership 

from supervisors. Indeed, my results indicate that good leaders have the potential to motivate 

rangers. Interventions and innovation should therefore be directed at both rangers and their 

supervisors.  

 

Enabling conditions for ranger-based monitoring 

 

In addition to understanding the drivers of engagement in monitoring, my results highlight the 

importance of both ranger well-being and the availability of capacity and resources as 

conditions that enable effective monitoring. Moreto (2016a) showed how a challenging work 

environment for rangers in Uganda contributed to occupational stress, with implications for 

work enjoyment and performance. Spira, Kirkby and Plumptre (2019) describe difficult living 

conditions, poor salaries and limited promotion opportunities for rangers in the DRC as key 

drivers of low job satisfaction and motivation. My results similarly reveal significant challenges 

faced by rangers (such as separation from family and a lack of stimulation outside of patrols), 

with rangers describing direct implications for their levels of motivation and focus in fulfilling 

their duties. Relatedly, rangers frequently reported a shortage of basic equipment for both 

patrols and data collection, describing how this made their work difficult and sometimes 

impossible to fulfil. The aforementioned global survey of rangers found that only around half 

of the 7100 rangers survey felt that they had sufficient basic equipment to carry out their duties 

(Belecky et al., 2019). It follows, then, that strategies to foster more effective ranger-based 

monitoring (e.g., by engaging the two drivers of engagement emphasized in this study) may 

not be successful unless the broader well-being of rangers and their basic resource and training 

needs are adequately addressed.   
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Being a case study of one area at one time, this study is limited by its temporal and spatial 

scope. It is thus difficult to generalise to rangers globally, or even in Zimbabwe. However, 

occupational culture as a way of thinking about the beliefs, values and motivations of rangers 

is generalisable to other contexts. Moreover, my results fit into a body of existing literature 

that highlights similar aspects and characteristics of ranger culture, perceptions and attitudes 

concerning their work. Given this congruence, I demonstrate the value of occupational culture 

as a lens through which to understand the engagement of rangers in the data collection and 

data use stages of ranger-based monitoring. In this regard, my case study does provide 

analytical generalisability in the sense, described by Yin (2009), of generalising to a theoretical 

position, which I summarize in the Theory of Change. Drawing on my own results and existing 

literature on ranger attitudes and working environments, this Theory of Change identifies key 

drivers of engagement and enabling conditions as levers for improving the effectiveness of 

ranger-led data collection and monitoring, and thus for conservation and protected area 

management. Further generalisability of these conclusions and the robustness of this Theory 

of Change requires further research with rangers in other contexts. 

 

Conclusions 

 

Many governmental and non-governmental initiatives seek to promote adaptive protected 

area management through the implementation of sophisticated data collection, management, 

and analysis protocols (Malpas and D´Udine, 2013; Stokes, 2010). However, the on-the-ground 

day-to-day reality of data collection for rangers may be very different. Drawing on research 

with rangers in my study area and existing literature on ranger motivation, occupational culture 

and attitudes, I developed a Theory of Change towards improving the implementation and 

outcomes of ranger-based monitoring. Specifically, I demonstrate how a more thorough 

understanding of key elements of the occupational culture of rangers and fostering the 

appreciation of the value of data among rangers and their supervisors could act as motivators 

for more effective ranger data collection. I also complement recent work on the lived 

experiences of rangers by highlighting well-being and adequate resources as necessary 

enabling conditions for effective data monitoring.  

 

This study began with the assumption that the motivations and values of rangers have 

significant implications for conservation interventions that depend on rangers as key actors 

and are therefore worth investigating. My findings contribute to a small but growing literature 
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on the social dimensions of the ranger occupation (Moreto et al., 2015; Spira et al., 2019). I 

reveal particular elements of the occupational culture among rangers in Mana-Chewore that 

influence engagement with monitoring: a strong sense of duty and service, deference to 

hierarchy, and clearly defined occupational roles. As discussed above, these findings 

complement existing research on the topic.  Understanding this culture was essential to 

properly contextualise and indeed assess the importance rangers ascribe to data collection and 

the nature and level of their engagement in the broader data-based management cycle.  

 

Rangers are at the frontline of conservation practice and protected area management globally, 

in the sense that they are directly involved in the practical implementation of interventions to 

protect nature. This includes anti-poaching and law enforcement operations, but also extends 

to duties such as baseline monitoring and evaluation (Stokes, 2010), and park-community 

relations (Moreto et al., 2017). It follows that the success of conservation management in many 

contexts is closely tied to the performance and meaningful engagement of rangers. 

Furthermore, engaging ranger perspectives and lived experiences is necessary to ensure a just 

working environment, which is necessary both from an ethical and a pragmatic standpoint.  
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Chapter 6. Costly and unprofitable: park manager 

perspectives on data-based adaptive management 

of elephant poaching in Zimbabwe 

6.1. Introduction 

 

Globally, public funds are often stretched and are needed to address diverse and pressing 

challenges from poverty to climate change, so funding for biodiversity conservation is often 

limited. It is therefore imperative that available finances are invested wisely in actions that are 

likely to succeed. Within conservation management, there is an increasing emphasis on 

‘evidence-based conservation’ - taking actions that are well-grounded in evidence (Gillson et 

al., 2019). Adaptive management (whereby ongoing monitoring data are used to evaluate 

management interventions with uncertain outcomes) is a technically well-developed and 

widely promoted way of using evidence to inform biodiversity management decisions. Despite 

this, there are very few examples of its successful implementation (d’Armengol et al., 2018; 

Serrouya et al., 2019).  In this Chapter, I investigate the extent to which park managers in my 

study site in Zimbabwe use ranger-collected data on elephant poaching to inform their 

management actions, and the factors driving the extent to which adaptive management 

practices are adopted.   

 

Adaptive management is a poorly defined concept within environmental management 

(Gregory et al., 2006). It was introduced over 40 years ago (Holling, 1978; Walters and Hilborn, 

1976) as a process of ‘learning by doing’, and since then has come to mean a wide variety of 

things. Its key elements are a management goal, different management strategies available to 

achieve the goal, uncertain ecological and social responses to management actions,  ongoing 

monitoring to measure management outcomes, and changing of actions where necessary 

(Keith et al., 2011). In its purest form, active adaptive management involves active 

experimentation with management actions (using controls and treatments) and learning by 

observing the outcomes (van Wilgen and Biggs, 2011). Passive adaptive management, on the 

other hand, involves a simpler process of implementing management actions, monitoring 

outcomes, and then revising actions based on these outcomes (Keith et al., 2011). In this 
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Chapter, I will focus on the extent of adoption of the latter (passive adaptive management) 

among park managers at my study site (Fig. 6.1).  

 

Much literature laments the frequent failure of adaptive management in the real world.  The 

disparity between adaptive management in theory and practice may reflect a failure to account 

for the complex social and institutional contexts in which adaptive management is 

implemented. Keith et al. (2011) highlight conflict among stakeholders, institutional 

complexity, and disagreement between scientists and managers as key impediments to 

adaptive management. Walters (2007) describes various proposed monitoring and adaptive 

management programmes within fisheries management that were ultimately never 

implemented.  Strong individual leaders who buy into monitoring and evidence-based 

management were identified as key to the few cases of successful implementation (Walters, 

2007). Danielsen et al. (2005), reviewing 15 case studies of locally based monitoring, conclude 

that another key success factor is the degree to which monitoring is institutionalised within 

local management structures (e.g. featuring in job descriptions). Nuno et al. (2014) further 

identified the importance of institutional barriers and influential individuals in the failure of 

adaptive management of bushmeat hunting in the Serengeti. Further, practitioners such as 

park managers are influenced by numerous socio-political factors in addition to baseline 

evidence (Adams and Sandbrook, 2013). Importantly, managers may not take ownership of 

monitoring programmes if they do not see their broader value and relevance in the context of 

their other priorities (Cundill et al., 2012).   

 

These case studies reveal that quantitative monitoring results are not always meaningful to, or 

well-integrated with, the daily activities of park managers.  For example, the decisions made 

by a protected area manager with a limited budget, a small and under-resourced contingent of 

rangers, and a range of ever-changing threats, are likely influenced by more than just data. The 

relationship between evidence and policy may be messier than much of the evidence-based 

conservation literature acknowledges, further emphasising the need to understand how social 

factors interact with evidence to shape decisions (Adams and Sandbrook, 2013). It is important 

to understand the pressures and limitations that local managers face, and their priorities, in 

order to identify how ranger-collected data can be more sustainably integrated within their 

decision-making processes.  
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Ranger-based monitoring of elephant poaching presents a model case study of monitoring and 

adaptive management in biodiversity conservation. Measuring changes in poaching through 

space and time is essential to evaluating the effectiveness of conservation policies at reducing 

elephant poaching, whether global or local (e.g. legalising international trade or intensifying 

local ranger patrols; Moore et al., 2018; Hauenstein et al., 2019). Accordingly, the Convention 

on the International Trade in Endangered Species (CITES) established the MIKE programme 

(Monitoring of the Illegal Killing of Elephants) in 1997. There are now 60 MIKE sites across Africa 

at which rangers collect data on elephant carcasses encountered during regular patrols. The 

database currently houses over 19 000 carcass records (CITES Secretariat, 2019). The MIKE 

programme aims to provide baseline elephant poaching data to inform both international ivory 

trade policy and local elephant management at MIKE sites (see Methods section for more 

detail).   

 

Here I use the MIKE programme, and particularly its local implementation in the Mana-

Chewore MIKE site in northern Zimbabwe, as a case study of factors that influence the use of 

monitoring data in management. My overall aim is to identify the factors that determine the 

extent to which local park managers have adopted adaptive management. I define adaptive 

management in this context as the systematic analysis of trends in ranger-collected data on 

elephant poaching (i.e., MIKE data) to evaluate anti-poaching strategies and improve these 

strategies through a process of learning from data (Fig. 6.1).  The MIKE programme is not in 

itself an adaptive management programme, but it does seek to promote the use of ranger-

collected data to inform local management decisions (CITES Secretariat, 2019) 
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Figure 6.1. A conceptual diagram of the standard adaptive management cycle showing how it 
would apply in the context of ranger-based monitoring and management of elephant poaching 
in Mana-Chewore. The overall aim of this chapter is to determine the extent to which such a 
management cycle is adopted by park managers in Mana-Chewore.  

 

To address my overall aim, I use semi-structured interviews with three stakeholder groups:  (1) 

Park managers directly involved in planning and implementing the monitoring and 

management of elephant poaching in Mana-Chewore; (2) Key informants involved in national-

level elephant management in Zimbabwe (mostly senior staff of the Zimbabwe Parks and 

Wildlife Management Authority; hereafter Zim Parks); and (3) Senior staff of the MIKE 

programme, responsible for administering MIKE at the regional and global levels. I pose the 

following focussed research questions: 

 

1. How do park managers in Mana-Chewore currently use ranger-collected data on 

elephant poaching (i.e., MIKE data), and why? 

2. How do park managers perceive data-based adaptive management – that is, the 

evaluation and improvement of management actions based on systematic analysis of 

ranger-collected poaching data? 

3. To what extent have park managers adopted data-based adaptive management, and 

what factors most influence the extent of adoption? 
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4. What do (a) national-level respondents involved in local elephant conservation, and (b) 

senior staff of the MIKE programme, perceive as the main drivers of adaptive 

management adoption (or lack of it) in Mana-Chewore? 

 

To answer these questions, I integrate interviews with the three stakeholder groups identified 

above with extensive personal observations and informal discussions conducted during two 

month-long field visits to ranger stations in Mana-Chewore (August 2018 and July 2019). I use 

my findings to  develop a theory-of-change that outlines key priorities and actions to promote 

effective use of ranger-collected data to inform anti-poaching strategies in Mana-Chewore. 

This theory-of-change draws on technology adoption theory (Venkatesh et al., 2003), and the 

concept of human-centred design (Steen, 2011), to ensure that solutions take as their starting 

point the perspectives, concerns, priorities, and decision-making context of park managers. 

6.2. Methods 

The MIKE programme in Mana-Chewore as a case-study of adaptive management 

 

My Mana-Chewore case study site is one of the official sites of implementation of the MIKE 

programme (see Chapter 2 for a full description and map of the site). The official aim of the 

MIKE programme is to “provide information needed for elephant range States and the Parties 

to CITES to make appropriate management and enforcement decisions, and to build 

institutional capacity within the range States for the long-term management of their elephant 

populations” (CITES Secretariat, 2020). This may be divided into an international policy aim and 

a local elephant management aim (Malpas and D´Udine, 2013). Regarding the former, poaching 

data from multiple MIKE sites are reported to the sub-regional level (e.g., southern Africa) and 

then the continental level. Data are then aggregated to identify continental trends in elephant 

poaching for presentation at key international wildlife trade policy meetings (such as the 

Conference of the Parties to CITES) in order to help inform international decisions about ivory 

trade and anti-poaching policy (CITES Secretariat, 2019). The successful fulfilment of this aim 

depends strongly on consistent and reliable reporting of elephant mortality data from the 60 

MIKE sites across Africa (CITES Secretariat, 2019). However, the MIKE programme also intends 

for the elephant mortality data recorded at each site to inform “appropriate management 

decisions” at the site level, and to build capacity for local elephant management.  
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Thus, while MIKE is not an adaptive management programme in itself, the adaptive use of 

baseline poaching data to inform management strategies is implicit in its goals.  In their 

comprehensive review, Malpas and D´Udine (2013) concluded that MIKE had performed well 

in terms of informing international policy, but has largely failed to contribute effectively to local 

elephant management. They concluded that, across a representative set of MIKE sites, ranger-

collected elephant poaching data are not well integrated with local anti-poaching decisions. In 

response to this, MIKE evolved to include more of an emphasis on supporting local anti-

poaching efforts at a smaller number of key MIKE sites though the 2014-2018 programme: 

“Minimizing the Illegal Killing of Elephants and other Endangered Species” or MIKES (CITES 

Secretariat, 2018). My Mana-Chewore case study site was selected as one of eight of these 

higher priority MIKES sites, for which a key stated goal was “Law enforcement, adaptive 

management and monitoring systems, protocols and capacity are strengthened in high priority 

protected areas” (CITES Secretariat, 2018). Furthermore, MIKE has partnered with local NGOs 

(Panthera and the African Wildlife Foundation) to implement SMART (Spatial Monitoring and 

Reporting Tool) in Mana-Chewore (Wilfred et al., 2019). Efforts have been made to integrate 

MIKE data recording within the SMART system (see in the results below that respondents often 

used MIKE and SMART interchangeably).  

 

Interviews and thematic analysis 

 

In July and August 2018, I conducted face-to-face semi-structured interviews with 9 park 

managers, and 17 national-level respondents involved in elephant management in Zimbabwe. 

Park managers were interviewed at four different ranger stations at the Zambezi Valley MIKE 

case study site in northern Zimbabwe (two stations in Chewore Safari Area and two in Mana 

Pools National Park). Managers were employed by the Zimbabwe Parks and Wildlife 

Management Authority (ZPWMA; hereafter Zim Parks) and all available park managers were 

interviewed during my visit to each ranger station. Park managers included “senior managers” 

who had ultimate responsibility for site management, and “wildlife officers” who shared 

management and ranger supervision responsibilities. Further details of manager participants 

are provided in Table 5.1 of Chapter 5).  Manager interview questions covered several broad 

discussion areas: manager responsibilities and anti-poaching strategies; the collection, storage 

and reporting of elephant poaching data; and the use of these data for Park management. 

National-level respondents were key informants with particular knowledge and experience 

around local elephant conservation and the MIKE programme. Most of these participants (n=8) 
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were senior staff of Zim Parks, who I specifically targeted as individuals responsible for or 

involved in the design and implementation of national anti-poaching strategies.  Within the 

national-level key informant group, I also interviewed four leaders of local NGOs, two local 

academics, and three local wildlife consultants, all involved in some way with elephant 

conservation and/or the MIKE programme at my case study site. Finally, I interviewed four 

senior staff involved in the administration of the MIKE programme across Africa and globally, 

who were also familiar with the implementation of the programme in Zimbabwe. Interview 

guides for park managers national-level informants, and MIKE staff are included at the end of 

this Thesis (Appendices 3, 4, and 5).  

 

Based on repetition of information and themes in interview responses, I judged that saturation 

(the point where additional interviews would yield little new information) was reached for each 

stakeholder group (Newing, 2010). Interviews were analysed using thematic analysis to identify 

patterns of meaning in the interview data in relation to the specific research questions (Braun 

and Clarke, 2006). As an example of what I mean by a theme, a prominent theme was that 

managers did not see how data-based management could improve their work performance.  

The importance of a theme was assessed by its prevalence both across several interviews, and 

within individual interviews, as well as by the extent to which it spoke directly to the overall 

research questions. In addition, a theme/factor was accorded higher importance if it was 

clearly important to a respondent. This was judged by tone of voice and emphasis, how early 

on in an answer to a particular question the theme/factor was mentioned, and repetition of 

the theme in several answers. For a detailed description of the interview and analysis 

procedures used, see chapter 5 (which used the same procedures) and the Thesis methods 

overview (Chapter 2).   

 

Supplementary field observations 

 

Interview data were supplemented with extensive personal observations during each station 

visit. These included observations of (a) the general work environment of managers (their 

office space, the operations room, maps on walls, availability and use of computers), (b) 

general management practices (patrol briefings and debriefings, staff roll call), and (c) various 

management documents (patrol brief and debrief forms, elephant carcass record sheets, patrol 

observation record books, etc). Also, at three of the four stations, I spent 1-2 hours familiarising 
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myself with the computer databases used to store and manage ranger patrol observations 

(under the guidance of a ranger/manager at each site).  

6.3. Results 

*Note section numbering is used for this results section (unlike elsewhere in the Thesis) to aide 

in the categorization and flow of results. 

 
To provide context for my main findings, I first present an overview of (a) ranger-based 

monitoring of elephant poaching in Mana-Chewore, and (b) the responsibilities and anti-

poaching strategies of park managers. I then present results on how managers currently use 

ranger-collected data on elephant poaching, concluding that data use is short-term, basic and 

reactive. The next section focusses on the main result of this study – the factors explaining why 

there is only limited adoption of systematic data-based adaptive management by park 

managers in Mana Chewore (summarised in Fig. 6.5).  

 

1. Overview of ranger-based monitoring of elephant poaching in Mana-Chewore 

 

Ranger patrols in Mana-Chewore typically involve a group of 3-4 rangers and last for 6 nights, 

with rangers deployed by vehicle to a particular location where they set up a temporary camp. 

Rangers patrol out in different directions each day before returning to camp. Less commonly, 

rangers may move camp every 2-3 nights. While on patrol, rangers collect a wide variety of 

biodiversity and threat data (such as large animal sightings and evidence of poaching). These 

data are typically recorded manually (using a pen, notebook and GPS device) or, more recently, 

using handheld mobile devices loaded with Cybertracker software. Patrols are preceded by a 

1-hour briefing at the main station, during which supervisors (park managers) describe the 

purpose of the patrol, and the protocols to follow. After the 7-day patrol, rangers are picked 

up by vehicle and then a de-brief session is held at the main station in which rangers report on 

the patrol to their managers. Notable observations (such as evidence of illegal activity) are 

reported, and future actions to take based on the patrol are discussed (e.g., whether to patrol 

the areas again).  Elephant carcasses are occasionally encountered and recorded as per the 

procedures above. Given that Mana-Chewore is a MIKE site, extra emphasis is placed on 

accurately recording elephant carcass data and all stations had either a soft or hard copy 

database of historic records of elephant mortality. Following MIKE guidelines (MIKE 

Programme, 2015), rangers record details such as the cause of death (poached or natural 
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mortality), age and sex of the elephant, and the age (state of decomposition) and location of 

the carcass. A full description of data collection and reporting procedures at Mana-Chewore is 

provided in chapter 2 of this Thesis. 

 

2. The life of a park manager: responsibilities and anti-poaching strategies 

 

2.1. Park manager responsibilities  

 

Park managers described a breadth of responsibilities. These included many that were not 

directly related to anti-poaching and ranger supervision: (1) Mobilizing, managing and 

allocating resources (vehicles, fuel, patrol equipment etc.); (2) Drawing up, managing, and 

reporting on budgets; (3) Supervising and compiling standardised situational (daily), weekly, 

monthly and annual reports to send to regional and national offices; (4) Liaising with local rural 

communities around conservation awareness; (5) Maintaining stakeholder relationships (with 

professional hunters, private ecotourism operators, local NGOS, and sport fisherman); (6) A 

variety of practical management tasks including road maintenance, fire management, invasive 

species control, game capture and translocation, and problem animal control; (7) Attending 

within-organisation meetings at the regional and national offices; (8) Attending stakeholder 

strategy workshops (e.g. elephant management workshops); (9) General management of the 

ranger contingent, including welfare, skills and training, timetabling of ranger duty cycles, and 

maintaining general discipline; (10) Visiting remote ranger bases (temporary and permanent); 

(11) Supervision of general maintenance of buildings and infrastructure (offices, staff quarters, 

radio connectivity, solar power, internet connections, etc.). 

 

Alongside these wider duties, park managers carried out various activities directly related to 

anti-poaching, including: (1) Developing patrol strategies (areas to target, patrol length and 

type, ensuring adequate coverage, monitoring key natural resources like water availability, 

etc); (2) Supervise the area and timing for patrol deployments (which are usually carried out by 

a senior ranger either by vehicle or boat); (3) Ranger supervision (briefing rangers on patrol 

strategy and goals, training rangers in anti-poaching strategies, leading patrol de-briefs); (4) 

General anti-poaching strategy development and evaluation (see below for a list of current 

strategies); (5) Liaising with community intelligence officers; (6) Reacting to poacher incursions; 

(7) Liaising with local police and judicial processes related to poacher conviction.  
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2.2. Strategies used to reduce poaching, and information sources used to inform strategies 

 

Park managers described a number of strategies that they use to tackle poaching in Mana-

Chewore. These included, in order of their importance (measured by how frequently and in 

what order each was mentioned within an interview): (1) Strategic deployment of patrols to 

poaching hotspots or points where poachers are known to enter and exit the park; (2) 

Specialised vehicle patrols (‘mobile patrols’) covering wide areas of the park for surveillance 

(these are 1-3 days in length and involve dropping off and picking up rangers for multiple rapid 

patrol legs over a wide area); (3) Setting up and ensuring constant manning of semi-permanent 

anti-poaching camps (there are 2-3 of these across Mana-Chewore positioned in key hotspot 

areas); (4) Intelligence gathering through community informer networks (in collaboration with 

the Department of Investigations within the organisation); (5) Community awareness and 

engagement (conservation education, and employment of local community members to 

incentivise conservation).  Of particular note is the heavy dependence on external stakeholders 

(trophy hunting and ecotourism operators, and local NGOs) for the patrol-based strategies (1 

and 2 above). In Chewore, hunting operators often provide a vehicle and driver for the 

deployment and collection of patrol units by vehicle (the main hunting camp is near the main 

ranger station). In Mana Pools this service is commonly provided by local eco-tourism operators 

who are based near the main ranger station, and also by a local NGO that provides a vehicle 

and driver.  

 

The most significant source of information that park managers relied upon to develop their 

anti-poaching strategies was observations by patrols: “we are guided by our data previously 

collected on patrols. Which areas to cover and why will be guided by past observations, 

observations of animals, poacher spoors, contacts with poachers, and [observations of] where 

there is food and water available for animals” (manager 3). Data that provided insight on the 

behaviour of poachers was seen as the most useful: “we need data to give us an idea of their 

[poachers’] concentration and activities” (manager 2). A less common source of information 

that managers use is community intelligence; “informants can tell us that a group of 5 poachers 

are planning to enter at this point” (manager 1).   

 

3. How are elephant poaching data currently used in Mana-Chewore? 
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3.1. Data use is basic and reactive, with limited systematic trend analysis to evaluate anti-

poaching strategies 

 

Park managers in Mana-Chewore use ranger-collected elephant mortality data in a variety of 

ways, the most common of which is to identify poaching hotspots  (Table 6.1). Identification of 

hotspots was basic and qualitative, with the most common approach being the use of coloured 

pins marking carcass locations on a large map, “our reports from ranger patrols are straight 

away pins on the operations map, showing carcasses and poacher activities” (manager 9; see 

Fig. 6.3). When asked how he identifies hotspots, another manager said: “I go through the old 

reports and find areas which are hotspots with many carcasses” (manager 4). A senior staff 

member in the organisation said this is a common strategy: “rangers are in the command centre 

and they ask, ‘where did we cover and what did we get’, then there is a map on the wall with 

the carcasses identified and the manager says, ‘ah, there are more carcasses in this area.’” 

(national level respondent 13). At all stations, there was no evidence of carcass locations being 

plotted using computer mapping software, nor was any predictive hotspot analysis conducted.  

 

Patrol data on elephant mortality were typically used for short-term patrol to patrol decisions 

(Table 6.1),  “during the debriefing we will capture the information on what they have seen 

[e.g., a carcass] and the results of that patrol will then guide us to the next patrol” (manager 5). 

This is typical of the more reactive approach commonly taken by managers on the basis of 

patrol data, “we have deployed some people up there and they have seen a poaching camp, so 

based on that information we make a follow up to check if illegal activities are still happening 

in the area” (manager 1). As one national-level informant remarked, 

“Currently management in the Zambezi Valley is reactive management, it’s not adaptive 

management in the sense of being data driven” (national level informant 15) .The use of data 

to track longer term temporal trends was far less common and, when it was mentioned, it 

mostly involved a general sense from the data as to whether poaching was increasing or 

decreasing (Table 6.1). One manager was not able to tell me whether there were seasonal 

patterns in the carcass data recorded over the last few years, suggesting that he does not 

routinely consider long-term trends in poaching data. Another manager (and this was the 

exception) had however plotted hand-drawn bar graphs showing monthly records of various 

illegal activities (Fig. 6.4).  
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Table 6.1. The different ways that park managers use ranger-collected data on elephant 
poaching in Mana-Chewore, based on interview responses and corroborated by personal 
observations.  Illustrative quotes are shown, and forms of data uses are listed according to their 
importance to managers (as judged by how commonly each form of data use was mentioned 
during interviews, and how strongly each was emphasised when mentioned).   

 

Data use Frequency Quotes 

Identify poaching 
hotspots 

Very 
Common 

“Carcasses help show where the poachers’ hunting grounds are” 
(m3); “I go through reports and find which areas are hotspots with 
many carcasses” (m4); “to know which areas are being poached” 
(m5) 

Inform patrol 
deployments  

Very 
common 

“It influences our patrol patterns; you see animals are killed here so 
we deploy in those areas” (m8); “we deploy rangers…where most 
elephants are killed” (m9) 

Report to 
regional and 
national levels 

Common “we send the carcass information on to regional and HQ [offices]” 
(m5)  
“I send the [elephant mortality] information to my superiors” (m4) 

Track temporal 
trends in 
poaching  

Occasional “helps to know is poaching increasing or decreasing and why?” (m4); 
“to know which season poaching is more or less” (m5); “we have 
seen poaching going down from 2016 to 2017” (m7).  

Flag need for 
more anti-
poaching 
resources 

Occasional “So that they [national headquarters] know what is happening on 
the ground and whenever we ask for resources they know where we 
are coming from” (m7); “HQ uses that [elephant mortality] 
information to allocate resources to us” (m1) 

Inform broader 
anti-poaching 
strategies 

Rare “Carcass info helped in the placement of fly camps [temporary anti-
poaching bases]” (m5); “We can make some decisions from those 
trends [in poaching]” (m7) 

Measure 
performance of 
anti-poaching  

Rare “If you see every year you are recording more and more carcasses in 
an area…then you must know that your management plans are 
actually lacking somewhere” (m6); “It is a benchmark, an indicator 
of how much we are performing at anti-poaching” (m8) 

 
 

Park managers rarely mentioned the systematic analysis of trends in poaching data, or the 

evaluation of anti-poaching strategies based on trends (Table 6.2).  Across all interviews and 

site visits, there was only one instance of longer-term anti-poaching strategy being directly 

influenced by carcass data. Three respondents (managers 7 and 9, senior Zim Parks staff 

member 3) described how semi-permanent anti-poaching ‘fly camps’ were set up in 2017 in 

two areas where significant numbers of poached elephant carcasses, poachers' footprints, and 

poacher camps had been recorded over the previous 18 months. These camps were 

permanently manned by ranger rotations and the subsequent observed decline in carcass 
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records in the park concerned was attributed to these camps: “that was the major reason why 

poaching went down” (manager 7).   

 

In summary, the evidence considered here (interviews, informal discussions, and field 

observations from station visits) indicate that managers do value and use elephant poaching 

data, but data use tends to be (a) short term (patrol to patrol), (b) reactive (as opposed to 

predictive), and (c) non-systematic (no deliberate plotting and analysis of trends). This, 

combined with the fact that managers tend to rely heavily on intuition and experience when 

making decisions, means that the use of data to evaluate and update anti-poaching strategies 

(i.e., systematic adaptive management) is not embedded into park management (Table 6.1).  

 

 

 

Figure 6.3. An operations map in the main office at one of the ranger stations in Mana-
Chewore, showing the pins used to indicate the locations of notable observations (including 
elephant carcasses).  
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Figure 6.4. Across all interviews and field observations, these graphs represent the only two 
instances I observed in which managers/rangers in Mana-Chewore plotted or evaluated long-
term trends in poaching data. (A) A graph on the office wall at one of the main ranger-stations, 
showing the annual trend in poached elephant mortalities recorded at that station. (B) A graph 
of poaching statistics within in a year, created by a ranger at another station who was delegated 
responsibility for managing poaching data. 

 

4. Park manager perceptions, and adoption, of the MIKE programme for monitoring elephant 

poaching  

 

Most park managers spoke positively about MIKE and were committed to collecting and 

reporting elephant mortality data, “We have received it [MIKE] with both hands, because 

everyone is committed to have a database on elephant mortalities because that information 

will help for future planning”  (manager 3). Managers understood how monitoring could help 

them achieve their anti-poaching goals,  “MIKE is very important for us, we need to monitor 

protected species and reduce illegal killing in our area” (manager 4). However,  park managers 

in Mana-Chewore have adopted MIKE mainly as a programme for routinely collecting and 

reporting on elephant mortality data, not as a tool for using these data to inform their own 

management decisions. Thus, MIKE has been widely implemented, but not as a local adaptive 

management tool. Indeed, rather than highlighting the advantages of adaptive management, 

many managers described the benefits of MIKE in terms of donated resources, “MIKE has made 

an impact on the conservation of wildlife here, we find people are trained, donations like the 

land cruiser, and other resources for data capturing” (manager 1). The reasons behind the 

limited adoption of MIKE as an adaptive management tool, and the general limited level of 

adaptive management in Mana-Chewore, are discussed below.  

 

A B 
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5. Why is there limited adoption of data-based adaptive management in Mana-Chewore?   

 

Why do park managers in Mana-Chewore tend not to systematically analyse trends in elephant 

mortality data to inform their anti-poaching strategies? Interview data and personal 

observations point to a number of factors limiting the adoption of adaptive management (Fig. 

6.5). Perhaps the most prominent reason is that park managers simply do not buy in to 

systematic data-based management (they do not see the value that it adds). Another important 

and related reason is that adaptive management is largely externally driven and disconnected 

from local realities. Technical factors such as resource and capacity limitations also play a role, 

but these are less important to park managers and have perhaps been overemphasised in the 

past.  

 

5.1. Ownership: park managers do not buy-in to systematic data-based management 

 

There was little evidence that managers had taken ownership of data-based adaptive 

management in Mana-Chewore. While the MIKE and SMART programmes (both of which are 

designed to promote adaptive management) were widely implemented across the four ranger 

stations, this implementation was at the surface-level. Data were being collected and stored, 

but not utilised to inform management decisions. Managers have not taken full ownership of 

the data analysis, evaluation and learning aspects of these programmes. Interview data suggest 

that a significant reason why managers do not systematically analyse data to inform their 

decisions is that they have not bought into such an approach, and generally do not see how it 

is better than traditional practices based on experience and intuition (Fig. 6.5). As one national-

level informant remarked:  

 

“A good manager does not need MIKE [data-based management] to know if they 

are doing a good job. He lives and breathes the park. You have got these guys with 

experience and intuition. There is a danger of putting MIKE too high on a pedestal. 

It is not built into their management psyche.” (national-level informant 10) 

 

One senior manager described ownership as a significant factor limiting the adoption of 

programmes like MIKE and SMART: “the problem is management [park managers] should show 

interest, we have to show buy in and interest, otherwise things here will die a natural death” 

(manager 3). When asked about his involvement with MIKE and SMART, another manager said: 
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“I delegate some rangers to do that [manage SMART/MIKE data]…I am not involved myself” 

(manager 2). I identified a number of factors that are important in explaining this low level of 

ownership, a primary factor being that the difficulties of adopting a data-based management 

approach currently outweigh the perceived benefits from a park manager’s perspective (Fig. 

6.5). There are several reasons for this: 

 

 

Figure 6.5. Factors explaining the limited adoption of data-based adaptive management by 
park managers in Mana-Chewore, based on analysis of interview themes. The evidence 
(interviews and field observations) to support each aspect of this diagram is provided in the 
main text. The three colour categories represent the importance that I ascribed to each factor 
in terms of determining the adoption of adaptive management, based on my overall 
assessment of interview data and observations. Importance categories mostly represent the 
importance ascribed to each factor by respondents themselves, but not always (e.g., some 
respondents were judged to overemphasize technical factors as described in section 5.4). 

 

5.1.1. Lack of engaged individuals to spearhead adoption 

 

Many of the national-level informants emphasized engaged individual leaders within Zim Parks 

(at both the park and regional levels) as influential in the adoption of adaptive management. 
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“If a regional manager has been deeply soaked in MIKE and the said ‘hey guys, we need this’, 

then that’s when we would see value…leadership trumps everything” (national-level 

respondent 10). When asked whether ranger-collected data were being used at the park level, 

another respondent remarked, “I think it depends on the type of area manager, how proactive 

and analytic he is. For others [other managers] they just deploy [rangers on patrol] without 

using information” (national-level respondent 14). National-level respondent 2 remarked that 

site-level leadership had an “enormous influence” on the effective implementation of 

programmes like MIKE and SMART and gave the example of an individual manager who showed 

particular initiative in training himself in computer skills and plotting monthly poaching data 

(this is the same manager described below, who produced the graph in Fig. 6.4A above). 

Another respondent remarked, “MIKE requires a champion at the site who appreciates the 

value of data. The role of individual area managers cannot be overstated” (national-level 

respondent 4). MIKE staff respondents similarly highlighted the importance of key individuals 

at the site: “You need someone at the suite level who will actually look at the data and interpret 

it not only for reporting purposes but for management interventions”  (MIKE staff member 1); 

“It varies according to the manager…young managers appreciate the importance of data but 

some of the older managers are used to the way they do things in the past…they may not think 

data is important” (MIKE staff member 4).  

 

5.1.2. Absence of a data culture: systematic data analysis is unfamiliar to managers 

 

Across nine park manager and national-level interviews, focussed discussions with 

rangers/managers responsible for curating computer databases of elephant mortality at each 

station, general observations during station visits, and several informal discussions with 

managers, I came across only two examples where elephant mortality data had been 

summarised or plotted in some way (Fig. 6.4). Evidence of systematic data analysis, and its 

contribution to management, was thus almost absent. One of the national-level respondents 

with significant experience within Zim Parks summarised this issue well: 

 

“There hasn’t been developed within the field management staff that if they are 

going to manage their areas properly, they need to collect information, analyse it, 

and evaluate their performance, and then improve it for the next year. How do you, 

within an organisation, develop a culture of learning and adaptive management? 

That simply is not happening.” (national-level respondent 16) 
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One respondent (manager 2), when I told him I wanted to ask him some questions about 

MIKE data, said he was happy to answer my questions as long as they were not too 

technical. This same manager did not have a computer in his office, and delegated 

responsibility for managing the MIKE database to two more technology-savvy rangers.  It 

was clear he was not comfortable with data management and analysis. Another manager 

was interested to learn computer-based analysis, but felt unfamiliar with it, “I tried to 

ask someone who knows much about computers to assist me, but no-one to assist. I am 

very interested, I would have all the analysis, but there is no one to teach me” (manager 

4). This was the only manager interviewed who expressed a clear desire to learn and 

employ data analysis. Given this unfamiliarity with data-based management, it is not 

surprising that managers currently much prefer more traditional management 

approaches.  

 

5.1.3. Managers prefer traditional management styles, which are seen as reliable and familiar 

 

Most park managers have adopted a traditional style of management - that is, management 

based on experience, intuition, practical action and only very basic (reactive) data use. This has 

been the historic institutional standard and is considered familiar and reliable, so managers are 

resistant to change.  One senior manager who had been actively involved in the recent 

implementation of data-based management systems (SMART and MIKE) in Mana-Chewore 

highlighted this resistance: 

 

“Most people prefer to use what they are used to, like the map on the wall, unlike 

this SMART. These sophisticated tools take time…like when you are using a map in 

the office you can call in the rangers and show them where there is an incursion. 

But on a laptop, you will not all be able to see, people will not be able to contribute, 

we will not be able to react quickly. Like this recent incident with a fire, the guys on 

the ground radio me the co-ordinates and quickly I can see where they are on the 

map on the wall. But using a laptop, I cannot react quickly. I am not connected to 

Google Earth, I need to be trained how to use it, maybe the laptop batteries will go 

flat…” (manager 3) 
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When I asked another manager to tell me which system he thought was better, he said “I have 

a computer in my brain, I have been moving around my area since 2009. I remember the 

carcases and poachers spoor, I know where the hotspots are, the entry and exit points [of 

poachers]” (manager 4). He was, however, willing to take on the new system,  albeit alongside 

the old: “To me I will go with both. I would rather keep two copies – one on the computer and 

one on my hard copy files. Even with new system I will keep going with the manual one. If you 

give me meat, I won’t throw the beans away. There could be a virus on the computer, or it could 

be stolen, even a flash stick [memory stick] can be stolen” (manager 4).  

 

5.1.4. Managers do not see how data-based management will improve anti-poaching 

 

This preference for traditional management approaches is magnified by the fact that park 

managers generally did not see or appreciate the added value of data-based management, 

“until they [managers] actually see how these systems improve what they do, they find it hard 

to buy into it” (national-level respondent 15). One manager, when asked whether graphs of 

trends in the data would be useful for him, said: 

 

 “To date I have not used a graph and I have no problem with that. All the 

information that they get, that is fed into SMART, comes from me because I am the 

supervisor of the operations. It is me who initiates that data should be 

collected…then I look at the data…and then send the data to MIKE…so graph or no 

graph, I know what is happening in my area.” (manager 6) 

 

As a senior Zim Parks staff member remarked: “the acceptability of MIKE is not always 

there…managers do not appreciate the value of the information…it really requires someone 

who understands [data-based management]” (national-level respondent 6).  

 

5.1.5. Data-based management is too ‘slow’ in a poaching crisis, which requires reactive 

management  

 

Another reason why managers were sceptical about the value of data-based 

management (through systems like MIKE and SMART), was because they felt it was too 

‘long term’ in that it does not address more immediate poaching concerns. One manager 

said, “These MIKE things work when you are on general patrol, but when you are in hot 
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pursuit of poachers…what we need is real time cameras that we can monitor from the 

office. MIKE is historic, MIKE is static, and you use the information as the history which 

assist you to solve the future problems” (manager 8). Another manager expressed a 

similar sentiment: “In my point of view…MIKE is just interested in carcasses and what 

have you…but as a manager I want to be proactive, not reactive…I want to reduce 

poaching…I want to observe and protect live animals…not carcasses” (manager 2).  

 

5.1.6. Data-based management costs: time, resources and specialist skills 

 

Managers may not have the time and resources to invest in adopting new approaches and skills 

related to data-based management, especially considering their diverse and demanding 

responsibilities as managers (see Results section 2.1). Thus, managers commonly delegated 

responsibility for managing and reporting MIKE elephant mortality data to others, “They 

[managers] have a workload with managing a protected area, so they focus their efforts 

somewhere else and delegate the MIKE thing to someone else” (manager 9). Another manager 

said: “I have a dedicated ranger in the office for that, I think they keep the data and also forward 

it to MIKE…am I correct?” (manager 6). There is a disconnect here where managers don’t see 

MIKE as an important management tool to engage with, but rather as a reporting requirement 

to be delegated. When viewed this way, recording and reporting MIKE data becomes a burden, 

“If I was a manager, I would see MIKE’s purpose as record keeping. It is a pain in the arse” 

(national-level respondent 10).  

 

5.1.7. Organizational culture: data recording and reporting is strongly institutionalised, but 

data evaluation and use is not 

 

The absence of a strong data analysis culture amongst managers is linked to a broader 

organisational culture of meticulously recording and reporting data. During my station visits it 

became clear that data recording and reporting were strongly emphasized. I observed many 

hard copy files, forms and books for recording and storing data of various kinds (patrol 

observations, patrol briefing and debriefing notes, staff time logs, equipment registries, 

budgets, etc.). Alongside this, I observed at all stations a strong emphasis on regularly reporting 

these and other data to the regional Zim Parks office for the Zambezi Valley. These included 

daily, weekly, and monthly reports which included information on the status of vehicles, fuel 

and other resources, the status of staff, notable evidence of illegal activities, notable animal 
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observations, and outcomes of trophy hunts (this list is based on a review of a selection of 

reports compiled at each station). On several occasions, I had to wait to interview a manager 

as they had a report to send. When asked what happens to elephant mortality data once it is 

collected, or how these data are used, most managers emphasised reporting these data to 

higher levels: 

 

“When information is reported from the field, we record it down and report it to 

the main area manager. Most information we also provide to the higher 

offices…daily, weekly, monthly, quarterly and annual reports. To the regional and 

higher levels.” (manager 1)  

 

“I send the data to regional offices because they ask for that information.” 

(manager 4) 

 

“We are sending the MIKE data to the regional office, they are taking it up 

elsewhere, I am not sure where.” (manager 2) 

 

On several occasions, it was difficult for me to get managers to talk about how elephant 

mortality data were used locally because discussions around the use of data would often 

focus on data reporting. More particularly, managers described reporting MIKE data to 

the resident ecologist, “We have an ecologist who works in the area. When she asks for 

MIKE information, the rangers in the office will provide that MIKE data” (manager 1). This 

is linked to the fact that data management and analysis within Zim Parks is seen as the 

remit of research, not management.  

 

5.1.8. Organizational culture: data analysis is seen as the responsibility of the science/ecology 

section of the organisation 

 

Most managers felt that analysis of data was not their responsibility but rather that of 

scientists, or more particularly the ‘ecologist’ (the person employed by Zim Parks to carry out 

research to help management): 

 

“I am not sure. You can get that information from the resident ecologist [an 

employee within the science/research section of the organisation]. That’s purely 
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research…I am here to see nobody kills elephants and to make sure the rangers 

deter the poachers.” (manager 6) 

 

“I think the research guys has to do that, they have the responsibility to analyse the 

data, and then give us advice. If they need the data, we can provide it.”(manager 

9) 

 

Overall, data collection and reporting are considered the remit of managers and rangers, but 

data management and interpretation is the remit of the ecologist. As one senior Zim Parks staff 

member remarked: “Management is responsible for collecting data because it is ranger-based, 

the resident ecologist is responsible for synthesizing the MIKE and other data” (national-level 

respondent 12). However, a minority of managers recognised that they could work together 

with the ecologist on analysis, rather than leave it entirely to them: “Analysis of data used to 

be research work, but us on management we could also do that…because we quickly need that 

information…we work hand in hand with ecologist” (manager 3). Another manager described 

how analysing data might be easier for managers I they use SMART because they can analyse 

data with “a click of a button” (manager 8).   

 

Section 5.1 has identified seven barriers to the adoption of systematic adaptive management 

in Mana-Chewore,  focussing on the perspectives of the people responsible for using data in 

management. The next section considers the problem from the perspective of the design and 

implementation of particular adaptive management programmes. From this vantage point, 

adaptive management has not been adopted because the programmes promoting it are 

externally driven and disconnected from local realities. 

 

5.2.  Adaptive management is abstract and disconnected from local realities 

 

An alternative way of framing the problem of limited adoption of data-driven adaptive 

management in Mana-Chewore is to consider the design and implementation of the 

programmes themselves. In particular, the current design and implementation of the MIKE and 

SMART programmes have failed to address the barriers identified in section 5.1 (such as park 

manager ownership).  
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5.2.1. Adaptive management makes poor assumptions about how decisions are made 

 

An essential element of adaptive management is the connection between monitoring data and 

decision-making. Interview data suggest that the vision for adaptive management in Mana-

Chewore (as promoted by MIKE, the NGOs helping to implement SMART, and senior Zim Parks 

staff) is not clear and, more specifically, abstracts and oversimplifies how managers make 

decisions and how ranger-collected data influence these decisions (Fig. 6.5). From a 

programme design perspective, there are two related problems with the current 

implementation of adaptive management in Mana-Chewore (through the MIKE and SMART 

programmes): 

 

1. The assumption is made that if managers had access to data on poaching rates and 

trends, they would inevitably base their decisions on these data.  

2. The context in which managers make local management decisions, and the various 

‘non-data’ factors that influence these decisions, are not adequately considered.  

 

The first problem leads to an emphasis on simply ensuring data are collected and available to 

managers and assuming that better decisions will naturally arise. A linear sequence of actions 

from data collection, through data analysis, to management decisions is assumed. This was 

reflected in interviews with MIKE staff, who emphasized the importance of making data 

available to managers in a usable format, “it is our responsibility to provide [MIKE sites] with 

data in a usable format that’s accessible and easy to use” (MIKE staff member 2). In this vein, 

the MIKE programme has recently been developing an online platform that automatically 

produces graphs and maps of the MIKE elephant mortality data submitted from each MIKE site, 

allowing local managers to log into the system and see their poaching data summarised. “They 

can log in and see all their historic data up to the latest date, and we are hoping this will help 

them use the data more effectively for the site” (MIKE staff member 1). Such a solution runs 

the risk of further establishing the externally driven nature of the MIKE programme (Fig. 6.5). 

It also depends on managers buying into data-based management in the first place.  Interview 

data suggest that managers are more likely to respond reactively to short term patterns in 

patrol data when making anti-poaching decisions, rather than base these decisions on 

systematic data analysis.  
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There are also numerous contextual factors, entirely unrelated to patrol data, that shape how 

local management decisions are made. Managers have extensive responsibilities and are 

therefore constrained by time, so may make decisions ‘on the fly’ based on their intuition and 

experience. Also, some of the strategies that managers use to reduce poaching (like community 

informants and community awareness campaigns) do not require analysis of patrol data. 

Limited resources may also constrain manager’s decisions to undertake certain anti-poaching 

actions; limited ranger numbers and vehicles may mean certain actions are not possible (even 

when data suggest they are necessary). Finally, park manager relationships with their superiors 

at the regional and national level may influence how decisions are made.  

 

5.2.2. The MIKE programme is externally driven 

 

Overall, managers saw the MIKE programme, managed by the international organisation CITES, 

more as a reporting requirement and less as a useful management tool. CITES requires that 

MIKE sites like Mana-Chewore report accurate elephant mortality data on an annual basis, to 

contribute to a broader database of continental poaching levels. This is not to say managers 

were not positive about MIKE or that they did not use elephant poaching data in some way for 

local management, but the emphasis was on fulfilling a reporting responsibility: 

 

“Collecting elephant poaching data is now a donor and CITES requirement so we 

are forced to collect data. CITES is now like a silent supervisor.” (manager 3) 

 

“Managers are not yet making use of MIKE data locally. They are doing it because 

they [people responsible for MIKE implementation] are beating theirs heads to get 

it out. I would be surprised if area managers put much value on this.” (national-

level respondent 10) 

 

Managers commonly associated MIKE and SMART with donations from outside organisations. 

A manager described the SMART data-based management programme as “a requirement from 

CITES and donors, to give more funds” (manager 3). These donations were often perceived as 

the primary benefit of these programmes; “The landcruiser we got from MIKE was a big 

benefit” (manager 3). Another manager saw the programme as an opportunity to get more 

resources: “MIKE is good because it is showing us trends, but a major limitation is resources. It 

would be good to have one vehicle [donated] from MIKE every 10 years” (manager 8). This 
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sentiment was also held by some senior Zim Parks staff: “We need more batteries, GPSes, and 

metal detectors…and a vehicle. Maybe MIKE could even provide a plane for us to do aerial 

patrols and cover more area” (national-level respondent 5).  These financial benefits motivated 

managers to comply with MIKE implementation and reporting requirements, as did the 

prestige that was attached to being part of a global programme, “CITES is a reputable 

institution. Indirectly MIKE helps us get more funding from donor communities” (manager 8). 

Both park managers and national Zim Parks staff also emphasized the importance of complying 

with MIKE requirements as a way of giving more legitimacy to their proposals at CITES 

conferences (Zimbabwe regularly proposes legalizing ivory trade), “We actually gave reference 

to MIKE when we were lobbying [at the 2016 CITES conference], saying that we have our own 

MIKE sites” (national-level respondent 12).  

 

This has resulted in MIKE being implemented not so much as a management tool to inform 

local anti-poaching decisions, but as a reporting tool to fulfil external obligations. This lack of 

local ownership meant that some managers, rather than analysing MIKE elephant mortality 

data themselves, expected MIKE as a programme to give feedback on trends in the data. One 

manager informally asked me after interview why MIKE had not given feedback on the data he 

had submitted, “We give MIKE all this data, and then what?” (manager 2). Another manager 

said, “MIKE should give us advice on how to manage elephants based on the data we submit to 

them” (manager 9).  Yet external organisations promoting the implementation of MIKE (CITES 

and local partner NGOs) see it as the manager’s responsibility to make use of MIKE data to 

inform their decisions, “It is ultimately the site's responsibility to use the data” (higher-level 

MIKE respondent 1). This speaks to a broader issue in the design and implementation of 

adaptive management through MIKE and SMART: the broader purpose of this approach to 

management is not well communicated to managers. It appears that the expectations of the 

MIKE programme, as well as those of park managers, need to be better aligned.  

 

5.2.3. The purpose and value of MIKE is poorly communicated to managers 

 

Many of the national-level respondents ascribed managers' lack of buy-in as at least partly to 

poor ‘marketing’ and communication of the MIKE programme to managers: 

 

“Many managers may not even know why they are doing MIKE and why it is 

important. There needs to be more awareness raised among managers about 



 

 
 

170 
MIKE. I think it is a tool that is very useful, but we need to embrace it, it needs to 

become part of us.” (national-level respondent 11) 

 

“There is room for better communication on what MIKE is to stakeholders who 

might want to take it up. There is a need for marketing MIKE to officers on the 

ground as well as other strategic officers. Are the operations side [managers] 

aware of MIKES…do they embrace it?” (national-level respondent 13) 

 

When asked what the most significant barrier to the uptake of MIKE and SMART was, one of 

the more senior managers responded, “I think an awareness campaign needs to be done to the 

managers, they are the very first people who need to be enthusiastic ” (manager 9). Notably, 

MIKE staff and senior Zim Parks staff spoke about adaptive management as a concept in 

abstract and general terms, but seldom provided examples of what it entails in practice. 

Greater clarity on the adaptive management element  of the broader MIKE programme, and 

specific practical examples of how managers might benefit from systematically analysing data, 

would help make adaptive management less abstract and more connected to local realities 

(Fig. 5).  

 

5.3. The MIKE programme has emphasized data collection and reporting over the local use of 

data. 

 

Interview respondents involved in administering the MIKE programme regionally and globally 

acknowledged a tension between the programme’s mandates of (a) informing international 

policy through representative poaching data from many sites, and (b) building capacity for local 

elephant management at individual MIKE sites: 

 

“So yes, there is the global trend analysis with PIKE and then there is the capacity 

at the sites. For me, that [capacity-building] is the area we need to strengthen 

considerably…more regular trainings, more engagements with sites to give them 

support. Making sure they can use the MIKE data a bit better. The danger is that 

the sites do it [implement MIKE] as a compliance requirement rather than 

informing management at the site.” (senor MIKE staff member 1) 
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“The MIKE mandate is to inform the parties of the Convention [CITES] about levels 

and changes in poaching. That’s kind of behind everything…I don’t think the 

capacity building for sites to use MIKE information is something MIKE has done very 

well over the years.” (senior MIKE staff member 2) 

 

MIKE staff members were eager to realise the mandate to inform local elephant management, 

but the way the programme has been implemented to date has involved a strong emphasis on 

getting sites to provide data and less of a focus on supporting local data use:  “There is a 

perception that we just take data, which we have, we just took data for many, many years and 

never, never gave anything back apart from a training to collect more MIKE data, which, you 

know, people love trainings, but I think it's pushing our luck a little bit” (MIKE staff member 2). 

Capacity-building and support provided from the MIKE programme to particular MIKE sites has 

focussed on data collection, rather than supporting local adaptive management, “The 

contribution of MIKE is to mainly build capacity to ensure that reliable and accurate information 

on elephant mortality is collected...that is the main thrust. Apart from enhancing skills, there is 

also a need to provide equipment to ensure the data is recorded accurately” (MIKE staff 

member 3).  

 

5.4. Technical challenges: resources and human capacity  

 

Respondents in both Zimbabwe and at the MIKE level emphasised human capacity and 

basic resources as essential to the implementation of the MIKE programme and broader 

adaptive management (see section 5.1.5 above). “There is a need to provide equipment 

and GPSes, so the data is recorded accurately” (MIKE staff member 4). “We need 

batteries, GPSes, computers in order for MIKE to work smoothly” (manager 4). Limited 

capacity to use new technologies and to interpret data systematically was highlighted as 

a key constraint: 

 

“It is also a challenge in Zim Parks…we have people who have field experience, but 

in terms of academics they are challenged…so it [MIKE] has to be packaged in a 

manner that speaks to the human resource capabilities of the people on the 

ground.”  (national-level respondent 13) 
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“There are not many people in Zim Parks who were familiar with computers…he 

[the park manager] can read any small beetle and identify any spoor…but then you 

say you want digital information…you are asking too much.” (national-level 

respondent 14) 

 

Yet these technical challenges are only part of the problem and may not themselves be driving 

the poor adoption of adaptive management in Mana Chewore, which previous sections suggest 

is more to do with poor ownership and abstract goals (hence the lower importance ascribed to 

technical factors in Fig. 6.5). As one respondent remarked, “Technically the system works well, 

the biggest challenge is implementation and buy in” (national-level respondent 15).  

6.4. Discussion 

Previous research has explored why the implementation of adaptive management fails in many 

real-world contexts, despite it being a widely advocated approach to environmental 

management. These studies have , variously, analysed single case studies of adaptive 

management (Serrouya et al., 2019; van Wilgen and Biggs, 2011), reviewed several case studies 

within a particular field of management (Keith et al., 2011; Walters, 2007), or provided a higher-

level appraisal of adaptive management as a concept (Gregory et al., 2006; Lee, 1999). Missing 

from previous work, however, is direct investigation into the perceptions and values of on-the-

ground managers themselves, who are ultimately responsible for adopting adaptive 

management. In this study I found that the attitudes and perceptions of park managers in 

Zimbabwe towards adaptive management strongly influenced the extent to which such an 

approach was adopted.  

 

Managers do not buy into data-based adaptive management 

 

Interview data suggest that perhaps the strongest reason for the limited adoption of data-

based management by park managers is Mana-Chewore is that managers do not see how the 

approach is better than traditional management practices. Adoption theory, which examines 

the choice individuals make about whether or not to adopt a particular technology or 

innovation, is a useful lens through which to consider the reasons for these low levels of 

ownership. The innovation of adaptive management in this context involves both an idea (that 

of making decisions based on systematic data analysis), and tangible technologies (such as 

computers to analyse and summarise data).  
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Straub (2009) reviewed three dominant theories to explain the adoption of technology 

innovation (with a focus on school environments), concluding that adoption is a complex social 

and developmental process, as individuals form “unique but malleable perceptions of 

technology that influence their adoption decisions”. He argues that in order to address poor 

adoption, the cognitive and  emotional perceptions of end users must be carefully considered, 

as well as their broader work context (Straub, 2009). Park managers in Mana-Chewore 

expressed cognitive concerns about data-based adaptive management in that they were not 

familiar or comfortable with the idea of analysing data systematically, nor did they believe 

adaptive management would improve their anti-poaching efforts. As regards to emotion and 

affect, some park managers expressed anxiety about computer technology and analysis, while 

others felt frustrated that others (such as the ecologist or the MIKE programme itself) were not 

taking responsibility for analysing poaching data and giving them feedback. Also, the 

organisational and work context of managers hindered adoption of adaptive management.  

Mangers had limited time due to diverse work responsibilities and tended to favour reactive 

short-term management (using data from the last few patrols to inform the next). Also, their 

organisational culture, as well as the MIKE programme itself, emphasised the importance of 

reporting poaching data to higher administrative levels (e.g., regional and national offices 

within Zim Parks, and the regional MIKE office in South Africa), but not the actual use and 

analysis of data at the site.  

 

A highly influential theory of adoption, which has been developed using empirical comparison 

of several adoption theories and refinement of their salient characteristics, is the United Theory 

of Acceptance and Use of Technology (UTAUT) (Venkatesh et al., 2003). The theory proposes 

four key determinants of technology adoption: (1) performance expectancy (the degree to 

which an individual believes the innovation will assist them in fulfilling their duties), (2) effort 

expectancy  (the perceived ease of using the innovation), (3) social influence (whether or not 

an individual feels pressurised by important others to adopt the innovation), and (4) facilitating 

conditions (the degree to which an individual believes that there is an organisational and 

technical infrastructure in place to support the innovation). The UTAUT was particularly useful 

in helping to explain the limited adoption of systematic data analysis and adaptive 

management in Mana-Chewore (Table 6.2). Indeed, the four key determinants of adoption 

provide a complementary and parallel understanding of the drivers of poor ownership of 

adaptive management by managers identified from interviews. In a study of challenges around 
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the adoption of the SMART ranger-based monitoring technology in a Tanzanian park, Wilfred 

et al. (2019) similarly found that users were not familiar with the technology (leading to a low 

performance expectancy) and did not feel they had the capacity to use it well (high effort 

expectancy).  

Table 6.2. A summary of how the four key determinants of innovation adoption developed in 
the Universal Theory of Acceptance and Use of Technology (Venkatesh et al., 2003) help explain 
why park managers in Mana-Chewore have shown only limited adoption of systematic data-
based adaptive management. The drivers of adoption closely parallel the drivers of manager 
ownership and buy-in to adaptive management that I identified from interview data (Fig. 6.5).  

 

Four drivers of 

adoption 

Relevance to adaptive management in Mana-Chewore 

Performance 

expectancy 

Park managers see traditional management styles (based on 

experience, intuition and only basic data use) as familiar and reliable. 

They generally do not see how data-based adaptive management will 

improve their anti-poaching efforts, partly because they do not fully 

appreciate its potential.   

Effort expectancy Managers are not comfortable with the specialist skills required for 

data analysis, which they perceive as unnecessarily complex time 

consuming compared to more basic data use (such as a map on the 

wall with pins indicating poached elephant carcass locations). 

Social influence Managers feel a strong obligation to record and report poaching data, 

due to external pressure from ‘important others’ – in this case, both 

the MIKE programme and their own organisation (Zim Parks). While 

mangers experience some social pressure to actually use these data 

adaptively, this pressure is weaker and there is little clarity as to what 

this actually means.  

Facilitating conditions The organisational culture at Zim Parks emphasises data collection 

and reporting over data use. The organisational structure takes 

responsibility for data analysis away from managers and places it with 

the science/ecology arm of the organisation. Also, basic facilitating 

infrastructure such as computers and digital displays are absent from 

many ranger stations in Mana-Chewore.  

 

Is adaptive management appropriate in Mana-Chewore?  

 

The various factors that impede the successful implementation of adaptative management, 

both in the present study and in many others, rightly leads one to question the appropriateness 

of the approach in certain contexts. Are park managers in Mana-Chewore perhaps right to 

resist adaptive management? Based on an extensive analysis, Gregory et al. (2006) argue that 

in some contexts adaptive management may not be appropriate, such as when there is poor 
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institutional and stakeholder support, or when the costs and benefits of implementing adaptive 

management are not clearly evaluated. In Mana-Chewore, while Zim Parks and MIKE ostensibly 

support adaptive management, the key end-users (park managers) do not. These managers are 

also very clear on what they see as the costs of implementing adaptive management, and do 

not appreciate or buy-in to the supposed advantages of the approach. Adaptive management 

is also compromised in contexts where managers do not have confidence in baseline 

monitoring data (Gregory et al., 2006). Although not a common objection, some respondents 

did question the consistency of elephant mortality recording and the reliability of inferred 

poaching trends, a suspicion that was borne out by the trend detection results presented in 

chapter 4. Based on a review of ranger-based monitoring for tiger conservation across eight 

sites in Asia, Stokes (2010) suggests that the biases in ranger-collected data (see chapters 3 and 

4 of this Thesis) mean that such data may be more appropriate as a source of rapid information 

on illegal activities to which managers can tactically respond, rather than a source of data for 

longer-term trend analysis and adaptive management. 

 

Gregory et al. (2006) conclude that the failed implementation of adaptive management may 

be less to do with the approach itself, but rather with its uncritical application. One of the 

problems identified in the analysis of interview responses was poor communication to park 

managers about what adaptive management actually is and, most importantly, what added 

advantage it offers over traditional management styles. Senior Zim Parks staff in particular 

described a “need for marketing” and “awareness campaigns” to foster a greater 

understanding among on-the-ground managers of the potential advantages of adaptive 

management. Notably, however, MIKE staff and senior Zim Parks staff spoke about adaptive 

management as an abstract concept, and less about specific ways that managers could use data 

adaptively. Managers saw systematic analysis of trends in poaching data as unfamiliar and 

unnecessary compared to traditional management practices based on intuition, experience, 

and more immediate reaction to shorter term poaching patterns. This raises the question of 

what exactly the advantages of adaptive management in Mana-Chewore might be. Table 3 

presents specific examples and cases where data-based adaptive management could provide 

advantages over traditional management approaches. Importantly, there are legitimate uses 

of ranger-collected data that do not require systematic analysis or explicit evaluation of 

management strategies. Park managers in Mana-Chewore clearly valued and used ranger-

collected data on elephant poaching to guide patrols deployments and provide a more 

qualitative sense of the level and nature of poaching threats. Thus, in the theory-of-change I 
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develop below (Fig. 6.6), the goal is simply more optimal use of ranger-collected data as 

opposed to better implementation of adaptive management.  

Table 6.3. Advantages of systematic analysis of poaching trends and adaptive management, 
over traditional management practices around elephant poaching. Specific examples of the 
potential application of adaptive management in Mana Chewore are also given. Advantages 
and examples are based on interview responses, personal observations, and the literature.  

 

Advantages and examples  Details 

Advantage: a long-term data 

archive 

Data-based management promotes consistent recording of data 

in a single historic database, which ensures long term data 

access (whereas intuition and experience is lost when a manager 

is transferred). 

Advantage: escaping poor 

conclusions from biased data 

Reacting to raw patrol data without appropriate analysis is 

susceptible to spatial and temporal bias due to non-random 

patrolling patterns (i.e., poaching hotspots may be 

misidentified; see chapter 3).  

Example: identifying seasonal 

patterns in poaching 

Plotting monthly counts of detected poached carcass can 

elucidate seasonal poaching patterns and appropriate 

responses. 

Example: identifying longer-

term annual changes in 

poaching 

Analysing annual trends in poached carcass detections may help 

managers understand drivers of change, identify resource 

needs, and critically reflect on current management practices. 

Example: explicitly evaluate 

management actions 

Assessing how poaching levels respond to management actions 

can lead to the development of improved anti-poaching 

strategies (Fig. 6.1). 

 

Learning from new information, dealing with uncertainty in this information, and making 

decisions accordingly can be very challenging and requires the development of particular 

aptitudes (Tauritz, 2012). Expecting this from park managers without formal training, and 

without demonstrating the value of learning-by-doing, is perhaps unrealistic.  

 

Relieving managers of the full burden of responsibility for adaptive management 

 

A common expectation among managers was that the scientific arm of Zim Parks, and 

particularly the resident ecologist, should be responsible for analysing trends in poaching data 

and providing feedback. The demanding and diverse responsibilities of park managers, their 

common aversion to the technicalities of data analysis, and the specific training scientific staff 

have in this area, suggest that stronger collaboration between managers and the resident 

ecologist could foster more successful implementation of adaptive management. The various 

forms of data management and analysis required to unlock the advantages of adaptive 

management (Table 6.3), while difficult for managers in Mana-Chewore to carry out alone, may 
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be much simpler for scientific staff of Zim Parks. Indeed, the monitoring and analysis elements 

of adaptive management in many other contexts are carried out by scientists, not managers 

(van Wilgen and Biggs, 2011). Interview data suggest that managers would be open to closer 

collaboration with scientific staff: “They have the responsibility to analyse the data and give us 

advice. If they need the data, we can provide it” (manager 9). Similarly, one of the senior 

scientific staff of Zim Parks said, “We don’t have to fight…we can do it together…let’s look at 

this data together and make management decisions” (national-level respondent 11).   Despite 

these sentiments, close collaboration between scientific staff and managers around analysis of 

management-relevant trends in poaching data was evidently rare in Mana-Chewore.  

 

The reasons for this were not investigated, but this result accords with the gap between 

research and management that is so common in environmental science, which amongst other 

things is attributed to poor engagement between researchers and managers and poor 

commitment of researchers to conservation implementation (Addison et al., 2015; Knight et 

al., 2008). This gap may be exacerbated by the organisational structure of Zim Parks, in which 

the scientific and management arms of the organisation remain separated and have different 

goals. In a similar case study of bushmeat hunting in the Serengeti, Tanzania,  Nuno et al., 

(2014) interviewed respondents variously involved in research and management and found 

that the link between research and monitoring and management decisions was weak. 

Respondents ascribed this variously to poor communication of research results, research that 

was not management focussed, and low levels of trust in research which was seen as only an 

academic exercise. As a result, improving the implementation of practical conservation actions 

was seen as more important than further research and monitoring (Nuno et al., 2014). Looking 

ahead in Mana-Chewore, it will be important to better understand the barriers between 

scientific and management staff within Zim Parks in an effort to foster greater collaboration 

towards achieving adaptive management goals (Fig. 6.6). Given the lack of capacity and 

willingness of managers to conduct complex analyses themselves, there may also be a role for 

collaborations outside Zim Parks. The further development of the online dashboard (allowing 

easy access to summaries and plots of site-level poaching data) by the MIKE programme may 

be one example of this. There may also be a key place for independent researchers to 

collaborate with managers to develop the more complex models and methods needed to use 

ranger-collected data to reliably address key questions that are important to managers (as I 

attempt to do in Chapter 3 of this Thesis).   
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Taking a manager’s eye view: a human-centred approach to adaptive management design 

 

The MIKE programme originated from the need to inform CITES-level ivory policy and was not 

originally driven by the needs and interests of local park managers and national wildlife 

authorities (Blake & Hedges, 2004). MIKE staff respondents, while acknowledging this history 

and the broader CITES policy mandate, did however express a strong organisational impetus 

towards engaging more actively with park managers and local elephant management. 

Interview data suggest, however, that the perspectives, needs, aspirations and preferences of 

park managers have still not been adequately considered in the design and implementation of 

programmes like MIKE and SMART. These programmes aim to promote and facilitate adaptive 

management but are largely externally driven.   

 

The field of human-centred-design (HCD) may provide a way forward – it seeks to develop 

products or services that are tailored to the behaviours, needs and current practices of the 

individual user (Steen, 2011). Although HCD is most commonly applied to innovations within 

computer and information technology, its principles help explain the limited adoption of data-

based management in Mana-Chewore. My results suggest that data-based management does 

not fit well with the current behaviours and practices of park managers, neither does it address 

a need that they themselves have articulated. The HCD approach complements, and in certain 

respects improves upon, theories of adoption (like the UTAUT discussed above) by focussing 

on actual people rather than abstract ‘users’ (the latter can be subtly dehumanizing; Jordan, 

2002). The approach seeks to ensure that users actually want to use the product and are able 

to use it (Steen, 2011).  

 

Reflecting on the HCD approach with reference to my particular case study, it would appear 

that a significant problem with adaptive management as currently implemented in Mana-

Chewore is that it fails to properly address the current decision-making practices of managers. 

How do managers currently make anti-poaching decisions in Mana-Chewore? What social, 

logistical, and personal factors most influence these decisions? What information do managers 

currently used to develop anti-poaching strategies? A key result was that the currently 

promoted forms of adaptive management make oversimplifying and abstract assumptions 

about the way managers make decisions. Similarly, based on three case studies of adaptive 

management in Canada, McLain and Lee (1996) argue that a major flaw was poor assumptions 

about how environmental decisions are made and implemented.  Nuno et al. (2014) rightly 
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argue that managers do not make decisions in a vacuum but are shaped by a variety of socio-

economic and political factors. In his research into Environmental Impact Assessment decisions 

in South Africa, Lloyd (2018) found that, while scientific evidence was highly regarded in the 

process, social factors like informal negotiations between key stakeholders had an important 

influence on decision-making. The point here is that monitoring data are typically only one of 

many factors affecting decision-making. Unfortunately, my research did not explicitly seek to 

understand the decision-making processes of park managers in Mana-Chewore. Such research 

is crucial to the development of solutions that seek to optimize the use of ranger-collected data 

in the decision-making processes of managers (Fig. 6.6). This would help place the role of 

systematic data analysis in decision-making within a broader context of other factors that 

shape decisions, thereby laying the ground for the (human-centred) design of more realistic 

ways for ranger-collected data to inform decisions.  

 

Another way to achieve human-centred design is the active involvement of users in the 

development of the innovation, so that their experiences and concerns are understood at the 

outset (Kujala, 2003). Park managers, once they begin to see tangible examples of how data-

based management might be beneficial in some cases (Table 6.3), will have ideas and practical 

knowledge about how the approach might best fit within their context. If managers are 

engaged to provide their own ideas for how ranger-collected data might be used in their 

decision-making processes and given the opportunity to say what they would find most useful 

from an adaptive management programme, they might be more prepared to take ownership 

of it (Fig. 6.6).  It is important, however, that a range of potential users are involved and that 

the designer/innovator (in this case the MIKE programme or senior Zim Parks staff) is still given 

room to articulate the proposed innovation (Steen, 2011). This is because users may vary 

widely in their practices or preferences and may not always be able to articulate their needs or 

grasp the purpose of the innovation.   

 

A theory-of-change for maximising the potential of ranger-collected data to contribute to 

enhanced anti-poaching decisions in Mana-Chewore 

 

Fortunately, the beliefs that individuals hold about an innovation are often malleable (Straub, 

2009). Greater adoption is possible by carefully addressing the cognitive concerns of users, 

such as the performance gains that they expect from the innovation, or the ease of its use 

(Table 6.2; Venkatesh et al., 2003). Below I propose a theory of change for achieving the goal 
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of park managers making optimal use of ranger-collected data to inform their anti-poaching 

decisions. using my interview findings together with key concepts from adoption theory and 

human-centred design (Fig. 6.6). Importantly, the overall goal is not greater adoption of 

adaptive management in Mana-Chewore per se (my analysis shows that such a goal is too 

abstract), but rather the aim is to achieve enhanced anti-poaching efforts through more 

effective use of ranger-collected data. Achieving this goal will involve both (a) continuing with 

current forms of data use, and (b) identifying opportunities for innovation (which will inevitably 

involve some elements of systematic adaptive management).  

 

 

 

Figure 6.6. A theory of change outlining pathways and actions for achieving the goal of 

enhanced anti-poaching outcomes through greater use of ranger-collected data by park 

managers in Mana-Chewore. This theory has been developed based interview findings, as well 

as key concepts from technology adoption theory (Venkatesh et al., 2003) and human-centred 

design (Steen, 2011).  

 

Conclusion 
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This chapter investigated how park managers in Mana-Chewore currently use ranger-collected 

data on elephant poaching. I found that park managers valued such data and used them to 

guide patrols. Managers did not, however, systematically analyse trends in ranger-collected 

poaching data, nor did they adjust their anti-poaching strategies in response to these trends.  

A major reason for this is that managers perceived because the costs of adopting such an 

adaptive management approach to outweigh the benefits. Specifically, managers were 

unfamiliar with the technicalities of data analysis and felt that management based on intuition, 

experience and more reactive data-use was both more familiar and more dependable. As a 

result, there is a low level of ownership of data-based adaptive management among managers. 

Furthermore, the perspectives, priorities, and needs of park managers have not been 

adequately considered in the MIKE and SMART programmes that are seeking to promote 

adaptive management in Mana-Chewore. Looking ahead, it is necessary to demonstrate more 

clearly to managers the potential benefits of systematically analysing poaching trends, and to 

minimise the perceived effort and cost of adaptive management (by sharing responsibility for 

data management and analysis with others, for example). There is also a need to better 

understand the decision-making context of managers, and to work directly with mangers to 

identify specific ways in which ranger-collected data could inform key management decisions. 
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Chapter 7: Synthesis and Discussion  

 

In this Chapter I will discuss the contributions of this DPhil research to the field of conservation 

science and highlight the ways in which my findings have advanced socio-ecological systems 

research. In each of the five sections below, I identify a key higher-level insight, or theme, that 

cuts across two or more of the data Chapters in this Thesis. In each section I will review previous 

work around the theme, summarise the insights and contributions of my research in the area, 

and look ahead to priorities for future conservation science and practice. I conclude by briefly 

re-visiting my overall study objectives and considering how my four data Chapters have 

addressed these.  

 

7.1. The power of interdisciplinarity in conservation science  

 

Interdisciplinarity is a concept that has grown rapidly within academic and popular discourse 

(Fig. 7.1). Interdisciplinary methods to understand the human and nature elements of socio-

ecological systems are often discussed but less commonly carried out  (Pooley et al., 2014). 

Researchers have long recognized the importance of the social sciences for understanding 

environmental challenges (Adams and others, 1996; Scoones, 1995). After all, conservation is, 

to use the oft-cited adage, about people. We can get the ecology and mathematics right, and 

still find that conservation interventions fail in the real world of people, power and politics 

(Mascia et al., 2003). Understanding people’s behavior in the context of their engagement with 

nature is essential to designing effective conservation strategies (St John et al., 2013). In her 

high-level conceptual review, Milner-Gulland (2012) stresses how important interdisciplinary 

approaches are for understanding the complex interactions between conservation 

interventions, human behavior, and biodiversity loss. Although it has been advocated for 

decades, interdisciplinary research in environmental science is still nascent  (Hicks et al., 2010). 
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I hope that the novel insights I was able to gain through an interdisciplinary approach (detailed 

below) will help advocate such an approach in conservation science going forwards. 

 

 

 

Figure 7.1.  A Google “Ngram” showing the change in frequency of usage of the word 
“interdisciplinary’ based on mentions within books in the Google Books archive (Accessed 4 
December 2020).  

 

 Before describing the interdisciplinary approaches I took in my research, I want to briefly 

review three case studies that exemplify the novel insights and real-world impact attainable 

through integrating the natural and social sciences. These are based on work by my colleagues 

at the Interdisciplinary Centre For Conservation Science.  Brittain (2019) used mixed methods 

to gain a deep understanding of how local ecological knowledge could be incorporated into 

robust wildlife population monitoring, using a forest case study in Cameroon. In an exemplary 

analysis, she used qualitative data in the form of interviews with local villagers and the diaries 

of local hunters to feed into quantitative occupancy models, in order to better understand the 

distribution and abundance of various forest species (also comparing findings to those from 

more traditional camera trap surveys). Doughty (2020) combined insights and methods from 

behavioral science disciplines (e.g., public health) with insights from wildlife trade research to 

design, implement, and evaluate an intervention targeting the behavior of consumers of 

traditional Chinese medicine products that use the horn of the endangered saiga antelope. 

Arlidge (2020) used mixed methods to critically evaluate and expand on theory and approaches 

for mitigating the biodiversity impact of human activities and development, with a focused case 
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study of sea turtle bycatch in Peru fisheries. He used a diversity of methods, including expert 

elicitation to estimate bycatch rates, and social network models to estimate the potential of 

information spread about bycatch reduction interventions among fishers.   

 

Insights from interdisciplinary approaches in this DPhil research 

 

The aspect of this DPhil research that I found simultaneously most challenging and rewarding 

was its interdisciplinarity. My academic background prior to this DPhil was largely natural 

science focussed and strongly quantitative, so it was a challenge for me to engage with new 

qualitative methods. I have discovered, however, that truly interdisciplinary science involves 

more than combining methods from diverse fields, but also engaging with and harnessing the 

power of different epistemologies, that is, different ways of looking at and gaining knowledge 

about the world. Along with the qualitative methods I learnt through collecting interview data 

for my research, I also had to engage with broader theories within the social sciences, such as 

occupational culture and theories of technology adoption. In the process, I have discovered 

that quantitative and qualitative methods can provide mutually enriching data on the same 

study system. I often found that it was only when I considered the numbers (such as the power 

of ranger-collected data to detect trends in poaching) alongside the narrative (such as the ways 

in which park managers actually use ranger-collected data), that I was able to really gain a 

broader understanding of my study system and to begin having something meaningful to say 

about my research questions.  

 

Perhaps the part of my research where I saw the power of interdisciplinarity most clearly was 

in Chapter 3, where I explicitly sought to engage the insights and perspectives of park managers 

and rangers in order to help me build and later evaluate statistical models of spatial patterns 

in elephant poaching. For this I had to engage with the concept and philosophy of participatory 

research approaches, which recognize the analytical agency and knowledge of often 

disempowered groups (Chambers, 1994). I engaged the perspectives of park managers and 

rangers at two levels. Firstly, they helped me understand the factors driving the behaviour and 

movements of poachers, elephants, and rangers so that I could select candidate variables for 

predicting spatial patterns of poaching using species distribution models. Secondly, 

participants helped me not only to interpret and understand the results of my statistical models 

but also to interrogate their reliability. This led me to question the assumptions I had made 

during the modelling process. I actually started with a more ‘external’ perspective in which I 



 

 
 

185 
thought I was returning to the field primarily to tell rangers and managers about my findings 

and the potential biases in their data, but I ended up learning from them (Danielsen et al., 

2009). By combining interviews, focus groups, and statistical models, I was able to distinguish 

underlying spatial patterns in elephant poaching from those explained by patrol bias.  

 

Chapter 4 provides another example. The strength of the virtual ranger mathematical 

simulations developed in this Chapter depends on the reliability with which they represent the 

poaching and patrolling dynamics at my Mana-Chewore field site. Furthermore, the value of 

the simulation results for conservation management depends on how well they address park 

manager needs regarding measuring patterns in underlying poaching. The understanding I 

gained through interviews and personal observations during two field visits to ranger stations 

in Mana-Chewore helped me to parameterise my model based on a good understanding of 

site-level elephant poaching (Chapter 3) and ranger-based monitoring (Chapter 5), and to 

design the model to answer questions that I understood to be important to park managers at 

the site. This involved both direct questions about certain features and parameters of the 

system and gaining a more indirect and holistic ‘feel’ for the way things work at Mana-Chewore 

through my own observations and informal conversations.  

 

Ultimately, however, the greatest advantage of the interdisciplinary approach I have taken 

here is not in the insights gained within any one Chapter, or in how I used information from a 

qualitative Chapter to inform a quantitative one, but rather in the higher-level insights I was 

able to gain by looking at results across Chapters. This synthesis Chapter highlights some of 

these insights and how they ultimately constitute what I see as the main contribution of my 

work. Chapters 4 and 6, for example, used vastly different methods, but the results of both 

point towards the importance of clearly defining goals for monitoring. This is discussed further 

in section 7.4 below. Similarly, when considering Chapters 4 and 5 together, it is clear that the 

effectiveness and sustainability of ranger-based monitoring must involve steps towards 

improving reliability (e.g., through increasing patrol effort) and towards more meaningfully 

engaging the rangers themselves (e.g., through providing feedback to them on how the data 

they collect are used). As another example, Chapter 5 revealed that one of the most common 

ways that park managers in Mana-Chewore use ranger-collected data on elephant poaching is 

to identify hotspots of poaching in space, while Chapters 3 and 4 revealed that poaching in 

Chewore is fairly spread out across space, and that spatial patterns of poaching may change 

through time. These results together help elucidate how this particular use of ranger-collected 
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data (which is common; Critchlow et al., 2015; Moore et al., 2018) may best be leveraged for 

conservation management.  

 

Fostering future interdisciplinarity  

 

From its genesis in the natural sciences as ‘Conservation Biology’ (Soule, 1985), the science of 

conserving biodiversity has evolved to embrace methods, theories, and epistemologies from a 

variety of disciplines (as the case studies reviewed above illustrate). This has been a welcome 

change, and while it started decades ago, there are yet new frontiers to explore. It is 

encouraging that there are growing efforts both to mainstream the social sciences in this field 

(Bennett et al., 2017), and to train and equip a more interdisciplinary generation of ‘socio-

ecological’ researchers (Kelly et al., 2019). Indeed, it has been a great privilege to carry out this 

DPhil work within a research group that is at the forefront of this movement, and under the 

supervision of a mentor who is a prominent champion of it. There are still, however, barriers 

to interdisciplinarity, such as vastly different disciplinary ‘languages’, departmental silos, and 

time and resource constraints, that need to be overcome (Kelly et al., 2019). Another barrier is 

that academia as a whole, and the rewards and incentives within it, is still largely organised 

along disciplinary lines (Hicks et al., 2010). There is also a tension between being a specialist 

within a team of other different specialists, and becoming interdisciplinary oneself (Pooley et 

al., 2014).  

 

These barriers make it difficult to develop as an interdisciplinary scientist. One solution, 

suggested by a group of early-career interdisciplinary scientists, is to create specially organised  

‘encounters’ that foster open communication between researchers in different fields (Bridle et 

al., 2013). Kelly et al. (2019) helpfully provide a list of ten practical tips for developing as an 

interdisciplinary scientist, targeted at both early career researchers and their mentors. The tip 

that resonated most with me was “develop an area of expertise”. I think that such an approach 

helps one to keep an ‘anchor’ from which to launch one’s interdisciplinary endeavours, and 

also helps to bring valuable expertise to the interdisciplinary table. Finally, based on my 

experience in this DPhil, perhaps what is most needed is for more early career researchers to 

be actively exposed to or be challenged to employ interdisciplinary approaches, as opposed to 

only talking about them.  
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7.2. Embracing uncertainty in conservation science  

My case study involved the monitoring and management of elephant poaching in Zimbabwe – 

a complex and uncertain socio-ecological system. My results show both how prevalent the 

effects of uncertainty can be, and how accounting for these uncertainties can lead to better 

(more realistic and robust) conservation action.  A major insight from this research, therefore, 

is the importance of embracing uncertainty (Milner-Gulland and Shea, 2017). As outlined in 

Chapter 1, I focus specifically on two classes of uncertainty; observation uncertainty and 

implementation uncertainty. 

 

Understanding and addressing observation uncertainty  

 

Chapters 3 and 4 focus on observation uncertainty - the discrepancy between the true state of 

a socio-ecological system and what is actually observed through monitoring. In my case study, 

the poached elephant carcasses that rangers observe are only a partial representation of 

underlying patterns of poaching. Chapter 3 focusses specifically on reducing observation 

uncertainty by accounting for spatial bias in ranger patrols in order to generate more robust 

estimates of spatial patterns in poaching. Chapter 4 provides a much broader analysis of the 

diverse factors that mediate how closely ranger-collected data captures underlying trends in 

poaching. These include many observational factors to do with the patterns of patrols and 

carcass detectability (the observation process),  but also how these observation uncertainties 

interact with structural uncertainties to do with the behaviour of the study system itself 

(Fackler and Pacifici, 2014),  such as true poaching levels and trends.   

 

Ranger patrols do not cover all areas equally, which leads to obvious uncertainty concerning 

whether observations collected during patrol reflect underlying patterns or simply the pattern 

of patrolling (Critchlow et al., 2015). In Chapter 3, basic patterns in quantitative data on ranger-

detections of elephant carcasses in Chewore revealed large areas where there were no records 

of either poaching or natural mortalities.  This, together with interviews with rangers and 

managers, revealed that the more mountainous areas of Chewore are seldom patrolled 

because of challenging terrain and because elephants themselves do not frequent these areas. 

Rangers also judged that poachers avoid these same areas for similar reasons. It was uncertain, 

however, whether there was in fact less poaching in these areas, or whether poaching there 

simply went undetected. It is this kind of uncertainty that is often ignored by both researchers 

and managers – such as in a similar analysis of elephant poaching patterns in a nearby 
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protected area in which potential bias in the ranger patrols used to collect these data was not 

accounted for (Sibanda et al., 2015). To help address this uncertainty within the ensemble 

species distribution models that I used to spatial poaching patterns, I used several different 

sets of background data to match the spatial bias in ranger patrols. Each set had slightly 

different assumptions about patrol bias and produced different predictions, and it was the 

evaluation of these predictions by rangers and managers that helped me to arrive at robust 

inference. A key insight from this Chapter, therefore, is the power of combining different 

qualitative and quantitative methods in order to reduce uncertainty in our understanding of 

socio-ecological systems.  

 

The virtual ranger model in Chapter 4 sought to explicitly quantify uncertainty in the ranger-

based monitoring observation process by quantifying likely levels of bias and imprecision in 

ranger-collected data under realistic scenarios of poaching and patrolling. Perhaps the most 

important insight here was that detecting spatial and temporal patterns in poaching through 

ranger patrols can be very difficult, particularly for temporal patterns. Only large temporal 

trends in poaching (a 75% change from baseline levels) were detectable with reasonable power 

at low patrol effort levels, whereas moderate (50%) changes in poaching required high levels 

of effort to detect, and smaller (25%) changes in poaching were almost impossible to detect. 

Results varied according to both underlying poaching dynamics (e.g., whether poaching was 

increasing or decreasing), and patrol strategy (e.g., whether patrols were spatially constrained 

or not).  Chapter 4 also showed that different assumptions about  underlying poaching 

dynamics, such as space-time dependence in poaching and the level of clustering of poaching 

hotspots, influenced the power of ranger patrols to detect these dynamics. Indeed, the effects 

of space-time variation were not as large as might be expected, because carcasses were 

actually quite spread out in Chewore (based on the empirical models of Chapter 3). Thus, 

process uncertainty in our understanding of actual system dynamics can interact with 

observation uncertainty to confound patterns in ranger-collected data.  

 

A key conclusion from these results is that uncertainty in trend detection is very large, and it is 

crucial that this uncertainty is acknowledged by both park managers and those designing 

ranger-based monitoring programmes. A high degree of uncertainty in trend detection has 

been similarly demonstrated in many other monitoring contexts, such as ecological surveys of 

illegal hunting in Sierra Leone (Jones et al., 2017), aerial surveys of ungulates in the Serengeti 

(Nuno et al., 2015), and ranger detections of bushmeat snares (Ibbett et al., 2020). Global 
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monitoring indicators, such as the Living Planet Index, which tracks trends in numerous species 

populations, may also yield data trends that are highly uncertain (Jaspers, 2020). Interviews 

and informal discussions with rangers, managers, and senior staff of the Zimbabwean wildlife 

authority (Chapters 5 and 6), suggested that patterns in ranger-collected data were often taken 

at face value, without acknowledging the inherent uncertainty in these data.  The expectations 

that stakeholders have about the reliability of inferences from monitoring data may often be 

unrealistic.  Explicitly acknowledging uncertainty, and seeking to quantify it, can help put 

results from ranger-based monitoring into their proper context, and highlight ways in which to 

reduce uncertainty (which may involve trade-offs with the other important goals of ranger 

patrols such as law enforcement; Stokes 2012). Explorations of drivers of uncertainty, such as 

the virtual ranger simulations of Chapter 4, can also help park managers to design monitoring 

and management strategies that are both effective and  robust to uncertainty (Nuno et al., 

2017). In section 7.3 below I discuss how models are an effective means for both understanding 

and accounting for the observation uncertainties discussed in this section.  

 

Qualitative investigation to understand and address implementation uncertainty 

 

Another category of uncertainty that I found to be important to the reliability of ranger-

collected data and its effective contribution to evidence-based conservation, is 

implementation uncertainty; that is, the discrepancy between the expected and the actual 

outcomes of conservation interventions.  Chapters 5 and 6 focus on the behaviour, the work 

environment, and the broader social and institutional context of rangers and park managers - 

the two stakeholder groups central to the successful implementation of an effective ranger-

based monitoring and management system.  

 

Research on implementation uncertainty in natural resource management has mostly focussed 

on the people whose behaviour a conservation intervention seeks to change, acknowledging 

that factors like non-compliance with conservation rules may lead to uncertain intervention 

outcomes (Bunnefeld et al., 2011; Nuno et al., 2014). For example, the generic natural resource 

management  model developed by Milner-Gulland (2011) incorporated decision-making by 

resource harvesters and showed that poor management outcomes result when harvesters are 

not monitored to ensure they comply with harvesting rules.  Similarly,  Keane et al. (2012) 

modelled how individual resource users would respond to penalties for breaking resource 

harvest rules, and to payments for monitoring other resource users to ensure compliance with 
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rules. They found that payments and sanctions interact strongly with each other in ways that 

vary according to the socio-economic context of resource users. These examples underscore 

the importance of planning for, and as far as possible addressing, the varied and uncertain ways 

that resource users will change their behaviour in response to conservation interventions. This 

is because human behaviour often has a strong influence on the outcome of conservation 

management (Fulton et al., 2011). In my Thesis I frame implementation uncertainty in a slightly 

different way by shifting the focus from resource users to those actually responsible for 

managing and monitoring these resources. I show that uncertainty in the behaviour, 

motivations and priorities of rangers and park managers means that the outcomes of the 

conservation interventions that depend on them as key agents are themselves uncertain. In 

both Chapters 5 and 6, I show how better understanding the perspectives of, and pressures on, 

rangers and managers can help overcome the unexpected outcomes that might arise when 

these perspectives are ignored (such as managers not using monitoring data to inform their 

decisions).   

 

Chapter 6 provides perhaps the clearest example of the implementation uncertainty (and even 

failure) that can arise when conservation programmes are insensitive to the context and needs 

of the people who are supposed to implement them. In my case study, adaptive management 

- whereby monitoring data are analysed to evaluate and improve management actions – has 

been promoted as a management approach by both the national wildlife authority in 

Zimbabwe and an international programme for monitoring elephant poaching (MIKE). Yet my 

results showed only very limited adoption of data-based adaptive management in Mana-

Chewore. This was mainly due to very low levels of ownership among  key stakeholders – the 

park managers themselves. These results echo those of Addison et al., (2015), who found that 

managers across variety of Marine Protected Areas in Australia made only limited quantitative 

use of data from long-term ecological monitoring programmes, preferring instead to use only 

a qualitative consideration of broad trends in data and their own management intuition. 

Similarly, Sutherland et al., (2004) found that biodiversity managers in the United Kingdom 

tend to prefer common sense, experience, and discussions with other managers over primary 

scientific evidence to guide their decisions.  

 

Interviews with managers in Mana-Chewore revealed that they saw systematic analysis of 

trends in ranger-collected data on elephant poaching as both less reliable and less familiar than 

traditional management approaches based on intuition, experience and more reactive use of 
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data. Many managers felt uncomfortable with the technical aspects of data analysis. They also 

felt that adaptive management as currently promoted in Mana-Chewore was too ‘slow’ an 

approach when there was an immediate poaching crisis to respond to. From a programme 

design perspective, the purpose of adaptive management and tangible examples of its 

advantages were not well communicated to managers. Furthermore, both the MIKE 

programme and the institutional structure of the government wildlife authority was strongly 

geared towards data recording and reporting but did not emphasise the use of these data for 

local anti-poaching decisions. These problems may be summarised by concluding that 

uncertainty in the behaviour of park managers was not accounted for, because their 

perspectives were not properly engaged.  

 

Chapter 5 provides a further example of this implementation uncertainty. Interview results 

show that the way rangers perceive patrol-based data collection, specifically how they see it 

fitting with their broader responsibilities and whether or not they are aware of how their data 

are used, affects their meaningful engagement with monitoring. Also, the occupational culture 

of rangers and their living environment was shown to shape their motivation and work ethic. 

Although I did not directly measure the effects of these factors on the quality of data collection, 

interview data suggested that they strongly affect the consistency and sustainability of ranger-

based monitoring. The occupational culture of rangers at my study site (particularly the strong 

sense of duty and deference to authority that they demonstrated) had a strong influence on 

how rangers engaged with monitoring. Rangers saw data collection as a fundamental duty and 

reporting data as an opportunity to demonstrate a job well done to their supervisors.  I 

discussed how more engaged data collection can be achieved by building on existing ranger 

culture while also fostering rangers' appreciation of data collection and utilization thereof. 

These results accord with the seminal work of William Moreto and colleagues, which 

emphasizes the importance of investigating ranger perspectives and ideas as being key to the 

success of conservation interventions, rather than seeing them as passive nodes through which 

these interventions are enacted (Moreto et al., 2017; Moreto and Lemieux, 2015).  Again, as in 

the case of implementing adaptive management, the behaviours, preferences and perceptions 

of the rangers tasked with actually carrying out ranger-based monitoring are tantamount. 

Without properly considering these human dynamics, the outcomes of ranger-based 

monitoring and management would be far from certain.  

 

Embracing uncertainty in future socio-ecological systems research.  
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Looking ahead, the most straightforward recommendation arising from my research is that 

those researching socio-ecological systems should seek to identify key uncertainties in their 

system and explicitly incorporate them into their research questions. As discussed above, 

models provide a useful tool for achieving this. Future research might also focus on the 

development of novel statistical techniques for accounting for observation uncertainty, which 

itself depends on research that seeks to understand and measure the processes that bias the 

observation process (Dobson et al., 2020). Another contribution for researchers to make is not 

only to quantify specific forms of uncertainty, but to investigate what they mean for 

management decisions. For example, if ranger patrols are only able to reliably detect very large 

changes in poaching over time, how then should managers use ranger-collected data? How 

should managers make decisions under this kind of uncertainty? Earle (2016) provides an 

example of such a recommendation, suggesting that managers might better base their 

decisions on the presence/absence of threats based on community monitoring, rather than 

trends in these threats (which she showed were very uncertain). Another key area for future 

work is to make the link between monitoring data and management decisions more explicit 

and practicable. An excellent example of this is the concept of decision triggers, where 

management actions are explicitly designed to respond when monitoring data indicate that a 

key ecological variable (such as the abundance of individuals of a certain species) drop below 

a particular threshold level (Cook et al., 2016).  

 

7.3. The value of models for understanding and addressing uncertainty in 

socio-ecological systems 

 

The results of Chapter 3 and 4 point more generally to the value of models - which I understand 

here as representations of reality created for a particular purpose. Models provide an excellent 

means of incorporating our uncertainty about the underlying reality that they seek to represent 

and exploring its implications (Regan et al., 2002).  Models are thus an essential way to embrace 

uncertainty, as advocated in section 7.2 above. They also help researchers explore, and thus  

comprehend, their study system in ways not possible through direct observation.  

 

The virtual ranger model I developed in Chapter 4 is an example of this: it sought to represent 

the elephant poaching and ranger patrol dynamics at my study site through simulation, thus 
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allowing for virtual exploration of processes and mechanisms that are likely to be occurring in 

reality but which are not observable. The obvious advantage of this modelling approach is that 

it overcomes the challenge of not having independent data on true poaching levels. Instead, I 

simulated realistic patterns of underlying poaching directly, based on parameterisation using 

the best empirical data available. The model thus helped me determine how accurately and 

precisely ranger-collected data represent underlying poaching levels under realistic scenarios, 

which is crucial to assessing ranger-based monitoring as a conservation tool. Similarly, although 

ranger patrol bias was not observed directly, the statistical models of Chapter 3 involved testing 

assumptions about ranger patrol bias (in particular where to sample background data from) 

and were thus able to produce more robust inference. More broadly, by representing our best 

current understanding of a particular system under study, models provide a tool for thinking 

critically about system dynamics and the specific questions one hopes to answer about these 

dynamics (Addison et al., 2013). Thought of in this way, models need only be as complex as the 

particular research questions demand. In the context of fisheries management, Plagányi et al. 

(2014) show that ecosystem models of intermediate complexity, which focus on one particular 

aspect of a broader ecosystem over shorter time scales, can be an effective way of addressing 

focussed management questions.  

To make this discussion of the advantage of models less abstract, I will use another illustrative 

example from the literature. Bunnefeld et al. (2013) developed a management strategy 

evaluation model to help guide trophy hunting of the endangered Nyala antelope in Ethiopia.  

The population dynamics of nyala (including both hunting and poaching offtake),  population 

monitoring, and the decision-making of both the government and the private hunting operator, 

were all incorporated within the model. The government and hunting operator could choose 

between investment in anti-poaching and better population monitoring, and management 

performance was measured both by profits from hunting offtake and population viability. 

Results showed that poaching had a larger effect on sustainable offtake levels than did 

uncertainty in population estimates, suggesting that anti-poaching investment was crucial. A 

certain level of consistent monitoring was however required for appropriate planning and 

quota setting.  This model helped make explicit the assumptions about the effect of key 

processes like hunting offtake, poaching intensity, and uncertainty in population estimates. It 

also allowed exploration of the outcomes of various possible management actions without 

having to engage in expensive and risky real-world experimentation.  
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In a comprehensive treatment of the use of models in applied conservation science, Milner-

Gulland and Rowcliffe (2007) suggest that a key advantage of models is that they make 

assumptions as to how a system works explicit, thereby providing transparency for decision-

making. Models also allow for the prediction of outcomes of certain management approaches 

that would be difficult to predict from intuition or a qualitative understanding of system 

dynamics alone. For example, it would be very difficult to predict how the effect of ranger 

patrols in deterring poacher activity might interact with changes in poaching due to 

exogeneous factors (like changes in the price of harvested species outside) to influence the 

reliability of catch-per-unit effort indices of poaching (as the models in Dobson et al. (2019) 

were able to achieve). Similarly, the virtual ranger model in Chapter 4 produced several non-

intuitive results, such as the similarity in performance of random and spatially-targeted ranger 

patrols for detecting both spatial and temporal patterns in poaching, and also the notable 

differences in the difficulty of detecting increasing versus decreasing temporal trends in 

poaching.   

 

In the context of this discussion, however, the greatest advantage of models is that they 

provide a means of directly incorporating inherent uncertainty in both our current 

understanding of a particular study system, and the way in which this system might respond to 

management action. This was a key feature of the mountain nyala hunting model outlined 

above, in which uncertainty in both monitoring and population dynamics was directly 

incorporated in order to help ensure that management recommendations were not only 

effective in terms of particular performance measures, but were also robust to uncertainty 

(Bunnefeld et al., 2013). Regan et al. (2005) used information-gap theory models to evaluate 

management actions for the Sumatran rhinoceros Dicerorhinus sumatrensis, showing that 

there was a sharp trade-off between management strategies that maximised conservation 

outcomes and those that were most robust to uncertainty. This is similarly well illustrated in 

the generic natural resource harvest and management model developed by Milner-Gulland 

(2011), which incorporated both uncertainty in estimates of the resource population from a 

monitoring programme, and uncertainty in how resource users might respond to management 

regulations designed to ensure harvest sustainability (i.e., they may not comply). In my study 

system of Mana-Chewore, both the absolute level of poaching and the baseline detection 

probability of poached carcasses by rangers is uncertain, and in Chapter 4 I was able to model 

different levels of these key variables in order to better understand the implications of this 

uncertainty. Similarly, I was able to quantify uncertainty in the power of ranger-patrols to 



 

 
 

195 
detect simulated patterns in poaching, thereby allowing for an appraisal of ranger-based 

monitoring that was more realistic in that it was sensitive to uncertainty.  

 

Participatory modelling (which I used in Chapter 3) is a particularly useful approach to 

addressing uncertainty  Defining this approach is difficult as it comes in many forms. Essentially, 

it involves explicitly engaging stakeholders (those people connected to the system being 

modelled) in the process of modelling system dynamics, where the model is designed to inform 

a decision-making process involving these stakeholders (Basco-Carrera et al., 2017). 

Stakeholders may variously help define the goals of the model, identify important processes 

and relationships to be included, help define the form of these relationships, or help evaluate 

and interpret model outcomes. In my case study, rangers and park managers helped me to 

build and evaluate models of the spatial distribution of elephant poaching. Specifically, they 

helped with (1) selecting predictor variables based on their knowledge of ranger, poacher and 

elephant behaviour, (2) understanding and mapping the pattern of ranger patrols in space, and 

(3) critically evaluating model outcomes and assumptions. This third contribution was 

particularly valuable, as rangers and managers questioned the validity of the outcomes of one 

particular model scenario, which led me to realise that it was based on poor assumptions. As a 

result, I identified an alternative scenario as more robust, and it was from this scenario that I 

was able to draw final conclusions about spatial patterns in poaching.  

 

Essentially, participatory modelling helped me to reduce uncertainty in my knowledge of the 

system by engaging the perspectives of those with more intimate knowledge. In their review 

of participatory modelling in fisheries management, Röckmann et al. (2012) similarly relate 

how a major advantage of the approach is that it reduces the uncertainties so prevalent in our 

scientific understanding of resource and harvest systems. Through an applied case study, these 

authors demonstrate shared learning, structured discussion between scientists and 

stakeholders and scientists around uncertainty, and increased legitimacy and trust in model 

outcomes as further advantages of the approach (Röckmann et al., 2012). Voinov and Bousquet 

(2010) further show how such an approach can increase stakeholder knowledge of the natural 

resource system and its use,  while also clarifying the possible impacts of candidate solutions 

to management problems. Finally, I found that rangers and managers were more likely to 

engage with and take ownership of the results of the spatial model of elephant poaching, 

knowing that they were involved in the process. In their review of bio-economic models for 
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marine fisheries management, Nielsen et al. (2018) also suggest that modellers spend more 

time discussing model outputs with the fishers.  

 

I will end this discussion on the advantages of models by considering a crucial element of 

model-building – ensuring that models represent reality well. A quote from Albert Einstein is 

apposite here: “one should make models as simple as possible, but not simpler”. Striking the 

balance between model complexity and simplicity is difficult and will depend both on the 

quality of the data available for model parameterisation (hence reducing the need for too many 

assumptions in more complex models), current qualitative knowledge of system dynamics and, 

crucially, the specific questions one hopes to answer using the model (Getz et al., 2017). The 

philosophy of Occam’s razor suggests that simpler explanations (models) are more likely to be 

correct, and that the more assumptions you have to make (such as when building a model), the 

less likely the explanation.  Following this principle, I sought to build the virtual ranger models 

in Chapter 4 with just enough complexity to answer my research questions. This meant, to use 

one example, deciding not to model age- and sex-structured elephant population and poaching 

dynamics, because the effects of poaching on elephant populations were unrelated to my 

research questions. 

 

Einstein, however,  warns against making models too simple. Occam himself held that if a 

complex explanation (model) does a better job than a simpler one, then the more complex 

explanation should be preferred. Furthermore, one of the major criticisms of models from 

conservation practitioners is that they unhelpfully simplify or abstract complex reality and do 

not properly capture processes that key stakeholders feel are important (Addison et al., 2013). 

Thus, I endeavoured to incorporate complexity where data allowed. For example, I included 

the relatively complex process of space-time dependence in underlying poaching into my 

virtual ranger models, because I hypothesised that this could have large effects on the 

reliability of ranger-collected data (especially in the case of targeted patrols which were guided 

by previous detections). Ultimately, however, the strength and usefulness of the models 

developed in this Thesis (both in Chapters 3 and 4) are vulnerable to the quality of the 

quantitative and qualitative data I used to parameterise them. Whilst I invested heavily in 

qualitative data collection and was given access to a comprehensive long-term data base of 

elephant mortality, I did not have raw data on one significant element of this system – fine-

grained data on the pattern of individual ranger patrols. I thus had to make assumptions about 

the pattern and intensity of ranger patrols on the basis of qualitative data, and then model 
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these patterns quantitatively. I also had to make assumptions about the baseline detectability 

of elephant carcasses (the probability that a carcass would be detected in a given grid cell of 

the park if that cell was patrolled), a parameter that would have large implications for patrol 

performance. This, however, points back to a significant advantage of models – they allow one 

to make these sorts of assumptions explicit, and to test the effect of alternative assumptions.  

 

Looking ahead, it is likely that techniques for building and implementing models of socio-

ecological systems will become increasingly sophisticated as the interface between 

mathematics, ecology, and statistics is strengthened. At the same time, data are likely to 

become both more available and of higher quality as monitoring technologies and remote 

sensing continue to develop. This will be a double-edged sword, as models become both easier 

to implement and therefore easier to thoughtlessly apply. My results have shown that 

balancing model complexity and simplicity, and being clear about the questions you hope to 

ask from a model, are crucial (Plagányi et al., 2014). It is in these areas that modellers can go 

wrong, even with the most sophisticated methods and high-quality data. There is thus a need 

for individual researchers, as well as teachers and supervisors, to develop the ‘art’ of modelling 

alongside the ‘science’ of modelling. There is a need for guidance on how to strike the balance 

between model complexity and adequacy (as in Getz et al., 2017), when it is suitable to make 

assumptions, and how to gear models towards focussed research questions.  Another fruitful 

avenue for the future development  of models in socio-ecological systems research, and one 

that is already growing, is the careful inclusion of expert judgements and knowledge in cases 

where empirical data are lacking (Martin et al., 2012). Finally, as discussed above, I think there 

are great gains to be realised through participation of a broader array of stakeholders in the 

modelling process, both to help build models and to evaluate and interpret their outcomes and 

potential application.  

7.4. Begin with the end in mind: clearer goals for conservation monitoring 

Making the link between monitoring results and management decisions explicit 

 

Considering both my findings in this Thesis and the wider literature, a significant barrier to the 

effective contribution of baseline monitoring to improved biodiversity outcomes is that the 

purposes for which monitoring data are collected are seldom articulated well (Altwegg and 

Nichols, 2019; Field et al., 2007). This is a major impediment both to the reliability of monitoring 

results, and the extent to which they are actually used within conservation management. More 
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specifically, it is important to define beforehand the particular management decisions that 

ranger-collected data might inform, so that these data are better integrated into decision-

making processes (Nichols and Williams, 2006). This was a theme that cut across a number of 

the Chapters in this Thesis. Chapter 6 sought to elicit from park mangers the main purposes to 

which they currently put ranger-collected data, while Chapter 3 demonstrated an approach for 

one of the most common uses of these data (to identify poaching hotspots). Chapter 4 

demonstrated how the performance of ranger-based monitoring in capturing trends in 

poaching depends to a large extent on the particular question being asked of monitoring data, 

in other words, the type of poaching trend managers hope to be able to detect.  

 

To be effective, monitoring in conservation must not be considered an end in itself, but must 

be clearly integrated within a broader decision-making framework (Nichols and Williams, 

2006). Knowing why and how data will be used aids the efficiency and usefulness of data 

collection. Alongside ensuring power to detect trends of interest, Field et al. (2007) argue that 

clear objectives are perhaps the most important aspect of monitoring – what exactly to 

measure, what level of change the programme seeks to capture, and so on. Altwegg and 

Nichols (2019) provide a good illustration of the importance of clearly defining the questions 

that conservation managers and others plan to ask from monitoring data.  They use a  case 

study of the South African Bird Atlas project, through which data on bird distribution and 

abundance are collated by citizen science birdwatchers. They highlight the importance of 

properly understanding the ultimate questions that are being asked of messy observational 

data. What kinds of questions do biodiversity managers and policy makers have around bird 

abundance and distribution? Data collection strategies, and the methods used to analyse these 

data, need to be designed with these broader questions in mind (Altwegg and Nichols, 2019). 

 

My findings: clearer goals strengthen adaptive management, aid quantitative assessment of 

monitoring performance, and motivate data collectors 

 

In Chapter 6, one of the main factors identified as explaining why park managers do not 

systematically analyse trends in ranger-collected data to inform anti-poaching was the lack of 

clarity about the purpose of data-based adaptive management as promoted through the MIKE 

and SMART programmes. As one senior staff at the Zimbabwean wildlife authority remarked: 

“Many of the managers may not even know why they are doing MIKE and why it is important” 

(Chapter 5; national-level respondent 11). The added advantage of an adaptive management 
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approach over traditional management approaches was not well-communicated to park 

managers in Mana-Chewore. A specific problem was the lack of examples of how analysis of 

ranger-collected data could inform particular questions that were important to managers. In 

response to these findings, I sought to identify some specific examples and advantages of data-

based management in the context of Mana-Chewore (Chapter 6: Table 6.3). Then, in the 

theory-of-change for ensuring optimal use of ranger-collected data, I identified as a key 

outcome that managers understand and take ownership of specific ways that analysis of trends 

in ranger-collected poaching data can inform their anti-poaching strategies (Chapter 6: Fig. 

6.6).  These results and the consequent solutions emphasise the importance of beginning with 

the end in mind - connecting monitoring data to specific management decisions. 

 

The virtual ranger simulations of Chapter 4 further stress the importance of clearly defined 

goals for monitoring. I showed that the suitability and power of ranger patrols for detecting 

underlying trends in poaching depended on the particular question or goal of the manager. For 

example, are managers interested in detecting spatial or temporal patterns in poaching, or 

both? Is the goal to detect large changes in poaching, or is the detection of small changes 

equally important? What degree of confidence in trend detection (i.e., statistical power) are 

managers willing to accept? Are managers more interested in detecting annual or seasonal 

changes in poaching? The value of ranger-collected data to managers will vary depending on 

the answers to these, and many other similar, questions. For example, ranger-collected data 

on elephant poaching in Mana-Chewore tended to perform better at reliably detecting spatial 

patterns in poaching than temporal trends. Furthermore, clarifying the specific objectives of 

monitoring also clarifies the strategies required to meet these objectives. For example, I 

showed in Chapter 4 that whether or not increasing patrol effort leads to improved temporal 

trend detection depends strongly on the magnitude of the change in underlying poaching level 

over time.  

 

Clarity on the purpose of collecting monitoring data may also help motivate data collectors, as 

my interviews with rangers showed in Chapter 6. One ranger remarked, ‘We are the ones who 

collect, so we want to know, the data we are collecting, where is it going and how it helps us?’ 

(Chapter 6: ranger 9). Analysis of ranger responses across multiple questions suggests that a 

large proportion of the rangers in Mana-Chewore would be more focussed and engaged in data 

collection if they knew how their data would be used by park managers (Chapter 6: Fig. 

6.5). While some rangers may collect data purely out of duty without concern about the 
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specifics of data use, my results suggest that, on balance, the quality (consistency, detail, etc.) 

of patrol data is likely to be improved when rangers appreciate the purpose of these data. This 

has parallels with citizen science programmes, in which data collectors want to feel that they 

are contributing to clear outcomes (Jones et al., 2018).  

 

Future priorities for integrating monitoring and decision-making 

 

Looking ahead, multiple stakeholders (researchers, park managers, monitoring programme 

designers, and data collectors themselves) would all benefit from clearly defined goals for 

monitoring. There is a need for stakeholders to engage with each other to define these goals 

together. It is then that one can properly design monitoring to meet these objectives or assess 

the power of current monitoring designs. Monitoring is only worthwhile if managers are likely 

to change their practices in response to monitoring results (Field et al., 2007).  In their review 

of global biodiversity monitoring, Jones et al. (2011) argue that the most valuable biodiversity 

indicators are those whose integration with decision-making is clearest.  

 

 An area where the goals of monitoring are often very clear is the monitoring of species 

targeted by trophy hunters. Here the goal of monitoring is to provide data on target species 

abundance over time to better understand its response to hunting pressure, and to guide the 

development of management strategies that optimise both revenue and sustainability. As an 

example, Kinahan and Bunnefeld (2012) assessed the performance and cost-efficiency of 

different strategies for monitoring mountain nyala abundance in order to inform the setting of 

hunting quotas. The goal here was to detect changes in nyala population numbers with 

reasonable power and meaningful precision. Similarly, Edwards et al. (2014) developed a novel 

index of the relative abundance of lions (the number of hunting days required to kill a lion) and 

showed that it could be reliably used to set sustainable quotas despite uncertainties in 

observation and lion population dynamics. Granted, the goal here is relatively simple (to detect 

changes in a single species population over time), but the trophy hunting case study 

nonetheless illustrates the power of monitoring when goals are clear.  

 

Finally, there is a need to better incorporate budgetary considerations when designing and 

assessing monitoring programmes. Increasing the reliability with which monitoring data can 

meet specific objectives often involves increasing sampling coverage or frequency, which 

inevitably comes at a cost. Nuno et al. (2015), for example, show a sharp trade-off between 
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monitoring effectiveness and cost for arial surveys of ungulates in the Serengeti. This raises the 

difficult challenge of properly assessing the ‘Value of Information’, that is, quantifying how 

additional investment in monitoring will improve management outcomes (Canessa et al., 

2015). Managers and other stakeholders must decide whether gains in monitoring 

effectiveness are worth the cost. Such an analysis of cost efficiency was not explicitly 

considered in my Thesis, and I hope it will be a focus of my future work. Being more explicit 

about monitoring costs may actually help researchers and managers clarify realistic monitoring 

goals, thus ensuring monitoring results are more likely to ultimately aide decision-making.  

7.5. The role of ranger-based monitoring in biodiversity conservation 

Key questions on ranger-collected data as conservation evidence 

 

In this Thesis I sought to evaluate the reliability and conservation value of ranger-based 

monitoring, using an in-depth case study of ranger-collected data on elephant poaching in 

Zimbabwe. Perhaps the most important practical outcome of my research is its contribution to 

the discussion around the role of ranger-based monitoring in biodiversity conservation more 

generally. The importance of baseline ecological and social evidence, like species population 

trends or poaching rates, for improving conservation management is already well established 

(Gillson et al., 2019). Furthermore, the review of the literature presented in Chapter 1 

highlighted several examples of ranger-collected data informing conservation management in 

different contexts. However, I found only limited previous research that explicitly focussed on 

the reliability of ranger patrols for capturing particular trends of interest (Keane, 2010), and 

the factors affecting whether and how managers use these data to inform their decisions (Gray 

and Kalpers, 2005). I also found that the advantages of ranger-based monitoring are described 

in the literature in very general terms or with reference to a particular research case study 

where ranger-collected data were used, as opposed to being specifically investigated (see for 

example Ihwagi et al., 2015 and Moore et al., 2018). Therefore, it is still worth asking: is ranger-

based-monitoring an appropriate means of contributing to the evidence base for conservation 

management? If so, how can ranger-based monitoring best be leveraged, what kind of 

evidence can it contribute, and in what way? What do the insights I have gained through my 

case study suggest concerning the role of ranger-based monitoring in biodiversity 

conservation? 

 

The elephant that is not in the room:  power to detect trends  
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Perhaps the most obvious part of answering these questions is a critical assessment of the 

power of ranger patrols to reliably detect management-relevant trends in species abundance 

and threat.  Field et al. (2007), considering monitoring more generally,  argue that such an 

assessment is the first step towards making monitoring meaningful, lamenting that millions of 

dollars are spent on monitoring that has no real chance of detecting changes in variables of 

interest. This was the major focus of the virtual ranger simulations of Chapter 4, and the results 

were somewhat sobering. The challenge is that ranger patrols, like all monitoring methods, 

cannot detect everything. Simulations showed that many elephant carcasses were inevitably 

missed - the elephants that apparently are not in the room but actually are. Under favourable 

conditions of wide patrol coverage and relatively high baseline levels of poaching (90 elephants 

per year or 3% of the population), smaller temporal changes in poaching (25% difference from 

the baseline) were almost impossible to detect even with high levels of patrol effort. Larger 

changes in poaching (50%) were more detectable but  required high levels of effort (12 or more 

7-day patrols per month). Only very large (75%) changes were detectable with low patrol effort. 

However, when baseline poaching was rarer (30 elephants per annum or 1% of the population), 

even very large changes in poaching were almost impossible to detect. Increases in poaching 

were also markedly more difficult to reliably detect than decreases, suggesting that ranger-

collected data may not perform well at flagging a growing poaching threat (increases only 

became statistically apparent after 2 years). The ability of ranger patrols to adequately capture 

underlying spatial patterns in patrols was more promising, with moderate to high levels of 

spatial overlap between actual and detected poaching possible with medium levels of patrol 

effort in most scenarios. It turns out that spatial trend detection is less vulnerable to the effects 

of small sample sizes that were a major driver of the poor temporal trend detection results 

summarised above.  

 

A notable result was that spatial bias in patrols, where rangers preferentially target areas 

where they have previously detected carcasses, had only very small effects on spatial and 

temporal trend detection. This is important because such targeted patrolling is perhaps the 

biggest criticism of the ability of ranger-based monitoring to produce reliable results (Moreto 

et al., 2014; Stokes, 2012). It turns out that targeting only biases results in contexts where the 

underlying spatial pattern of poaching is highly clustered. Given the complexity of factors that 

may influence poacher behaviour, and how these vary in time and space, more spread-out 

distributions of illegal activity may in fact be more common than concentrated clusters (Beale 
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et al., 2017; Rashidi et al., 2015), so this concern may be overstated. Overall, however, my 

results suggest that caution is needed when relying on ranger-collected data to capture trends 

in poaching over medium time scales (1-3 years). There is significant uncertainty in the power 

of patrols to capture these trends, and this power is very sensitive to the particular trend of 

interest and the broader poaching and patrolling context (i.e., patrol coverage and the baseline 

poaching level). My results are also specific to elephant poaching, which is a relatively less 

common illegal activity. Bushmeat hunting, for example, is likely to occur at magnitudes far 

higher than 90 incidents per year (the baseline poaching rate used in my virtual ranger 

simulations) (Gandiwa et al., 2013). Similarly, the collection of data on species abundance while 

on patrol will likely involve far higher sample sizes, and therefore more promising results in 

terms of the power to detect trends (Gray and Kalpers, 2005).  

 

Data scarcity remains a concern, however, hindering trend detection and data reliability. There 

is a need to investigate strategies for boosting detection rates, such as patrols informed by 

community-based intelligence (Cooney et al., 2016). Also, in areas where sport hunters cover 

wide areas within protected areas (as in Chewore), detections from sport-hunting patrols could 

supplement those from regular ranger patrols. In the future, detections by rangers may also be 

boosted by the use of novel technologies such as unmanned aerial vehicles (Gonzalez et al., 

2016).  

 

Begin with the end in mind: longer term trends or immediate intelligence? 

 

As highlighted in section 7.4, monitoring programmes can only be properly assessed if their 

goals are clear. Careful consideration must be given to the particular decisions that ranger-

based monitoring might inform in a particular context. There are numerous possible uses to 

which ranger-collected data may be put, and the value of these data must be considered in 

light of these end-uses. The virtual ranger simulations considered the detection of spatial and 

temporal trends in poaching over the medium term, using 2-3 years’ worth of ranger-collected 

data. What about the use of ranger-collected data for more immediate indications of changes 

in poaching across time and space? Chapters 5 and 6 revealed that both rangers and managers 

are mainly concerned with these shorter-term patterns, and that they see the value of ranger-

collected data mainly in terms of its ability to provide this more immediate “intelligence”. Data 

use was basic and reactive, with information from one patrol guiding the next few patrols, 

"soon after the patrol we gather for a debriefing, that's where we extract some important 
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information [observations from patrol] that will assist us in the planning our next patrols" 

(Chapter 6: manager 2). Similarly, in her review of the role of ranger-based monitoring in tiger 

conservation across 8 sites, Stokes (2010) suggests that ranger-collected data is most useful for 

flagging the short-term presence/absence of illegal activities so that managers can respond 

directly to present threats. She suggests that longer-term trends (>1yr) from these data are less 

useful because of variations in detectability and patrol effort in time and space.   

 

Gray and Kalpers' (2005) case study in the Virunga-Bwindi region of central Africa demonstrates 

the wide uses to which ranger-collected data can be put, including (but not limited to) both 

immediate intelligence and longer-term trend detection. Rangers’ observation at their site 

helped populate a comprehensive database of individual gorillas, their family groups, and their 

home ranges. Ranger-collected data on illegal resource extraction was also used to guide law 

enforcement in real-time, as managers responded to immediate threats. Also, managers and 

researchers were able to identify seasonal and annual trends in common illegal activities such 

as bushmeat snaring and bamboo cutting by using ranger detections of these activities adjusted 

for patrol effort variation. Whilst the reliability of these trends was not formally assessed, they 

provided, at the very least, a good qualitative understanding of the nature and intensity of 

threats. Finally, ranger-collected data has also furthered research on gorilla ecology and 

behaviour. In other contexts, the goal of ranger-based monitoring may be more focussed, such 

as tracking the numbers of a species of distinct conservation value. O’Neill (2008), for example, 

developed strategies for robustly monitoring saiga antelope population numbers in Russian 

protected areas via ranger-conducted vehicle transects.  

 

Sometimes the goal for monitoring may simply be to give managers a qualitative sense of 

trends of interest. Addison et al. (2015), for example, showed that marine protected area 

managers in Australia assess the condition of marine ecosystems by qualitatively judging the 

direction of trends in various species from quantitative monitoring programmes. In my case 

study of Mana-Chewore,  managers may not need statistical models of the distribution of 

poaching in space, but rather a more qualitative sense of which parts of a protected area are 

particularly vulnerable to poaching. The results of Chapter 6 showed that managers in Mana-

Chewore pin the locations of ranger-detected elephant carcasses and poacher camps/spoor on 

a physical map and develop a good sense of vulnerable areas based on previous encounters.  

Similarly, statistically significant differences in poaching levels from one year to the next (which 

was the criteria used in the virtual ranger simulations developed in Chapter 4) may be less 
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important to managers than would a broad qualitative understanding of trends in poaching 

(i.e., increasing, decreasing, or constant). The danger here is that these qualitative patterns 

may be misleading, identifying trends and patterns in poaching that may not reflect the 

underlying reality. Ranger-collected data may also be used to establish the simple presence or 

absence of threats over different spatial or temporal scales (e.g., per month, or per region of a 

park), which may be less susceptible to the uncertainties associated with strict trend detection 

(Earle, 2016).  

 

The case studies reviewed here, and my own results, show that ranger-collected data may 

perform very differently according to the particular monitoring objective, again emphasising 

the importance of beginning with the end in mind.  

 

Partnerships to unlock the potential of ranger-collected data 

 

Many of the ranger-based monitoring case studies reviewed above involved partnership 

between managers and some external agency. The Virunga gorilla case study depended heavily 

on resources and training from a partnership of three external NGOs (Gray and Kalpers, 2005). 

Similarly, in the saiga antelope monitoring study (O’Neill, 2008), extremal researchers were 

needed to design ranger-based monitoring strategies that accounted for variations in 

monitoring intensity and spatial coverage. Also, the improved law enforcement effectiveness 

of ranger patrols in Queen Elizabeth National Park relied on a sophisticated statistical analysis 

of trends in illegal activities carried out by expert scientists (Critchlow et al., 2016). Finally, my 

own case study further demonstrates the potential of partnerships for gaining deeper insights 

from ranger-collected data – identifying spatial patterns of elephant poaching required 

complex statistical modelling and careful parameterisation (Chapter 3; Kuiper et al., 2020). 

 

In Chapter 6, park managers as well as senior staff of Zim Parks (the national wildlife authority)  

suggested that analysis of trends in ranger-collected data should be the responsibility of the 

scientific division of the organisation. Zim Parks employs scientists (‘ecologists’) to work both 

at the local and national levels, and respondents suggested that these individuals are better 

trained and able to interpret and analyse poaching data. Managers also suggested that 

ecologists could advise them on management actions based on their analyses, “I think the 

research guys have the responsibility to analyse the data, and then give us advice. If they need 

the data, we can provide it.” (Chapter 6: manager 9). Unfortunately, I did not find any evidence 
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of such collaboration between managers and scientists at my case study site. In a similar vein, 

senior staff of the MIKE programme described a recent effort to develop an online dashboard 

for automating the production of simple summaries, graphs and maps of  elephant mortality 

records submitted to MIKE. The goal is for park managers at individual MIKE sites to log in and 

access already-analysed data. Indeed, a few of the park managers I interviewed expected more 

feedback from MIKE on trends in elephant poaching based on the data they submit to the 

programme. Finally and more generally, specialised technical expertise are often required to 

quantify and properly account for the various biases in ranger-collected data highlighted 

throughout this Thesis (Dobson et al., 2020).   

 

Park managers and rangers have diverse responsibilities and rightly focus their efforts on 

practical conservation action. The design, funding, and maintenance of ranger-based 

monitoring programmes, and the analysis of outcomes, may therefore be best achieved in 

partnership with external conservation and research organisations.   

 

Are monitoring and law enforcement complementary? 

 

An important consideration is how data-collection on patrol fits in alongside other ranger 

duties such as anti-poaching and law enforcement, as this will determine the sustainability and 

consistency of monitoring. Indeed, this is the main way that ranger-based monitoring differs 

from many other forms of monitoring – it is relatively opportunistic.  Ranger patrols serve 

various functions, perhaps the most important of which is  law enforcement and wildlife 

protection, particularly the deterrence and apprehension of illegal resource users and hunters 

(Belecky et al., 2019; Critchlow et al., 2016). These functions are achieved through surveillance 

– covering wide areas within protected areas in order to monitor key resources and ensure 

their protection. Ranger-based monitoring, or law-enforcement monitoring, falls within this 

broader purpose. How data collection on patrol relates to the broader law enforcement 

function will vary. In her case study of ranger-based monitoring of tiger abundance and threats 

in Asia, Stokes (2010) suggested that data collection can overburden rangers and distract from 

law enforcement. O’Neill (2008) also argues that ranger-based monitoring strategies cannot be 

made too complex as this might compromise their ability to fulfil their main role of deterring 

illegal activity (in her case saiga antelope poaching). 
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 In my case study, however, I found that monitoring and law enforcement were 

complementary. As one ranger remarked, "The purpose of patrols is to collect data, and to 

prevent the animals from being killed by illegal hunters. Monitoring and anti-poaching work 

hand in hand, because when I am collecting data, that data can lead me into apprehending a 

poacher, or lead me into knowing how the poachers are moving" (Chapter 5: ranger 13). 

Granted, ranger-collected data in Mana-Chewore was mainly used to inform short-term and 

reactive patrol strategies. Nonetheless, rangers consistently  recorded and reported elephant 

poaching and other data while on patrol, seeing it as complementary to their broader work and 

important for their supervisors. The longer term databases formed in this way can be invaluable 

for law enforcement. Critchlow et al., (2016) provide an excellent example of this, where long 

term ranger-collected data on several forms of illegal resource use in Queen Elizabeth National 

Park were used to predict hotspots of illegal activity and guide future patrols, leading to large 

increases in detection and law enforcement efficiency. Thus, managers in some contexts will 

need to make compromises between monitoring and law enforcement, whereas in others, 

pursuing both may be complementary. Importantly, even if patrols are strictly focussed on law 

enforcement, opportunities for data collection while on patrol may still exist. valuable 

monitoring data may still be collected. Also, when poaching threats are low, ecological 

monitoring may provide rangers with a rewarding and meaningful activity. If rangers have 

nothing to report, motivation levels might drop (Mesterton-Gibbons and Milner-Gulland, 1998) 

 

Future priorities for ranger-based monitoring 

 

Priorities for future research and practice in the area of ranger-based monitoring flow from the 

sections above. It is important that stakeholders acknowledge how difficult it can be to reliably 

detect trends in species abundance and threat from ranger-collected data, and to separate real 

trends from those driven by patrol bias. Yet, because data collection is often incidental to the 

law enforcement element of patrols, it is uncommon for managers to think carefully through 

such considerations. It is all too easy to take patterns in ranger-collected data at face value, 

without thinking about the underlying processes generating these data. Greater clarity is 

needed on the particular ways in which managers hope to use ranger-collected data, so that 

patrol strategies can be designed to meet these objectives with reasonable certainty. My 

results, and the broader literature, also suggest that organised partnerships between park 

managers and other key stakeholders like NGOs and scientists  are often necessary to properly 

unlock the potential of ranger-based monitoring. Also, the qualitative interview findings in 
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Chapters 5 and 6 underscore the importance of engaging ranger and manager perspectives, 

and understanding their work context and priorities, when designing monitoring programmes 

and setting monitoring goals.  

 

This DPhil research considered a relatively small number of examples of the use of ranger-

collected data with a specific focus on elephant poaching. There is a need for future research 

to explore the potential of ranger-collected data to answer a broader array of questions in 

other conservation management contexts. As discussed above, there are very few studies that 

focus on the design and advancement of ranger-based monitoring as a conservation tool.  

Looking ahead, one of the key advantages of ranger-based monitoring is that some form of 

patrolling and surveillance is one of the most basic law enforcement activities in protected 

areas, and it can function well with minimal external investment and planning. Opportunistic 

data collection on patrol is therefore both cost-efficient and sustainable. Finally, the relevance 

of ranger-collected data may be influenced by the increasing accessibility and reliability of 

remote monitoring technologies, such as drones, acoustic sensors, satellite imagery and light 

detection and ranging (LiDAR) technology (Astaras et al., 2020; Davies et al., 2014; Gonzalez et 

al., 2016).  

7.6. Conclusion 

In Chapter 1, I identified the discrepancy between what rangers observe and reality 

(observation uncertainty), and the motivations and priorities of the rangers and park managers 

who are tasked with implementing ranger-based monitoring (implementation uncertainty), as 

key factors influencing monitoring and management success. These uncertainties must be 

understood and addressed if ranger-based monitoring is to make an effective contribution to 

the evidence base for conservation management. The aims of this research were to assess (a) 

the reliability, and (b) the management use of ranger-collected data, using the monitoring of 

elephant poaching in Zimbabwe as a case study. In Chapter 3, I sought to address a 

management question that is commonly asked of ranger-collected data, that is, which areas 

are more vulnerable to poaching? I used participatory modelling and statistical methods to 

account for biases in ranger observations of poached carcass locations for more robust 

inference in the face of uncertainty. This Chapter thus contributed to both my research aims 

(data reliability and use). Next, I sought to understand how different features of the ranger 

patrol observation process interacted with underlying poaching dynamics to influence the 

power of patrols to capture spatial and temporal patterns of poaching. This analysis revealed 
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specific factors affecting data reliability, which was also strongly contingent on the particular 

management questions asked of ranger collected data (again contributing to both research 

aims). Next, in my first qualitative analysis, I used interviews to identify factors affecting how 

engaged rangers were with patrol-based data collection and outlined ways for fostering greater 

motivation for monitoring, thus addressing a key component of implementation uncertainty. 

In my final data Chapter, I identified several factors influencing the limited extent to which park 

managers have adopted adaptive management in Mana-Chewore and developed a theory of 

change for optimising the management use of ranger-collected data to inform anti-poaching 

strategies.  

 

My final overarching research question was to identify how the insights gained from these four 

data Chapters could be used to maximise the contribution of ranger-based monitoring to 

protected area management. Clearly defining monitoring and trend detection goals is an 

essential first step in which all stakeholders should be involved – it is particularly important 

that rangers and park managers co-develop and buy-in to these goals. Park managers must feel 

confident about how identified trends can inform specific management actions (such as 

changing the spatial pattern of patrols or employing alternative anti-poaching strategies). This 

must be followed by critical evaluation of the likelihood of achieving monitoring goals, and 

explicit effort to acknowledge, measure, and account for the uncertainty in ranger-collected 

data. Data collection strategies can then be designed that are not only useful, but robust to 

uncertainty. Partnership between park managers, external organisations, and scientists can 

help facilitate better management through the use of ranger-collected data, such as by 

providing the technical resources and expertise for analysing and interpreting these data 

robustly.  Hundreds of thousands of wildlife rangers patrol protected areas globally, regularly 

encountering plant and animal species and evidence of human threats to them. These data, if 

collected and used well, can have a crucial role to play in bolstering the evidence base for 

biodiversity conservation.  
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Appendices 

1. Appendix 1: R code for the virtual ranger simulations (Chapter 4) 

General notes on code: 

 

1. Below is the code for the main virtual ranger function. This function can be called using 

different sets of parameter values according to the scenario in question.  

2. The function runs the simulations for a number of time steps [timesteps], in each step 

carcasses are generated and then distributed in space. Next, patrols are simulated in 

space, detecting a certain proportion of carcasses. 

3. The model repeats the run through these time steps for each replicate (i.e. [nreps] 

times). There are thus two main for-loops - the outer one for replicates, the inner one 

for time steps. Because the loops involve random variables for carcass generation and 

detection, the results will be slightly different for each replicate. Thus, the mean and 

SD values can be calculated from all reps. 

4. There is also another nested loop for the different carcass age classes, which closes and 

opens again to avoid unnecessary computation 

5. Finally, various outputs are produced – such as the number of carcasses poached and 

detected in every park grid cell in every time step. 

Code: 

vr.func<-function( 
  #Starting values------------------------------------------------------------------------------------------------------ 
   
  #Landscape, timesteps, replicates 
  ncells=712, # the number of grid of cells over Chewore created in the "creating Chewore grid" script 
  timesteps=60,burn=24,  
  nreps=50, # set the number of replicates  
   
  #carcass numbers and distribution: 
  popsize=3000, 
  rp=0.05, 
  sd.p=0.005, # the SD of the poaching rate 
  rn=0.02, 
  space.time=FALSE, #whether there is space time variation in poaching or not 
  aggrParam=2.73, # baseline aggregation parameter derived from the real study area poaching 
hotspot raster map  
  #generated in chapter 1 
  hotspots.p='med', # the level of clustering/aggregation of carcasses (high, medium, low),  
  # Medium corresponds to baseline aggr 
  aggrN=5,# spatial aggregation of natural mortalities 
  pers=48, # how long a carcass persists for 
   
  #parameters for simulating change in poaching 
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  p.trend="no", 
  start.trend=burn+12, 
  p.change.level=0.50, # the proportional change in poaching to be simulated 
  p.change.period=60, # the period  over which that decline happens (in months)  
  end.trend=start.trend+p.change.period, 
  #tthe using the equation X^(n)*P = 0.5*P. Where X is the monthly change in poaching. X - 0.5^ (1/n) 
   
  # Patrols 
  numpat=6, # the number of patrols per month 
  prop.pat.rand=0.25, 
  sizepat=15, #how many 5km2 cells eacxh patrol takes up  
  x=0.6, low=0.5, # these control the shape of individual 7-day patrols (see in code below): 
  # lower values = more spread out away from base, higher values = patrols concentrate near base 
  mlen=48, 
  dpP=0.5,dpN=0.5, 
  constrained.pat=FALSE, 
  rate.det=0.10,base.det=0.78, 
  pat.vary=FALSE,pat.CV=0.5,pat.step.change=F, 
   
  #intelligence and hunting 
  hc.extra=T, 
  prop.extra=0.20 
){ 
   
  #Derive extra model parameters from main parameters specified above: 
  steps.per.year=12; nyears=timesteps/steps.per.year; 
  if(hotspots.p=='med'){aggrP=aggrParam}else{if(hotspots.p=='low'){aggrP=aggrParam*5}else{aggr
P=aggrParam*0.2}}#last option is high 
  if(hotspots.p=="high"){h.level=1}else{if(hotspots.p=="med"){h.level=2}else{h.level=3}} 
  hot.levels=c("high","med","low") 
  p.change.month=p.change.level^(1/p.change.period) # test: 0.5*(p.change.month^36) (correct = 
aprrox 0.25) 
   
  #storage for outputs------------------------------------------------------------------------------------------------------ 
  # 3D arrays for storing the number of carcasses of each type in each cell in the landscape, at each 
time step, and for each replicate 
  # arrays with three dimensions: [rows=cells,columns=timesteps, different matrices=replicates] 
   
  #first create the names foir the dimensions of the arrays 
  repnum<-vector();for(i in 1:nreps){repnum[i]<-paste0("rep",i)} 
  timenum<-vector();for(i in 1:timesteps){timenum[i]<-paste0("t",i)} 
  cellnum<-vector();for(i in 1:ncells){cellnum[i]<-paste0("cell",i)} 
  agecat<-vector();for(i in 1:pers){agecat[i]<-paste0("a",i)} 
   
  numpcell<-
array(data=NA,dim=c(ncells,timesteps,nreps),dimnames=list(cellnum,timenum,repnum)) 
  # example for sub setting the above array: 
  # numpcell['cell34','t60','rep1','a3']; numpcell[,'t60','rep10'];  
  # numpcell[,14,5] # this is the number poached carcasses in each cell for time step 14 and replicate 
5 
   
  #arrays for storing number available and detected 
  numavpcell<-
array(data=NA,dim=c(ncells,timesteps,nreps,length(agecat)),dimnames=list(cellnum,timenum,repn
um,agecat)) 
  numdetPcell<-
array(data=NA,dim=c(ncells,timesteps,nreps,length(agecat)),dimnames=list(cellnum,timenum,repn
um,agecat)) 
   
  numdetPcell.hc<-
array(data=0,dim=c(ncells,timesteps,nreps),dimnames=list(cellnum,timenum,repnum)) 
   
  # Matrix indicating which cells are patrolled in each time step in each rep: 
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  patrols<-array(data=NA,dim=c(ncells,timesteps,nreps),dimnames=list(cellnum,timenum,repnum)) 
   
  #Vectr to store the monthly poaching rate: 
  rp.m<-array(data=NA,dim=c(timesteps,nreps),dimnames=list(timenum,repnum)) 
   
  ######------------Setting up model of the distribution of poached carcasses across space------------
####### 
   
  ##First INITIALISE the number and distribution of carcasses of different ages in timestep 1  
  # (number of carcasses already in the landscape, per cell and age, when the simulation starts) 
   
  ##########Here is the exponential decay function of DP as a function of carcass age------------- 
   
  rate.decline=rate.det #these are parameterised from the real age versus detection data (see 
separate script) 
  base.det = base.det #parameterised from the real age versus detection data (see separate script) 
  dp.func<-function(age){ 
    dp<-base.det*(1-rate.decline)^age #simple exponential decay function 
    return(dp) 
  } 
  dp.v.age<-dp.func(1:48) 
   
  #see what the relationship looks like: 
  # par(mfrow=c(1,1),oma=c(0,0,0,0),mar=c(5,5,2,2)) 
  # plot(y=dp.v.age,x=1:48,ylab="Detection probability",xlab="Age carcass (months)", 
  #      cex.lab=1.8,pch=19,cex.axis=1.5,ylim=c(0,0.70)) 
   
  ##########Here is another exponential decay function, but for probability of a cell being patrolled 
  ##########as a function of distance to ranger camp in meters 
   
  mx<-0.75   # RH asymptote (i.e. maximum probability of patrol - near camp) 
  mn<--0.1  # LH asymptote (lowest dp) 
  cc<-0.4 # scale parameter controlling rate of change 
  d<-12  # curve midpoint (month by which detection probability has halved) 
  constrained.pat.func<-function(distance){ 
    probpat<-mx-((mn+mx)/(1+(exp(cc*(d-distance)))));return(probpat) 
  } 
  constrained.pat.vec<-constrained.pat.func(1:30) 
  # par(mfrow=c(1,1),oma=c(0,0,0,0),mar=c(5,5,2,2)) 
  # plot(y=constrained.pat.vec,x=1:30,ylab="Probability of patrol",xlab="Distance to main ranger 
station (km)", 
  #      cex.lab=2,pch=19,cex.axis=1.3,ylim=c(0,0.80),type="l",lty=1) 
   
  #Now these are the probabilities of  cell being patrolled, determined by their distances from the 
main stations 
  # the distance to camp for each cell has been calculated in a separate script 
  dist.camp.df$prob<-constrained.pat.func(dist.camp.df$dist.camp) 
   
  #set up an array to store for timestep 1, the number of carcasses of different ages available in each 
cell 
  init.p.cell<-
array(data=NA,dim=c(ncells,length(agecat),nreps),dimnames=list(cellnum,agecat,repnum)) 
  # the below nump.av takes into account that over time (age classes) the poached carcasses will be 
detected, so those 
  # carcasses of higher age will be fewer as some will have been detected since poached 
  nump.av<-numeric() 
   
  #####------------------------Setting up space time variation scenarios-------------------------------------
########### 
   
  mat.hot<-array() 
  # Note if there is no space time variation, we simply use the mat.hot matrix above 
  if(space.time==FALSE){ 
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    mat.hot<-mat.hot.no.st[,1:timesteps,1:nreps,] 
  }else{  
    mat.hot<-mat.hot.st[,1:timesteps,1:nreps,] 
    ############(2) Scenario 2: parameterised based on space time variation in the actual data 
     
    #NOTE: this uses the data from the space-time analysis of 96 fresh and recent carcasses recorded 
between 2010 
    #and 2015 at the case study site (Chewore) 
     
    #This gives the probabilities for each cell receiving a carcass for each time step. Note that the 
probabilities change every 6 months 
    #This is based on the pixel values of hotspot maps based on real caracss data for each 6 motnh 
period 
    #So each 6 months, different parts of the park have the highest probability of receiving a carcass.  
     
    #Note it remains probabilistic as we are using the probabilistic sample function below 
  } 
   
  for(r in 1:nreps){ 
    for(a in 1:pers){ # looping through the different carcass age classes  
      rp2<-rnorm(n=1,mean=rp,sd=sd.p) #the poaching rate is allowed to vary slightly around a mean 
      if(rp2<0){rp2=0} 
      nump<-round(popsize*rp2*(1/steps.per.year),0);nump 
      # here is the key line below: the number of those paoched that are still available at age=a will be 
a decreasing 
      # function as those poached are gradually detected in the timesteps before model runs. We 
simply use the detection 
      # probability versus age function used elsewhere as the relationship will be roughly the same 
(note that this function 
      # was actually created for a different purpose, to measure how detectable caracsses of different 
ages are) 
      nump.av[a]<-round(dp.func(a)*nump,0) 
      aggr<-aggrP;mu<-nump.av[a]/ncells; nbp<-aggr/(aggr+mu) 
      aa<-rnbinom(n=ncells,size=aggr,p=nbp);aa<-aa[order(-aa)];sum(aa) 
      init.p.cell[,a,r][mat.hot[,a,r,h.level]]<-aa 
      # ordered by cell number and with the nbinom vcalues in the coorect place 
      # note the mat.hot matrix is used, at the relevent hot.spot level 'h.level' 
    } 
  } 
   
  # Check if working: 
  # apply(init.p.cell[,,1],2,sum) 
  # all<-apply(init.p.cell[,1:48,r],1,sum) #sum of total number of carcasses of all ages 
  # st<-st_sample(grsf, size=all,type = "random", exact = TRUE);plot(chewore);plot(st,add=T) 
   
  #note later below, we will set each of these initialised carcasses to gradually dissapear (i.e. set the 
to different ages) 
   
  # ###Here we set the time steps in which random patrols are conducted (as oppossed to biased 
patrols): 
  #versus biased patrols: 
  tsteps.rand<-sample(1:timesteps,round(prop.pat.rand*timesteps,0),replace = FALSE) 
 
  ##############################----START OF SIMULATION MODEL------
############################################################################# 
   
  start_time <- Sys.time() # record the time at which the code starts running (to see time length) 
  #r=1;t=1 
  for(r in 1:nreps){ # START OF THE REPLICATES LOOP 
     
    ###For the scenario with step changes in patrol effort---------  
    # we need to set the timestep after which the step change occurs, and the degree of change,  
    #for each replicate and AVOID setting these values for every time step. 
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    #Hence we have it here in the r loop but not in the t-loop 
    # (could achuieve the same by opening and closing loops below) 
     
    if(pat.step.change==TRUE){ 
      tt<-sample(x=seq(burn+1,timesteps),size=1);tt#time step when the step change starts 
      step.change=sample(x=c(0.50,2),1);step.change #whether the step change is up or down 
    } 
     
    for(t in 1:timesteps){ # START OF THE TIME STEPS LOOP 
      print(paste0("trend=",p.change.level,"eff=",numpat,"rep=",r,", month=",t)) 
       
      ############################################################### 
      ################### (A) CARCASS GENERATION MODEL############### 
      ############################################################### 
       
      if(p.trend=="no"){ 
        rp.m[t,r]<-rnorm(1,mean=rp,sd=sd.p)# the poaching rate allowed to vary 25% around true# the 
poaching rate allowed to vary 25% around true 
      }else{ #if there is a change in poaching over time 
        if(t<start.trend){rp.m[t,r]<-rnorm(1,mean=rp,sd=sd.p)}  
         
        if(t==start.trend){rp.m[t,r]<-rp} 
        #Now simulate the change in poaching starting from after the start of the trend: 
        if(t%in%c((start.trend+1):end.trend)){ #start.trend is the timestep when the trend simulation 
starts 
          mean.decline.at.t<-rp*(p.change.month^(t-start.trend)) 
          rp.m[t,r]<-rnorm(1,mean=mean.decline.at.t,sd=sd.p) 
        } 
        if(t>end.trend){ 
          rp.m[t,r]<-rnorm(1,mean=rp*(p.change.month^(end.trend-start.trend)),sd=sd.p) 
        } 
        if(rp.m[t,r]<0){rp.m[t,r]=0.01} 
      } 
      # rp.m[60:120,1:5] # test to see if working as expected 
       
      # total umber of poached and natural carcaasses generated in each time step 
      rp2<-rp.m[t,r] 
      nump<-round(popsize*rp2*(1/steps.per.year),0);names(nump)[1]<-"nump";nump 
       
      #### Now need to assign these carcasses to each cell in the park---------------------------------------
---------- 
       
      if(hotspots.p==0){ 
        # Here carcasses are (1) distributed randomly in the landscape PLUS (2) there is no space-
time dependence 
        # (1) is achieved with a random sample   
        # (2) is achieved because, each time step, generated carcasses are distributed in a new way 
and therefore 
        # do not depend on where caracsses where in the previous time step 
         
        cellsp<-table(sample(1:ncells,size=nump,replace=T));index<-as.numeric(names(cellsp)) 
        numpcell[,t,r]<-rep(0,ncells);numpcell[,t,r][index]<-cellsp 
      } 
       
      # We now simulate hotspots of poaching, with three scenarios of different levels of aggregation 
(clumping) 
      # the average scenario (based on parameterisation), and then a more and less clumped scenario 
      if(hotspots.p%in%c('low','med','high')){ 
        ##### HOTSPOPT SCENARIOS---------------------------------------------------------------------------------
-------------------------- 
         
        # Here carcasses are distributed to cells in a clumped way by using the negative binomial 
distribution (NBD)  
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        # and changing the aggregation parameter (k/size parameter) 
        # note that the NBD is defined in ecology using the mean (mu) and the dispersion/aggregation 
parameter (size, or k) 
        # k = aggregation - smaller value means more aggregated (less dispersed). With higher K, 
mean approaches variance 
         
        # Note the below also generates carcasses in the SAME general places (cells) each time step 
(hotspots persist over time, 
        # because the same hotspot scores are used for the mat hot matrix each time step 
         
        aggrP=aggrP# the aggregation parameter for the NBD,  
        muP<-nump/ncells # mean number of carcasses per cell (mean parameter for NBD) 
        nbpP<-aggrP/(aggrP+muP) # NBD probability where size is the aggregation parameter k, and 
mu is the mean parameter 
         
        for(i in 1:100){ 
          # This below rbinom code does not lead to the EXACT right number of carcasses in each time 
step because we are  
          # working with a random variable (the sum of carcasses in each cell in each time step does 
not always add  
          # up to exactly the right number of available carcasses). This for loop runs the rbinom until the 
total number of  
          # carcasses generated (sum of [aa] vector) is within 10% of the true number, and then breaks 
the loop and uses that vector 
          aa<-rnbinom(ncells, # draw 1 value from the NBD for each cell in the park (ncells = 100 
samples) 
                      size=aggrP, # this defines the aggregation parameter 
                      p=nbpP)# this is the NBD probability parameter 
          if(abs(nump-sum(aa))<0.15*nump){break} 
        } 
        aa<-aa[order(-aa)];sum(aa) 
         
        # The next key step is to assign the highest NBD values (counts of carcasses per cell) to 
PARTICULAR cells which are  
        # considered hotspot cells so that these cells can be THE SAME CELLS each time step. If we 
just ran the rnbinom function 
        # each tome step, then DIFFERENT cells would get the highest counts in each time step.  
        # We do this by ordering the negative binomial values from lowest to highest, and then assigning 
these to the park cells 
        # according to the hotspot scores of the park cells (see the hotspot matrix mat.hot above)  
        #The mat hot matrix basically stores the cell rankings for each time step and each replicate, 
these rankings are based 
        # probabilistically on the hotspot scores (cells with highest hotspot scores are more likely to 
rank more highly) 
         
        numpcell[,t,r][mat.hot[,t,r,h.level]]<-aa  
        #this simply ensures the highest NBD realisations (highest single cell carcass numbers) are 
assigned to the cells 
        # that are ranked highest (in terms of hotspot intensity) for that time step 
      } 
      #working till here 17 April - new :) 
       
      #######END OF HOTSPOT SCENARIOS----------------------------------------------------------------------
--------------------------------------- 
       
      ###########################################################################
########### 
      ### (B) JOINT MODEL - available carcases after generation and detection############## 
      ###########################################################################
######### 
       
      # The Core code to calculate the number of poached cells available in each time step: 
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      # we need to account for carcasses disappearing by  have a rolling sum of carcasses generates 
and detected ONLY in 
      # previous X time steps, and exclude those from earlier. The rowSums function is great for this. 
The array npcell already 
      # has timesteps as columns, cells as rows, so we get row sums (across columns) to get totals 
summed over timesteps 
      # note we use special indexing to get the sum over a SET number of previous time steps 
(matching carcass persistence) 
      # define [pers] as the number of time steps for which a carcass persists 
       
      # numpcell[,1:3,1]# to illustrate, here is the number of carcasses generated for each cell for  
      # each of first three timesteps 
      # rowSums(numpcell[,1:3,1])# now simply add up the totals across the three time step columns. 
      # t=1; r=1 
       
      for(a in 1:pers){#all age classes 
        if(t==1){ 
           
          # set up the loops in timestep 1 - determining the total number of carcasses available in each 
cell, 
          # at each age 
           
          numavpcell[,t,r,1]<-numpcell[,1,r] #these are the fresh carcasses (poached in time step 1) 
          numavpcell[,t,r,2:48]<-init.p.cell[,2:48,r] #these are the carcasses of other ages available at 
t=1 (initialised) 
          numavpcell[,1,1,23] 
        } 
         
        else{if(t>1&a==1){ 
           
          ##RUN this little but if there are HUNTING AND COMMUNITY INTELLIGENCE DETECTIONS 
           
          if(hc.extra==T){ #only run this for the situation where a=1 
            #t=1;r=1;prop.hc<-0.20 
            tot<-sum(numpcell[,t,r]);det.hc<-round(prop.extra*tot,0)#number of elephants poached in this 
particular month 
            gg<-which(numpcell[,t,r]>0) #these are the park cells where there was poaching in the 
particular time step 
            gg2<-sample(gg,size=det.hc,replace=F) #select 20% of the cells with poached carcasses 
this month 
             
            #Now fill the array of detected by hunting and intelligence:  
            numdetPcell.hc[gg2,t,r]<-1 #one carcass was detected in each of these cells 
             
            #Had this bit of code in error - should not have been removing poached carcasses 
            #numpcell[,t,r][gg2]<-numpcell[,t,r][gg2]-1 #remove one  poached carcass from each of the 
selected cells 
          } 
           
          # fresh carcasses (age=1 or a=1) come in each time step according to poaching rate 
          # The number of carcasses available  that are <1 month old is simply the number poached 
that month: 
          numavpcell[,t,r,a]<-numpcell[,t,r] #so in time step 2, there will be numpcell[,2,r] carcasses 
generated (cells) 
           
        }else{if(t>1&a>1){ 
          #t=2;a=3 
           
          numavpcell[,t,r,a]<-numavpcell[,t-1,r,a-1]-numdetPcell[,t-1,r,a-1] 
           
          # numavpcell[,,r,3] 
          # sum(numavpcell[,t,r,a]) 
          # sum(numavpcell[,t-1,r,a-1]) 
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        } 
        } 
        } 
      } 
      ################################################################### 
      ###################(C) RANGER PATROL MODEL######################### 
      ################################################################### 
       
      #####Varying patrol effort through time 
      ##(1) Varying randomly from month to month 
       
      if(pat.vary==TRUE){ 
        numpat.actual<-round(rnorm(1,mean=numpat,sd=pat.CV*numpat),0)# to give a CV of 50% 
        #If numpat is zero or less, change it to 1 
        if(numpat.actual<1){numpat.actual=1} 
      }else{numpat.actual=numpat} 
       
      ##(2) Step changes in patrol effort 
       
      if(pat.step.change==TRUE){ 
        #NOTE: have already set tt (time step after which step change occurs) 
        #and steop.change (degree iof change in effort) in the code lines above 
        # see lines 230 
         
        #For all time steps after tt, the new patrol effort is the old effort  
        #multiplied by step change (step.change*numpat) 
        if(t>=tt){numpat.actual=step.change*numpat}else{numpat.actual=numpat} 
         
        #If numpat is zero or less, change it to 1 
        if(numpat.actual<1){numpat.actual=1} 
        numpat.actual 
      }else{numpat.actual=numpat} 
       
      #### Function for assigning each patrol to a cell in the landscape ---------------------------------------
----------------------- 
       
      # Scenarios:(1) patrols assigned to cells completely randomly 
      #           (2) patrols are constrained to areas close to ranger camps 
      #           (3) patrols are targeted: weighted based on where they found carcasses previously 
(learning process). 
       
      # (1) start with a basic random sample (completely random cells patrolled): this gives the numbers 
of cells that receive a patrol 
      if(t%in%tsteps.rand){ #if the current time step is one in which random patrols are conducted, then 
execute the below code 
        if(constrained.pat==FALSE){ 
          patrolled<-sample(x=1:ncells,size=numpat.actual,replace=FALSE);patrolled #random sample 
(random patrols) 
        }else{ #if patrols are constrained 
          patrolled<-sample(x=1:ncells,size=numpat.actual,prob=dist.camp.df$prob,replace=FALSE) 
        } 
      } 
      # (2) now a scenario where rangers patrol based on previous detections 
      # use the number detected in the previous 12 time steps to weight cells 
       
      # Intermediate step to illustrate: this gets, for each rep and cell, the sum of detections for first 12 
time steps 
      #numdetPcell[,1:12,1,1] # this selects all the cells in the first 12 time steps, and the first rep 
      #apply(numdetPcell[,1:12,1,1],MARGIN=c(1),sum) # the sum of detected poached carcasses for 
each cell in first 12 time steps in first rep 
       
      # the below code sums, for each cell and for the particular replicate, the number of carcasses 
detected in the previous 
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      # [mlen] time steps in that cell. It has an if statement to ensure the calculation is correct for the 
first mlen time steps. 
      # (mlen is the length of 'memory' of the rangers - how long they take into account previous 
detections for.   
      #mlen=24;t=17;r=1;pat.pattern=2 
       
      if(!t%in%tsteps.rand){# if the time step is NOT one of the timesteps in which random patrols are 
conducted 
        #---------------------------------------------- 
        if(t<13){ # NB, in the first 12 months not enough carcasses are detected to meaningfully assign 
probabilities to cell (very few 
          # will actually have positive probabilities so the sample function below doesn't work) 
          # Decided therefore to have a 12 month 'burn in' stabilisation period 
          if(constrained.pat==FALSE){ 
            patrolled<-sample(1:ncells,size=numpat.actual,replace=FALSE);patrolled 
          }else{#if patrols are constrained 
            patrolled<-sample(x=1:ncells,size=numpat.actual,prob=dist.camp.df$prob) 
          } 
        }else{ 
          if(12<t&t<mlen){# (.e. when the time step is between 13th and mlen) 
            #numdetprev<-future_apply(numdetPcell[,1:(t-
1),r,1:pers],MARGIN=c(1),sum);sum(numdetprev>0) #detected of all ages 
            #numdetprev<-lapply(numdetPcell[,1:(t-1),r,1:pers],function(x){sum);sum(numdetprev>0) 
#detected of all ages 
            numdetprev<-rowSums(numdetPcell[,1:(t-1),r,1:pers]);#sum(numdetprev>0) #detected of all 
ages<-lapply(numdetPcell[,1:(t-1),r,1:pers],sum);sum(numdetprev>0) #detected of all ages 
          }else{ 
            if(t>=mlen){#(i.e. when the time step is mlen or later) 
              #numdetprev<-apply(numdetPcell[,(t-mlen):(t-
1),r,1:pers],MARGIN=c(1),sum);sum(numdetprev>0) 
              numdetprev<-rowSums(numdetPcell[,(t-mlen):(t-1),r,1:pers]);#sum(numdetprev>0) 
            } 
          } 
          # thus a prob patrol vector is created for each time step and replicate (vector of length 'ncells') 
          # now use the resultant vector to assign patrols to cells 
          # first convert the vector counts to probabilities that sum to 1 
          probpat<-numdetprev/sum(numdetprev); 
          probpat[is.na(probpat)]<-0.00;sum(probpat) # confirm it sums to 1 
          #now to make sure there are enough positive probabilities for the next sample statement: 
          probpat[which(probpat==0)]<-0.00000001 
          if(constrained.pat==TRUE){ 
            probpat<-probpat*dist.camp.df$prob #MULTIPLY probabilities together 
          }else{probpat=probpat} 
          #now the below samples cells for patrols according to this probability vector (see example just 
below if statement) 
          patrolled<-sample(c(1:ncells),size=numpat.actual,prob=c(probpat),replace=FALSE);patrolled 
        } 
      } 
      #---------------------------------------------- 
      pat<-list() 
      #Now the patrolled cells above represent the patrol base cells, but we want to also include the 
cells around them 
       
      # library(spdep) 
      # nb=poly2nb(gr) #this creates a direct QUEENS neighbourhood matrix, or a list of vectors with 
each vector i 
      left.adj<-numeric() 
      av.adj<-list() 
      adj.actual<-list() 
      high=1.5 
      #ndicating the neighbours of each cell. QUEENS includes cells that only touch at a corner 
      #so if we take: 
      for(p in 1:length(patrolled)){ 
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        centpat<-patrolled[p] 
        try( #sometimes the loop below returns an error when the adjacent cell selection for a particular 
patrol base fails 
          #down the line. This happens very rarely (1%). The try statement just means that it skips to 
the next step and  
          #that single patrol basically does not happen. This will have only a very minor effect (one 
missed patrol out of 100) 
          #and also happens at the same rate across all scenarios, so not an issue in terms of model 
effects 
          #If necessary, can modify later to still have that patrol, but only sampling random cells (or 
similar) 
          for(i in 1:10){ 
            if(i==1){left.adj[i]<-sizepat-1; av.adj[[i]]<-nb[[centpat]]; av<-length(av.adj[[i]]) 
            }else{ 
              if(i==2){ 
                left.adj[i]<-left.adj[i-1]-length(adj.actual[[i-1]]) 
                #here we determine which adjacent cells are available and as yet unpatrolled: 
                b<-unique(unlist(nb[adj.actual[[i-1]]])); 
                av.adj[[i]]<-b[-which(b==centpat)];av<-length(av.adj[[i]])#centpat different 
              }else{ 
                left.adj[i]<-left.adj[i-1]-length(adj.actual[[i-1]]) 
                b<-unique(unlist(nb[adj.actual[[i-1]]])); 
                av.adj[[i]]<-b[-which(b%in%c(unlist(adj.actual[c(1:(i-1))])))];av<-length(av.adj[[i]]) 
              } 
            } 
            if(left.adj[[i]]<1){pat[[p]]<-c(centpat,unlist(adj.actual[c(1:(i-1))]));break} 
            #Now we have code for deciding whether to select all available adjacent cells, or only a 
portion of them 
            #this is based on how many cells are left to patrol (left from sizepat). If the number of patrols 
left is less  
            #than half those available in this adjacent ring, then select all the ones left from this ring 
            #if the amount left is more than 1.5 x those available, then select all the adjacent cells in this 
ring 
            #if the amount left is somewhere in between, then select a certain proportion from this ring 
(X) 
            if(left.adj[i]<=low*av){adj.actual[[i]]=sample(av.adj[[i]],left.adj[i])} 
            if(left.adj[i]>low*av&left.adj[i]<=high*av){ 
              #in this category, sometimes the number sampled is more than that available, need to 
correct: 
              if(length(av.adj[[i]])>=round(x*left.adj[i],0)){adj.actual[[i]]=sample(av.adj[[i]],round(x*left.adj[i
],0)) 
              }else{adj.actual[[i]]=av.adj[[i]]} 
            } 
            if(left.adj[i]>high*av){adj.actual[[i]]=av.adj[[i]]} 
          } 
        ) 
      } 
      pat 
      cheese<-numeric() 
      cheese[r]<-sum(unlist(lapply(pat,is.null))) 
      patrolled<-unlist(pat) 
      # code to get a vector of number of patrols in each cell of the park  (applies to all patrol scenarios) 
      patrols[,t,r]<-rep(0,ncells);patrols[,t,r][patrolled]<-1 
       
      for(a in 1:pers){ 
        #this is the function that determines the detection probability from age of carcass (see top of 
code) 
        dpP=dp.v.age[a] 
         
        if(t==1){ 
          # now run the detections of all age classes in timestep 1 
          df<-numavpcell[,t,r,a][patrolled];sum(df) 
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          #NOW SPEED UP CODE by only running the binomial function on cells that are non-zero! 
          if(sum(df)==0){ #if there are no carcasses for that age in the patrolled cells at that time step, 
then... 
            numdetPcell[,t,r,a]<-rep(0,ncells) # there obviously are no detections for that age and 
timestep... 
             
          }else{#************ 
             
            #df[20]<-3;df[15]<-1 
            df2<-df[df>0] 
            #numdetPcell[names(df2),1,1,1] 
            # now the number detected in each patrolled cell is a binomial RV with: 
            # n = 1 , 1 sample from the binomial distribution is taken (one patrol_ 
            # size = the number of trials (i.e. the true number of carcasses available for detection) 
            # prob = the detection probability for that carcass type 
             
            temp<-unlist(lapply(df2,function(x){ rbinom(n=1, # one sample from the binomial dis 
                                                        size=x, # size = num trials (num carcasses avail) 
                                                        prob=dpP)}));temp# dpP = detection probability for poached 
            numdetPcell[,t,r,a]<-rep(0,ncells);numdetPcell[,t,r,a][names(temp)]<-
temp;sum(numdetPcell[,t,r,a]) 
            #apply(numdetPcell[,1,1,5:15],2,sum) 
             
          }#**************** 
           
        }else{if(t>1&a==1){ 
           
          #now for every time, step, this is the number of fresh (<1 month, a=1) carcasses detected 
          df<-numavpcell[,t,r,a][patrolled];sum(df) 
          if(sum(df)==0){ #if there are no carcasses for that age in the patrolled cells at that time step, 
then... 
            numdetPcell[,t,r,a]<-rep(0,ncells) # there obviously are no detections for that age and 
timestep... 
          }else{ 
            df2<-df[df>0] 
            temp<-unlist(lapply(df2,function(x){ rbinom(n=1,size=x,prob=dpP)}));temp 
            numdetPcell[,t,r,a]<-rep(0,ncells);numdetPcell[,t,r,a][names(temp)]<-
temp;sum(numdetPcell[,t,r,a]) 
            #apply(numdetPcell[,1,1,5:15],2,sum) 
          } 
        }else{if(t>1&a>1){ 
          #t=2;a=3 
          df<-numavpcell[,t,r,a][patrolled];sum(df) 
          if(sum(df)==0){ #if there are no carcasses for that age in the patrolled cells at that time step, 
then... 
            numdetPcell[,t,r,a]<-rep(0,ncells) # there obviously are no detections for that age and 
timestep... 
          }else{ 
            df2<-df[df>0] 
            temp<-unlist(lapply(df2,function(x){ rbinom(n=1,size=x,prob=dpP)}));temp 
            numdetPcell[,t,r,a]<-rep(0,ncells);numdetPcell[,t,r,a][names(temp)]<-
temp;sum(numdetPcell[,t,r,a]) 
            #apply(numdetPcell[,1,1,5:15],2,sum) 
          } 
        } 
        } 
        } 
      } 
    } 
  } 
  end_time <- Sys.time() # record the time at which the code starts running (to see time length) 
  time_to_run<-end_time-start_time # record the time at which the code starts running (to see time 
length) 
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  print(time_to_run) 
  print(tsteps.rand) 
   
  ######CALCULATE AND STORE KEY OUTPUTS--------------------------------------------------------------
----------------------- 
   
  ###COMMUNITY INTELLIGENCE: 
  #now simply add the fresh carcasses detected through intelligence to the array of detected 
carcasses: 
   
  if(hc.extra==T){ #only run this for the situation where a=1 
    for(r in 1:nreps){ 
      for(t in 1:timesteps){ 
        numdetPcell[,t,r,1]<-numdetPcell[,t,r,1]+numdetPcell.hc[,t,r] 
      } 
    } 
  } 
  #This is the number of carcasses of each age available and detected for each tstep and rep. 
  numavpcell[,-c(1:burn),,] 
  numdetPcell[,-c(1:burn),,] 
  av.det.ages<-list(numavpcell,numdetPcell) 
   
  #simplify to get the number for each age class, each time step, for available 
  fresh<-apply(av.det.ages[[1]][,,,1],MARGIN=c(2,3),sum);fresh<-apply(fresh,c(1,2),sum);fresh.av<-
fresh;fresh.av 
  recent<-apply(av.det.ages[[1]][,,,2:6],MARGIN=c(2,3,4),sum);recent<-
apply(recent,c(1,2),sum);recent.av<-recent;recent.av 
  old<-apply(av.det.ages[[1]][,,,7:24],MARGIN=c(2,3,4),sum);old<-apply(old,c(1,2),sum);old.av<-
old;old.av 
  v.old<-apply(av.det.ages[[1]][,,,25:48],MARGIN=c(2,3,4),sum);v.old<-
apply(v.old,c(1,2),sum);v.old.av<-v.old;v.old.av 
   
  ages.av<-list(fresh.av,recent.av,old.av,v.old.av);names(ages.av)<-c("fresh","recent","old","v.old") 
   
  #now for detected 
  fresh<-apply(av.det.ages[[2]][,,,1],MARGIN=c(2,3),sum);fresh<-apply(fresh,c(1,2),sum);fresh.det<-
fresh;fresh.det 
  recent<-apply(av.det.ages[[2]][,,,2:6],MARGIN=c(2,3,4),sum);recent<-
apply(recent,c(1,2),sum);recent.det<-recent;recent.det 
  old<-apply(av.det.ages[[2]][,,,7:24],MARGIN=c(2,3,4),sum);old<-apply(old,c(1,2),sum);old.det<-
old;old.det 
  v.old<-apply(av.det.ages[[2]][,,,25:48],MARGIN=c(2,3,4),sum);v.old<-
apply(v.old,c(1,2),sum);v.old.det<-v.old;v.old.det 
   
  ages.det<-list(fresh.det,recent.det,old.det,v.old.det);names(ages.av)<-
c("fresh","recent","old","v.old") 
  av.det.ages.2<-list(ages.av,ages.det) 
   
  #now sum across all ages to get total number available and detected 
  numavpcell.all<-apply(numavpcell,MARGIN=c(1,2,3),sum);  
  numdetPcell.all<-apply(numdetPcell,MARGIN=c(1,2,3),sum) 
  #a<-numavpcell.all[,50,1]; sum(a); sum(numavpcell[,50,1,1:48]) # Check these two match 
   
  # now create a list with all the outputs 
  results.full<-list(numpcell,numavpcell.all,numdetPcell.all,patrols,numdetPcell.hc) 
  names(results.full)<-c('nump','numavp.all','numdetP.all','patrols',"det.hc") 
  results.full<-lapply(results.full,function(x){x[,-c(1:burn),]}) 
  end_time <- Sys.time() # record the time at which the code starts running (to see time length) 
  time_to_run<-end_time-start_time # record the time at which the code starts running (to see time 
length) 
  print(time_to_run) 
   
  return(list(results.full,av.det.ages.2, 



 

 
 

233 
              rp.m)) #rp.m is the actual poaching rate simulated for each tstep and rep (whole park) 
} 
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2. Appendix 2: Interview guide used for park rangers (Chapter 5) 

General duties and job satisfaction 

 

1. How long have you been working as a ranger in Zimbabwe and how long have you been 

working at this site?  

 

2. Could you tell me about your duties as a ranger, what are the different activities you are 

involved in? 

− Prompt: patrols, general monitoring, maintenance, manning stations, anti-poaching, 

wood collection, slashing? 

 

3. What do you like about being a ranger? What are the positives? 

− Prompt: What parts of the job do you enjoy the most?  

 

4. What do you not like about being a ranger? What are the main challenges and difficulties 

you face as a ranger?  

− Prompt: Have you ever faced a life-threatening situation as a ranger? 

− Prompt: What is it like living far from family? 

− Prompt: Do you feel you have the equipment you need to do your job? 

Patrols 

 

5. Could you tell me a bit more about patrols? What is the purpose of patrols? What are the 

different kinds of patrols you are involved in?  

− Prompt: Strategic and intelligence led anti-poaching, daily local patrols, extended 

patrols to widen coverage and general monitoring.  

− Prompt: How much time do you spend on patrol versus other activities and duties? 

 

6. How frequently do you patrol? How much time do you spend on each type of patrol?  

 

7. Could you tell me about a recent patrol (NB to get a tangible story).  

− purpose/type, brief details, method of deployment 

− length, number rangers, equipment 

− area covered, patrol bases or sub-stations 

− info recorded and how, communication with camp method and frequency 

 

Involvement in and experiences of MIKE data collection 

 

8. What kind of information do you collect on patrol? 

 

9. Have you heard of the MIKE programme – MIKE? Do you know what it stands for? [Assure 

them it is ok if you don’t].  
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10. Does your job as a ranger involve finding and reporting on elephant carcasses?  

− Prompt: Have you yourself ever been on a patrol during which a carcass was detected? 

− Prompt: How many times have you been on a patrol that found an elephant carcass? 

What proportion of all patrols? 

 

11. How do you manage to fit in monitoring of elephant carcasses with your other duties?  

− Prompt: Would you say that monitoring carcasses is a big or small part of your job? 

− Prompt: Is collecting information on elephant carcasses a burden or does it support your 

other work?  

 

12. Could you describe the last time you found an elephant carcass on patrol? 

− What type of patrol were you on? General or intelligence-led? 

− How did you detect the carcass? 

− What did you do once you found the carcass? What information did you record?  

− How did you determine cause of death? 

− Did you report the details? How? 

 

13. How do you normally find elephant carcasses? 

− Prompt: Do you come across carcasses randomly on routine patrols? 

− Prompt: Do you find carcasses by responding to intelligence/information on poachers 

(e.g. gunshots)? 

 

14. Could you share some of your general thoughts on and experiences with finding and 

collecting information on elephant carcasses?  

− Prompt: Compared to your other duties, do you enjoy this? 

− Prompt: Would you say that monitoring elephant carcasses is easy or difficult? Why? 

Recording, reporting and processing MIKE Data 

 

15. How do you record the information on an elephant carcass when you find one?  

− Prompt: Do you use paper carcass forms (MIKE) or enter information into mobile 

devices? Which do you prefer? 

− Prompt: Do you use SMART and the new cybertrackers? If so, how do you feel about 

this system? Are there any challenges?  

 

16. How do you report the elephant carcass information to management/supervisors?  

 

17. Who enters and processing the data on wildlife observations (elephant carcasses) at the 

station? Are you involved? Do you know any rangers who are involved in this? 

 

18. How would you describe your relationship with your supervisors [Wildlife Officer/Area 

Manager]?  

− Do you enjoy working with them? Are there some challenges? Good leadership? 
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Awareness of purpose of MIKE data collection and perceptions of value  

 

19. What do you think is the purpose of monitoring elephant carcasses at this site?  

− Prompt: Why do you think you are required to collect data on elephant carcasses? 

 

20. Do you know what happens to the elephant carcass data once you report it? What is the 

information used for?  

− Prompt: Do you know how the data is used by management? 

− Prompt: Does management report the data to a higher level? Could you give details 

 

21. Do you personally think it is important to collect this information? Why? 

 

22. Do you get feedback (e.g. monthly, yearly) on summaries of all the elephant carcass data 

that is collected by rangers? 

− Prompt: If so, how does the feedback make you feel? 

− Prompt: If not, would you like to get feedback? Why? 

 

23. Do you think the information on elephant carcasses that is collected by rangers helps with 

elephant protection and anti-poaching? 

− Prompt: If so, in what way? Could you share some examples of how it helps? 

Concluding questions 

 

24. We are now coming to the end of the interview. Could I ask you to summarise your thoughts 

and feelings about patrols and monitoring elephant carcasses through MIKE? 

 

25. What advice would you give in order to improve the MIKE programme? 

 

26. Is there anything else you would like to add or feel you didn’t get the chance to mention?  
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3. Appendix 3: Interview guide used for park managers (Chapter 6) 

Opening general questions 

 

1. How long have you been at this site? Could you tell me a bit about what your job as an area 

manager (wildlife officer, etc.) involves? What are your various duties and responsibilities? 

 

2. My research involves elephant poaching. What are some of the main strategies used to reduce 

elephant poaching at this site? 

 

3. How do you develop these strategies?  

 

4. What sources of information do you use to inform these strategies? 

 

General involvement in MIKE and purpose 

 

5. Am I right to assume you have you heard about the MIKE programme? How did you first hear 

about or become involved in MIKE? 

 

6. Are you personally involved in MIKE now? If so, in what ways does your work involve MIKE? 

What are your responsibilities in connection with MIKE? 

 

− Prompt: I understand you have many duties, how does MIKE fit in alongside these? 

− Prompt: Is MIKE a small or big part of your job? 

 

7. What, in your opinion, is the purpose of MIKE monitoring at this site?  

 

− Prompt: Why are the data collected and reported? CITES or local? 

− Prompt: What is your motivation for collecting and reporting data?  

General collection and reporting of data 

 

8. Could you share any general information on how MIKE data on elephant carcasses are collected 

at this site?  

 

9. What happens to the elephant carcass data once it has been collected at this site?  

 

− Prompt: Who is the data reported to and why? [management/CITES] 

− Prompt: How are the data reported?   

− Prompt: Are you aware of how the MIKE data are used once it has been reported? 

 

10. Could you share an example or story from your own work and experience this year about 

reporting of MIKE data from this site? 

 

− Prompt: Is there a report example you could share with me? 

 

11. Who is responsible for analysing and interpreting MIKE data from this site and reporting 

results?  
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− Prompt: Are you personally involved in analysis and interpretation? 

− Prompt: How is the ecologist involved? Should they be doing the analysis? 

− Prompt: Do you expect feedback from ecologist? If so, what kind and how does it help? 

 

12. Is SMART used at this site?  If so, could you share a bit more about how it works? 

 

− Prompt: Example of how you yourself have used SMART? 

− Prompt: How is SMART integrated with MIKE data? 

− Prompt: Are there any challenges with SMART – is it difficult to use? Computer, training?  

− Prompt: Do you use it for analysis?  

− Prompt: What are your general opinions of SMART? 

Use of elephant mortality data for local elephant management and anti-poaching 

 

13. I understand it is important to report MIKE data. However, do you as a manager find the 

information useful?  

 

14. How do you make use of MIKE data at this site? Is it for local elephant management and anti-

poaching? If so, in what ways? 

− Prompt: Are MIKE data used to:  

a. Measure how anti-poaching is performing, and evaluate/change strategies? 

b. Identify poaching hotspots and direct patrol locations, routes and strategies? 

15. Could you share an example or story from your own work and experience this year about using 

MIKE data for management at this site? 

 

16. What are some of the main challenges that make it difficult to use MIKE data for local 

management?  

 

− Prompt: Is there adequate human capacity and resources to interpret and use data? 

− Prompt: Is the data format hard to use, are there concerns about data quality? 

 

17. Overall, would you say that MIKE makes a small or large contribution to elephant management 

and anti-poaching at this site?  

Implementation challenges 

 

18. What are the main challenges to implement and carry our MIKE monitoring effectively at this 

site?  

− Prompt: Are general resources (equipment, infrastructure, communications, vehicles) an 

issue? 

Prompt: Is there adequate human capacity, training and expertise?  

 

19.  How do rangers in practice manage to combine monitoring with their other duties and 

responsibilities, like anti-poaching?  

 

− Prompt: Do monitoring and law enforcement complement each other or is there a conflict?  
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Concluding questions 

 

20. We are now coming to the end of the interview. Could I ask you to summarise your general 

thoughts and feelings about the MIKE programme?  

 

− Prompt: Do you, as a manager/WO/SR see MIKE monitoring as valuable to your work?  

Why? 

 

21. We have discussed many aspects and issues, thank you for that, this has been very useful. In 

the end, what ADVICE would you give to improve matters?  

 

22. Is there anything else you would like to add or feel you didn’t get the chance to mention?  
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4. Appendix 4: Interview guide used for national-level respondents 

(Chapter 6)  

*Mainly senior staff at the Zimbabwe Parks and Wildlife Management Authority 

 

Opening questions  

 

1. When did you first hear about MIKE monitoring in Zimbabwe and could you tell me a bit about 

how your work involves MIKE now? Could you share some of your general thoughts and feelings 

about the programme? 

 

2. What would you say are the main purpose and goals of the MIKE programme in Zimbabwe? 

− SP: Is there more of an emphasis on (a) international reporting to CITES, or (b) supporting 

local elephant management and conservation? 

 

3. Would you say that the MIKE programme in Zimbabwe is externally or locally driven? Could you 

comment on the level of local buy in to the MIIKE programme in Zimbabwe?  

Overall research question 1: Contribution of MIKE data from the Zambezi Valley to local elephant 

conservation and management.  

 

4. Could you share any information on what happens to MIKE data from Chewore and/or Mana 

Pools once they have been collected? How are the data used?   

− SP: Could you share any information on whether or not MIKE data are used at the local 

protected area level, i.e., in Chewore and Mana Pools?  

− SP: Are the data sent to national headquarters for international reporting to CITES?   

 

5. In general, would you say that MIKE monitoring and data has or has not contributed to local 

elephant conservation and management in the Zambezi Valley? 

 

− By ‘elephant conservation and management’ I am referring to any activities and strategies 

carried out by management staff, rangers and other stakeholders to protect elephants, 

reduce poaching and raise awareness. Activities may include anti-poaching patrols, general 

law enforcement, community informant networks, judicial reforms, conservation education 

and awareness raising. 

− SP: Would you say that MIKE data have helped tackle elephant poaching in the ZV? 

− SP: Are MIKE data discussed or used at workshops or in protected area or elephant 

management plans? 

 

6. Could you share any examples of ways in which MIKE data have been used to support or guide 

elephant conservation and management in the Zambezi Valley? 

− SP: Are MIKE data integrated into local management decision-making processes? 

− SP: Are MIKE data used by area mangers/ranger to change/improve their anti-poaching 

strategies? 

− SP: Are MIKE data used to measure the effectiveness of management actions in reducing 

poaching? 

− SP: Are MIKE data used in any way for awareness raising or education around elephant 

poaching? 
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7. Could you share examples or ways in which elephant management and anti-poaching in the 

Zambezi Valley DO NOT depend on or use MIKE data? 

 

8. What would you say are some of the reasons why MIKE data may not be used to support 

elephant management and conservation in the Zambezi Valley?  

− SP: What are some of the main challenges that make it difficult to use MIKE data? 

− SP: Would you say that there is adequate human capacity, technical expertise and other 

resources to use and interpret MIKE data for evaluating management? 

− SP: Does the quality of the data limit its usefulness for management? 

 

9. Could you tell me a bit about the use of the SMART in the Zambezi Valley? How does SMART 

work? How does SMART affect the use of MIKE data by management? 

 

10. What other information on elephant population status and threats in the Zambezi Valley are 

used to inform elephant management and conservation?  

 

11. Are you aware of the EU-funded CITES MIKES project being implemented in the Mana 

Pools/Chewore/Sapi World Heritage site? If so, what is your perception of how effective the 

project has been in terms of increasing capacity for (a) general MIKE monitoring, and (b) anti-

poaching activities?  

Research question 2: To what extent do current MIKE data represent true poaching levels and trends 

and what factors affect this? 

 

12. In general, would you say that MIKE data provide an accurate or inaccurate measure of the true 

level of elephant poaching in Chewore Safari Area and Mana Pools National Park?   

− SP: What makes you think so? Do you have any evidence to suggest that the data are 

accurate/inaccurate?  

 

13. In general, would you say that MIKE data provide an accurate or inaccurate measure of changes 

in true poaching levels over time, i.e., seasonally or from year to year?   

− SP: is MIKE data able to pick up changes in actual poaching levels  

 

14. What would you say are the factors that affect the quality and accuracy of MIKE data from 

Chewore and Mana Pools?   

− SP: Is there adequate effort and coverage by patrols?  

− SP: Are general resources and (equipment, infrastructure, communications) an issue? 

− SP: Is there adequate human capacity and training?  

− SP: Would you say there may occasionally be mis- or under-reporting? 

 

15. How could MIKE monitoring in the Zambezi Valley be made more effective? 

 

16. What are some of the other activities or duties that rangers are responsible for and how does 

MIKE monitoring fit in alongside these other responsibilities?  

− SP: How does MIKE monitoring fit in alongside general law enforcement and anti-poaching? 

Is there conflict or do they complement each other?  
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17. Do you have any information on how MIKE data are summarised each year, is there an overall 

score that is calculated?   

− SP: In my reading I have come across the PIKE metric and I wondered if you had heard about 

it? 

− SP: Do you think PIKE provides an accurate or inaccurate measure of levels and trends in 

elephant poaching?  

− SP: Could you share your thoughts on possible reasons why the PIKE index might provide 

unreliable estimates of poaching levels?  

− SP: How does the use of natural mortality carcasses in the metric affect its accuracy? 

− SP: Would you say that the PIKE index is useful or not useful for informing management?  

 

END OF INTERVIEW: Is there anything else you would like to add or feel you didn’t get the chance 

to mention? Thank you so much for participating, your insights will help my research greatly.   
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5. Appendix 5: Interview guide for senior staff of the MIKE programme 

(Chapter 6) 

Opening questions 

 

I would like to start with some questions about your work, and your involvement in MIKE: 

 

1. Could you tell me a bit about your current work? 

2. When did you first become involved in the MIKE programme? 

3. In what ways does your work involve MIKE now?  

 

General MIKE questions: 

 

4. What, would you say, are the main aims or goals of the MIKE programme? 

5. What, would you say, are the main successes of the programme as a whole to date?  

6. What, would you say, are the main challenges the programme has faced? 

 

MIKE implementation locally 

 

7. My understanding is that MIKE aims to contribute both to international policy through 

forums like the CITES CoPs, as well as to local elephant management. How would you say 

MIKE has performed in each of these two areas?  

- Prompt: Has MIKE performed better in one of these areas than the other? Why? 

- Prompt: Does your particular role involve more work with the international policy aim, or 

with the local management aim? 

 

8. Could you describe for me your experiences of the relationship between MIKE as a 

programme and local actors at MIKE sites? 

- Prompt: Could you tell me very generally the role that each party plays in this relationship? 

 

9. What is the vision for how MIKE as a programme contributes to local elephant management 

at MIKE sites?  

- Prompt: How is MIKE designed to achieve this vision?  

- Prompt: What is the theory of change for how MIKE contributed to local elephant 

management?  

 

10. At the local level, there is on the one hand the monitoring elephant poaching levels, and 

on the other hand there is the management of elephant poaching. What is the role of MIKE 

for each of these? 

 

11. In what particular ways is MIKE able to help local protected area managers in their work to 

conserve elephants? 

- Prompt: Could you provide some tangible examples of how MIKE data might be used 

locally?   
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12. What would you say are some of the challenges you have seen in terms of MIKE 

contributing to local elephant management? 

 

13. One of the stated goals of MIKE is to build local capacity for long-term elephant 

management in range states. What would you say is the goal of this capacity building, and 

what does it look like in practice? 

 

14. In your experience, what are some of the barriers you have seen in terms of implementing 

MIKE successfully at the local level? 

 

The Zimbabwe Case Study 

 

Give a brief overview of the work I have done in the Zambezi Valley MIKE site in Zimbabwe, 

explaining I have spoken to rangers, park managers, and with national wildlife staff.  

 

15. Some of the managers and national level staff in Zimbabwe saw MIKE mainly as a reporting 

requirement to CITES but did not always take ownership of MIKE and see its value for local 

elephant management: 

- Prompt: Why do you think local actors see MIKE mainly as a reporting requirement? 

- Prompt: In what way does the MIKE programme seek to promote greater local ownership 

of MIKE in terms of promoting greater integration of MIKE with local management?  

 

16. When I spoke to park managers, I noticed there was not always clarity about the role that 

MIKE should play, and the role that the managers themselves should play in terms of 

adaptive management of elephants using elephant mortality data.  

- Prompt: Could you comment on what you see as the role of MIKE as a programme, and the 

role of local managers, in terms of the monitoring and management of elephant poaching? 

 

17. Local actors in Zimbabwe also complained that they did not receive feedback from MIKE on 

their data, and sometimes even expected MIKE staff to analyse patterns in local data and 

then give feedback? 

- Prompt: Can you comment on this expectation? Would you say MIKE should provide such 

feedback? 

-  

The way forward 

 

18. In your opinion, what do you think are some of the ways MIKE could be improved to better 

contribute to local elephant management?   

 

Thank you so much for your time. Is there anything else you would like to comment on or mention? 

 

 

 


