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1. Abstract 

Uncertainty is a central constraint to decision making. Decision makers depend on the 

reliability of scientific knowledge to make informed and well-guided decisions, 

however uncertainty exists within both scientific knowledge and the implementation of 

decisions. Across disciplines uncertainty is termed and treated differently. In this thesis, 

I review climate change, social-ecological systems, fisheries and applied ecology and 

conservation due to their active interactions with decision makers. In these and other 

fields, models are often used to assist decision making, and are inevitably affected by 

the fundamental uncertainties that surround modelling complex life systems.  I 

investigated model uncertainty and parameter uncertainty by manipulating different 

structures and parameters of a harvest-household management strategy evaluation 

model, keeping other aspects constant, to examine the impacts on model outcomes.  I 

found that applied ecology and conservation has the largest number of terms to describe 

the same uncertainties compared to climate change that has the most specific definition 

usage.  Climate change has the clearest guidelines addressing uncertainty compared to 

fisheries, social-ecological systems and applied ecology and conservation. When 

assessing the impacts of uncertainty I found that when a population model differs in 

structure a cumulative effect of uncertainty occurs from the inclusion of stochasticity, 

logistic growth, density dependence functions and parameter differences.  Similarly in 

the harvester model, structure differences highlighted the cumulative effects of 

uncertainty from the inclusion of stochasicity and differing utility equations. Parameter 

uncertainty of high and low juvenile mortality highlighted how one parameter can affect 

model outcomes. The exploration into model uncertainty is a research importance as 

many decision makers are reliant on tested and well communicated certainties of model 

outputs. A unified framework for dealing with uncertainty is particularly necessary for 

conservation in the context of the formation of the intergovernmental science-policy 

platform on biodiversity and ecosystem services, which aims to join the scientific 

community and decision makers and as uncertainty awareness climbs the research 

agenda.  

Keywords: Uncertainty; Model uncertainty; Decision making; Conservation  
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2. Introduction 

Uncertainty exists everywhere; the predictability of the effectiveness of different 

conservation management strategies is uncertain. Conservation is an interdisciplinary 

field which draws from many disciplines which deal differently with uncertainty. 

Conservationists have to make decisions quickly and effectively upon which species 

survival is often dependent and therefore they need to be aware of the uncertainty that 

surrounds the outcomes of making different decisions.  

Across disciplines models have proven to be extremely useful assisting in the 

understanding of dynamics, predictive forecasts and applied to decision making (Perry 

& Millington 2008; Thomas et al. 2004; Drechsler 2000). Models are diverse in their 

application, for example from providing an open fishing season for the maintenance of 

spiny lobster (Panulirus argus L.) populations (Medley 1998) to combining with 

decision analysis to conserve orange-bellied parrots (Neophema chrysogaster) in 

Australia (Drechsler 2000) to the guiding management strategies for the Bonelli‟s eagle 

(Aquila fasciata) in Spain (Soutullo et al., 2008). When modelling, uncertainty is one 

element that is certain: a model is a representation of the real world; thus when models 

are used to simplify and untangle real world complexity uncertainty must be present 

(Kokko 2005). At least  97% of ecological models consider uncertainty in some way 

(Drechsler et al. 2007) .The presence of uncertainty in conservation management is a 

critical constraint; understanding and planning for uncertainty when making decisions 

will provide greater resilience to unexpected scenarios (Brugnach et al., 2006; Rowell, 

2009). Brewer & Gross (2003) recommends that by cultivating a society who has a 

better grasp of uncertainties and its effects on prediction will benefit all. Ludwig et al. 

(1993) in lessons from history highlighted that confronting uncertainty is an effective 

principle for decision making.  

Uncertainty is defined as the “incomplete information about a particular topic” 

(AscoughII, et al., 2008). Many disciplines have classified uncertainty but 

communication across disciplines is sparse (Harwood & Stokes 2003; Walker et al. 

2003; Regan et al. 2002; Charles 1998; Morgan & Henrion 1990). There is a great 

potential for interdisciplinary learning from well established fields that deal with 

uncertainty such as engineering and economics. Uncertainty classification structures 

vary within ecology (AscoughII et al. 2008). For example Walker et al. (2003) 
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expressed uncertainty classification as the location and level of uncertainty types and 

produced an uncertainty matrix. AscoughII et al. (2008) classified uncertainty into 

process understanding, variability, decision making and linguistic uncertainty. The 

classification of uncertainty by Regan et al.'s (2002) for ecology and conservation is 

widely referenced, separating uncertainty into epistemic and linguistic uncertainty 

(Table 1).  

 

 

Table 1. Definitions of sources of uncertainty 

Sources of 

uncertainty 
Definitions (Regan,et al., 2002) 

Epistemic 

Uncertainty 

The uncertainty of knowledge or understanding, arising due to insufficient 

data, extrapolation and the limitations of measurement devices and the 

variability in time or space. Epistemic uncertainty includes parameter, 

model and subjective uncertainty. Ambiguity as well as being classified 

within linguistic uncertainty can also be included within epistemic 

uncertainty as knowledge becomes uncertain if words used are ambiguous. 

Parameter 

uncertainty 

Measurement error (error due to measurement techniques and random 

variation in measurement) and systemic error (non random error due to 

bias in measuring procedure due to the judgement of the applier). 

Model 

uncertainty 

The inherent misrepresentation and misunderstanding due to the 

simplification of complex systems. 

Ambiguity  

When words have more than one meaning and therefore can be 

misinterpreted. 

Subjective 

uncertainty 

The uncertainty that arises due to the interpretation of data; due to the 

empirical lack of data expert judgement is used in its place. 

Linguistic 

Uncertainty 

Uncertainty derived from communication and definitions, where scientific 

terminologies are vague, context-dependent or has theoretical 

indeterminacies which include uncertainties such as numerical and non-

numerical vagueness, context dependence, underspecificity and ambiguity. 

Ontological 

Uncertainty 

Uncertainty associated with processes including natural variation, inherent 

randomness and dynamical uncertainty. 
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Epistemic and Linguistic uncertainty both exist when modelling living systems 

(Elith et al.,2002) .There are four main sources of uncertainty when modelling (figure 

1). Parameter uncertainty emerges due to model input variables. Model uncertainty 

occurs within the model due to the model being a representation of a biological system. 

This also includes model ontological uncertainty. Subjective uncertainty occurs from 

the interpretation of outputs affected already by parameter, model and ontological 

uncertainty. The communication of the model outputs for decision making purposes 

linguistic uncertainty occurs, due to the failure to apply clear, concise, defined, context 

of the inputs, model and outputs.    

 

This project aims to review uncertainty considered and dealt with across 

disciplines. Fisheries, climate change, social-ecological systems and applied ecology 

and conservation were chosen to be investigated due to active interactions with 

decisions makers. The types of uncertainty considered and defined within each 

discipline were examined to compare how definition and classification differ between 

fields. The disciplines‟ treatments of different sources of uncertainty were examined to 

Figure 1. Schematic diagram of different uncertainties as they occur at different of stages 

in the modelling procedure, as uncertainty accumulates to produce cumulative 

uncertainty. 

*parameter uncertainty is also involved in validating model s with empirical data, highlighting imperfections in 

observation and measuring techniques as well as bias in the sampling process however will not by highlighted in the 

conceptual model investigation as there is not empirical observation of a true system. 
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see how different fields deal with uncertainty in addition to whether the methods 

available were widely applied within the discipline.  

Decision-makers often use models to inform decisions. To explore the impacts 

of model uncertainties a harvest-household management strategy evaluation model 

(Milner-Gulland 2011) was used, as it includes harvester and management decision 

behaviour. The model does not represent a true system, but allows the interaction of 

harvester, resource and management dynamics to be explored and model outputs could 

be applied to evaluate management strategies impacts on the resource harvester utility. 

The model represents the interactions between management, resource populations and 

harvesters. The management splits the allocation of their budget between monitoring the 

resource and protecting the resource from illegal hunting. In addition the management 

sets a legal harvest control rule. The harvester hunts the resource dependant on 

household utility and may choose to harvest illegally to increase utility but this is 

dependent on the cost of being caught and whether it‟s worth harvesting the resource 

compared to farming. The resource population depends on the number being harvested 

by the harvester. The difference between what the management thinks is being harvest, 

the harvest control rule, may actually be very different if the harvester decides to 

illegally hunt. The difference between the truth and management highlighted by this 

model emphasizes its application into investigating real world disparity for maintaining 

resource populations. Therefore it is useful to know how model uncertainty could affect 

model outcome and decisions made from the application of this model. 

  As a conceptual exploration into model uncertainty the results are interpreted 

qualitatively rather that quantitatively as the results are not validated or calibrated by the 

observation of a real system. The results cannot be applied to inform real life decisions 

but can be used to highlight how model output can be affected by modelling 

uncertainty.  Model structure uncertainty was examined by comparing a single age class 

population model to an age structured population model within the harvest-household 

management strategy model. The use of the age structure within the management 

strategy evaluation (MSE) model has not been widely used (excluding Myrseth et al. 

2011) and has been shown to be a way of assessing management strategies by including 

uncertainty as a fundamental component(Bunnefeld et al. 2011; Milner-Gulland 

2011).Lindstrom & Kokko (1998) investigated the behaviour of two density dependant 
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population model, one being an age structured, showing that models come to similar 

conclusions but they highlighted, in the single structured model, the complicated 

relationship between density dependence and reproductive rate. In addition, differing 

harvester decision models were investigated to examine the driving uncertainty 

mechanisms affecting the models population size and harvest numbers. Parameter 

uncertainty was examined by comparing the influence of one parameter‟s on the model 

outputs of population size and harvest numbers. By defining and quantifying 

uncertainties, the impacts of different uncertainties impacts can be clearly presented to 

decision makers. Improved representation of uncertainty to decision makers will allow 

better decisions to be made. 

 

Objectives 

 To identify the types and sources of uncertainty recognized in different 

disciplines. 

 To review how different disciplines address and treat uncertainty. 

 To examine to what extent uncertainty is dealt with in each discipline. 

 To explore conceptually how model uncertainty affects model outcomes. 

 

 

3. Methods 

3.1 Methods for the review of uncertainty in four environmental disciplines 

I investigated the fields of applied ecology and conservation, climate change, 

fisheries and social-ecological systems, each of which are applied disciplines where 

models are used to help make management. Uncertainty is importance and fundamental 

in all these disciplines from the uncertainty in fish stock number to the prediction of our 

future climate.  We need to try and understand the uncertainty that surrounds our world 

to better predict the future outcomes of our action. 

The search engine science direct was used to review of the four disciplines 

(http://www.sciencedirect.com/). The key words used to search the literature included 

decision making, modelling, and uncertainty for each discipline.  180 papers and books 

were examined for applied ecology and conservation. 46 articles and books were 

examined for fisheries. 28 articles in addition to the intergovernmental panel on climate 

http://www.sciencedirect.com/
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change reports on uncertainty were examined for climate change. 24 papers on social-

ecological systems were examined but many papers were overlapping with applied 

ecology and conservation but they were also included within social-ecological systems. 

For each discipline, the use and meaning of different types of uncertainties and 

terms used to describe those uncertainties were recorded. For each type of uncertainty, 

the ways in which they were acknowledge and dealt with was collated for each 

discipline, in addition to examples in which the application of model findings was 

applied to decision making. The aim is to look at what uncertainties exist in different 

fields and how the disciplines work with uncertainty whether it is avoided or addressed 

and how. Do disciplines rank uncertainty as an important element of research? 

Interestingly is there vagueness in the way we express uncertainty i.e. what words we 

use to describe uncertainty. 

 

3.2 Age structured model uncertainty investigation 

Firstly I converted Milner-Gulland(2011) harvest-household MSE model from C 

to R version 2.11.1 (2010-05-31) of which the code is available in the appendix. The 

model represents a discrete time single population using parameters in appendix 9.2.6.  

The population is harvested legally due to a harvest control rule set by the managers and 

illegally harvested dependant on household utility and hunting penalty. As many 

resource populations are overexploited this model captures the harvester behaviour as 

well as the management and resource population. It model has widely been applied to 

fisheries but Milner-Gulland (2011) and Bunnefeld et al. (2011) have highlighted its 

terrestrial application.  
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The model is made up of an observation, assessment, monitoring and operating 

models (Figure 1). The resource and harvester operating models capture the true 

resource population and harvester behaviour.  The harvester aims to optimise its utility 

by calculating whether it is worth illegally harvesting the resource or instead allocate 

more labour to farming. The resource density dependant population initially starts at 

500 and is harvested by the harvester which include illegal and legal harvest. The 

observed population and the illegal and legal harvest values are used by the 

management to use to set the harvest control rule and allocation the budget to 

monitoring and anti poaching. The management allocated its budget between 

monitoring the population number and catching illegal hunters. For this investigation 

the management sub model allocates a fixed 50% of the budget to monitoring and 50% 

to detecting poachers. The legal harvest rate of the population was fixed at 7% of the 

population. The metric performance values produced by the model include population, 

actual harvest, and legal harvest mean simulated from 2 to 50 years of management, 

with an initial population size of 500, and looped for 100 simulations within R version 

2.11.1 to find the mean and co-efficient variation of each output. The actual harvest 

mean is the illegal harvest and legal harvest mean.  

To examine the effects of uncertainty in model structure, I developed two 

versions of the population model: a single population (Milner-Gulland 2011) and an age 

structured model, and ran 100 simulations keeping all other aspects the same. I 

compared the model mean outputs of the population size, the legal and actual harvest to 

assess how different sub model structures affect estimates of the population and harvest    

I varied the penalty of the harvester being caught illegally hunting from no penalty to 

high to assess the impact on harvest and population means. Because different types of 

uncertainty may interact and cumulate, I ran several versions varying harvester 

behaviour, represented by changing the utility model for the decision of whether the 

harvester sells or consume his farm produce to examine how additional differences in 

the harvester sub model structure affects estimates of the population and harvest. To 

assess the impact of parameter uncertainty I used the age structured population and 

added the addition parameter of mortality. The mortality was varied for juvenile 

mortality and kept constant for the other two age classes to assess the impact of one 

parameters effect on harvest and population means. I varied the penalty of the harvester 
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from no penalty to high to assess the impact of the cumulative effect of differing 

juvenile mortality had on harvest and population means. 

 

3.2.1 Single structure population  

I investigated the behaviour of two different density dependant resource 

operating models. These models describe the discrete time demography of the 

population. The single structured model is a simple discrete time logistic population 

model (Milner-Gulland 2011) :                                                               (1) 

The population,       is the dependant the intrinsic rate of increase,  , is 0.2 

and the carrying capacity,  , of 500 produces the single structured population size next 

year,       .   is represents the stochastic term                      (2) 

which is the standard deviation of the population,   , 40 multiplied by the 

random number taken from a normal distribution   with mean 0 and standard deviation  

of 1. 

  

3.2.2 Age structured population 

The discrete time simple age structured model represents juvenile,     , young 

adult,      and adult,      , age classes.                                                                                                       (3)                        

The juvenile population in the next year is dependent on the number of adults 

and young adults that reproduce plus stochasticity. The birth rate, , for each 

reproductive age class is  0.1. The numbers of young adults in the next year is 

dependent on the number of juveniles in the current year plus stochasticity. The 

numbers of adults in the next year is dependent on the number of adults and number of 

young adults. To achieve a density dependant structure, like the single structured model, 

the total population     , 



[14] 

 

                                                                       (4) 

which is the total number of juveniles, young adults and adults in the current 

year when the population is more than the carrying capacity, the number of adults and 

young adults that are allowed to reproduce is halved which continues until  the total 

population is below carrying capacity and equation 3 is used again.                                                           (5)                        

To makes the age structured model have an intrinsic rate of increase the same as 

the single structured model the birth rate 0.1 was used for each of the reproductive age 

classes meaning that 20% of the population reproduced. 

I used the single and age structured models to investigate model structural 

uncertainty. 100 simulations of each model within the integrated model over differing 

penalties so that differences between the model structures impacts on the mean 

population size, legal and actual harvest can be examined. 

 

3.3 Harvester behaviour: consume or sell 

I investigated how the behaviour of two different decisions made by the 

harvester, within the harvester operating model affected model uncertainty so that both 

components of the operating model; the resource and harvester model structures are 

examined. The choice of the harvester is whether to consume or sell farm produce, 

causing a difference in model structure due to a difference in how the optimal utility is 

calculated. I have used Milner-Gulland(2011) equations below to highlight the 

structural differences in calculation of making either the decision to sell or eat the 

farmed produce. 

Firstly the perceived population,   , comes from the true population plus a 

random error in observation. The standard deviation of the perceived population     is 

10.           +                                                                                             (6) 
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To find the optimal utility, the allocation of labour to hunting was looped from 1 

to 50. The allocation of labour to hunting, , and the allocation of labour to 

farming,      , was used to calculate farming production,   , and hunting 

production,  . Hunting production is dependent on catching, q, the perceived harvest 

and the labour allocation to hunting to the power of the hunting return coefficient,   .                                                                                                (7) 

The return hunting coefficient is the maximum return value,   , 1.2 when there 

is a high population. This is multiplied by the perceived population divides by the 

carrying capacity times the maximum return value minus the minimum return value,   , 
0.4 when the population is low.                                                                                              (8) 

The farming production is dependent on the amount of land,  , (50) available to 

the harvester for farming and the labour allocation to farming to the power of the  

farming return coefficient,   , which is 0.8.                                                                                          (9) 

The amount of illegal hunting,  , is dependent on the difference between the 

legal harvest rule      and the hunting production.                                                                                         (10) 

If illegal harvesting more than 0 detectability,  , is 1. These ten equations are 

the foundation equations used to calculate optimal utility for the harvester. The differing 

11-14 equations highlight the difference model structure of the harvester making a 

decision o of either selling or consuming farm produce. 

 

 3.3.1 Harvester behaviour: Consume farm produce 

If the harvester decides to consume the farm produce, the goods,  , that the 

harvester has to sell is the hunted product worth which is the hunted production times 

the price of the hunted product,   . The cost of hunting is the value cost of hunting,   ,(0.2) times the labour of hunting  minus the risk and penalty for getting caught 

which is the detectability times the proportion of illegal hunters being caught      , 
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times the amount of illegal hunting,  ,times the penalty,  , for getting caught. The 

overall risk worth of hunting is divided by the price of goods,   , (1).                                                                                      (11) 

The household goods is used to find the utility by which the elasticity of 

goods ,  , (0.5), multiplied by the log of the goods plus the elasticity of farming,     , multiplied by the log of  the farm production.                                                                         (12) 

 

3.3.2 Harvester behaviour: Sell farm produce 

If the harvester decides to sell the farm produce, the goods calculation includes 

the farm production multiplied by the price of the farm produce,   , (1).                                                                                   (13)                            

Therefore the utility is the elasticity of the log of the goods.                                                                                          (14) 

Both harvester decisions models were simulated 100 times in the integrated model to 

find assess the impact of differing decisions on the model outputs of population size and 

actual harvest mean. 

 

3.4 Juvenile mortality: Parameter uncertainty 

As models gain more reality, they gain complexity and addition uncertainty. 

This is a simple test of the parameter uncertainty. The age structured model was used 

and all three age classes have the same mortality rate,  , of 10% affecting the survival 

of the population.  However juveniles, more realistically, have a higher infant mortality 

rate,   , compared to adults. The mortality rate for the juveniles was simulated at the 

same as the adults 10% and higher than the adults 50%. The number of juvenile 

becoming young adults is significantly fewer when juvenile mortality is high which 

should cause a difference the future population size. The replacement of the juvenile 

mortality rate in the age structure model, highlighted in bold, is to examine the affect of 

one parameter differences impacts on the mean population, actual and legal harvest.                                   
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                                                                        (15)                                  

The differ juvenile mortalities within the age structured models is simulate 100  

times  keeping all other aspects constant, apart from the penalty which was values 

changed from 0 to 5 to highlight how at different penalty values the harvest and 

population interact. I compared the mean population and harvest values at the low 

penalty (1) for illegal hunting to assess the different juvenile mortalities affect estimates 

of the population and harvest.  

Summary table 2 summaries the methods used to examine uncertainty including 

the mechanism that might be driving differences between model outputs. 
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Table 2. Summary table of how model structure uncertainty and parameter uncertainty were investigated. Manipulations made for each 

investigation, the constants and differences in model settings, the mechanisms driving the uncertainty and the figure. 

Uncertainty 

investigated 

(Model 

investigated in) 

Manipulations made Settings 
Mechanisms driving the 

uncertainty 
Figure 

Model 

uncertainty 

(Resource 

operating 

model) 

Single structure or 

3 age class structures 

differing in structures 

and parameters to 

produce logistic growth 

of the population in 

resource operating 

model. 

Constants: Consume farm produce; 

stochasticity, initial population 500 and 

carrying capacity 500. 

Stochasticity, model 

structure, parameter 

difference between 

birth rate and intrinsic 

of rate increase, penalty 

values varies 0-5. 

3 

Differences: Differing carrying capacity 

structure and equations of logistic growth (see 

methods for details).. intrinsic rate of increase 

20% (Single structure model), birth rate 10%  

(Age structure model), penalty varies 0-5, 

Model 

uncertainty 

(Harvester 

operating 

model) 

Consume or sell farm 

produce decision made 

by harvester differing in 

structure to produce 

optimal utility affecting 

harvest rates in harvester 

operating model.  

Constants: Stochasticity, initial population 

500, carrying capacity 500 and penalty 1. 

Both single and age structured resource 

operating models used. 

Stochasticity, model 

structure and differing 

uses of parameter 

values. 

 

4 

Differences: consume or sell farm produce 

structures, same parameter values but 

different inclusion with goods and utility 

equations (see methods for details). 

Parameter 

uncertainty 

(Mortality) 

50% or 10% juvenile 

mortality rate used in age 

structured resource 

operating model. 

Constants: Consume farm produce, 

stochasticity,  initial population 500,carrying 

capacity 500 and 10% adults and young adults  

mortality  

Stochasticity and 

parameter uncertainty. 

 

5 

Differences: 50% or 10% juvenile mortality  
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4. Review of uncertainty in four environmental disciplines 

To explore uncertainty I examined four disciplines applied ecology and 

conservation, social-ecological systems, fisheries and climate change which all 

fundamental interact with decision makers. Each discipline uses terms of uncertainty 

but some use more terms than others to describe different types of uncertainty (Table 3).  

Each discipline has different ways of dealing with each uncertainty (Table 4). In 

addition a general summary (Table 5) of whether, within each discipline for each type 

of uncertainty, terms of uncertainty were few or many and how well they dealt with 

different types of uncertainty, with darker shading representing gaps in which 

uncertainties are not treated. 

Applied ecology and conservation has the widest range of terms used for 

different types of uncertainty; for example see different reviews and interpretation in  

(Elith et al. 2002; Regan et al. 2002; Harwood & Stokes 2003; AscoughII et al. 2008; 

Brugnach et al. 2008); The variation in terms and definitions causes more confusion and 

uncertainty in interpretation. Measurement error has eleven different terms in table S1, 

from data uncertainty to estimation error all meaning the same thing: the uncertainty 

that is found in a measured value. Applied ecology and conservation has a high number 

of terms for subjective uncertainty which is important when making decisions. Decision 

makers depend on the interpretation of data to be correctly presented to make decisions 

allow suitable actions to be taken. Especially in cases of endangered and rare species, 

which often have insufficient and error prone data, expert judgement is used but even 

ecologist cannot anticipate behaviour of ecological systems (Regan et al. 2002; Doak et 

al. 2008). 

Applied ecology and conservation uses a wide range of strategies to treat 

uncertainty (Table 1), which could mean that this discipline regards the treatment of 

uncertainty as case-dependant. Individual studies chose to incorporate different 

uncertainties. Holland et al. (2009) modelled wild boar dynamics looking at parameter 

and model structure uncertainty. Gusset et al. (2009) discussed the robustness of 

parameter uncertainty on their individual based model on Africa wild dog‟s dynamics. 

Drechsler (2000) used plausible population parameters on orange bellied parrots to 

investigate scenario uncertainty to rank management actions. Parameter uncertainty is 
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Table 3.  Types of uncertainty terms used across the different disciplines of applied ecology and conservation, fisheries, climate change and 

social-ecological systems. (Reference numbers in appendix 9.1) 

Type of uncertainty 

(Regan et al. 2002) Terms 

Applied ecology 

and conservation Fisheries 

 

Climate Change 

Social-ecological 

systems 
E

p
is

te
m

ic
- 

o
f 

k
n

o
w

le
d

g
e 

Epistemic – of 

knowledge 

 

Epistemic uncertainty 

 
 

(7,65,69,98,113,122) 
  

 
 (12,64,96,101) 

Metrical uncertainty  
 (99) 

   

Ignorance (inadequate understanding)  
 (12,87) 

  
  

(12,64,87) 

Inadequate modelling of 

system(structural/ epistemic uncertainty) 
  

(118) 
   

Forcing uncertainty   
 

 (33) 
 

Incomplete knowledge    
  

 (13) 

Epistemic indeterminism    
  

 (112) 

Measurement error 

(parameter 

uncertainty) 

Approximation uncertainty   

 (74) 
   

Estimation error   

 (39) 

  

 (66) 
  

Data uncertainty  

(6,30,6297) 
 

  

 (123) 

  

 (64) 

Parameter uncertainty 
  

(7,15,30,42,46,55,57,6

2,67) 

  

 (79,53,82) 

  

 (61,124) 
 

Measurement error   

 (3,17,30,44,49,89) 

  

 (47, 50, 66,91, 

104,105) 

  

 (123) 

  

 (12) 

Measurement uncertainty   

 (125) 
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Sampling uncertainty   

 (29) 
   

 

Observer error 

Imperfect observation 

 

  

 (44,118) 

 

  

 (47,50,53,92) 

  

Identification error   

 (44) 
   

Error in empirical observation   

 (12) 
   

Observational uncertainty   

 (70) 

  

 (82) 
 

  

 (119) 

Parameter error  
  

 (116) 
  

Uncertainty about values   
  

 (61) 
 

Value uncertainty   
  

 (71) 
 

Input error    
  

 (12) 

Partial observability    
  

 (4,28,84) 

Systematic 

error/bias 

(parameter 

uncertainty) 

 

Statistical variation 

Random error 
  

 (74) 
   

Systematic errors   

 (9) 

  

 (25,45,91) 
  

Systemic bias   

 (89) 

  

 (88) 
  

Statistical uncertainty   

 (17,67) 
 

  

 (22) 

  

 (64) 

Model uncertainty  
Model uncertainty 

 
  

 (7,30,49,62,76,122) 

  

 (41, 47, 53,56) 

  

 (33,123) 
(120) 
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Structural uncertainty 

 
  

 (6,17,99,122) 

  

 (25) 

  

 (61,71,80) 

  

 (28,75, 84,87,121,119, 

101) 

Model misspecification   

 (30) 
   

Model error   

 (62) 

  

 (50,66) 
  

Model selection error   

 (112) 
   

Interpretation   

 (12) 
   

Implementation error  
  

 (5,50,66,92) 
  

Implementation uncertainty  
  

 (56, 82,104,116) 
  

Ambiguity Ambiguity   

 (11,12,14) 
 

  

 (81) 

  

 (11,12,13,34) 

Subjective 

uncertainty 

(interpretation of 

data) 

Subjective judgement   

 (39,69,74) 
 

  

 (115) 
 

Subjectivity   
  

 (111) 

  

 (12) 

Volitional  uncertainty   

 (7) 
   

Uncertainty due to choices   

 (55) 
   

Translational uncertainty   

 (99) 
   

Subjective belief   

 (125) 
   

Disagreement (between expert 

uncertainty) 
  

 (32) 
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Self assessment imprecision (within 

expert opinions) 
  

 (32) 
   

O
n

to
lo

g
ic

a
l-

o
f 

p
ro

ce
ss

es
 

Natural variation & 

inherent 

randomness 

 

Inherent randomness   

 (74) 
   

Randomness   

 (74) 
   

Aleatory/ irreducible uncertainty   

 (7,29) 
   

Random error   

 (16) 
   

Stochasticity 

Stochastic uncertainty 
  

 (16,32,65) 
 

  

 (24, 61,123) 
 

Natural variation/variability   

 (3,17,69,118) 

  

 (25, 53,66,92,104) 

  

 (33) 

  

 (119) 

Variability   

 (49,74) 
   

Pattern-based surprises   

 (35) 
   

Unpredictability of ecological systems   

 (74,87) 
   

Environmental and demographic 

uncertainty 
  

 (122) 
   

Random fluctuations  
  

 (25) 
  

Natural stochasticity   

 (17) 
   

Internal variability   
  

 (33) 
 

Random effects   
  

 (123) 
 

Unpredictability   
  

 (71) 

  

 (13,87) 
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Environmental variation    
  

 (4,28,84,119) 

Ontological uncertainty    
  

 (64,96,113) 

Aleatory indeterminism    
  

 (112) 

Dynamics 

Process uncertainty   

 (6,30,70) 

  

 (47,53,56) 
 

  

 (4) 

 

Dynamics surprises   

 (35) 
   

Temporal uncertainty   

 (99) 
   

Complex dynamics   

 (12) 
   

Process error  
  

 (66,105) 
  

Process stochasticity 

 

 

 
  

 (51) 
  

L
in

g
u

is
ti

c
- 

o
f 

co
m

m
u

n
ic

a
ti

o
n

 a
n

d
 

d
ef

in
it

io
n

s 

Vagueness/ 

fuzziness, 

Context 

dependence, 

Ambiguity, 

Underspecified, 

Indeterminacy of 

theoretical terms 

 

Linguistic imprecision   

 (74) 
   

Ambiguity 

 
  

 (7,11,87,125) 
  

  

 (64,87,96,101) 

Language-based uncertainty   

 (16) 
   

Semantic uncertainty   

 (3) 
   

Underspecified   

 (32) 
   

Communication of uncertainty sources 

and lack of clarity 
 

  

 (92) 
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Fuzzyness or vagueness   
  

 (80) 
 

Linguistic indeterminism    
  

 (112) 
O

th
er

 

Other 

Human uncertainty   

 (76) 
   

Intervention based surprises   

 (35) 
   

Categorization   

 (39) 
   

Lack of information 

Abundance of information 

Conflicting evidence 

  

 (125) 
   

Conflicting knowledge   

 (12) 
   

Limitation of management (part 

controllability) 
  

 (118) 
   

Disagreement   

 (74) 
   

Assessment error  
  

 (5) 
  

Mild and severe uncertainty   
  

 (22) 
 

Upstream and downstream uncertainty   
   

 (89) 
 

Court pseudo-certainty    
  

 (84) 

Partial controllability    
  

 (4,28,84) 

Scenario uncertainty    
  

 (64) 
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Table 4.  Ways of dealing with different type of uncertainty used in the different disciplines of applied ecology and conservation, fisheries, 

climate change and social-ecological systems.(Reference numbers in appendix 9.1) 

 

Type of uncertainty 
(Regan et al. 2002) 

 

 

Analysis 

Applied 

ecology and 

conservation Fisheries Climate change 

Social-ecological 

systems 
E

p
is

te
m

ic
- 

o
f 

k
n

o
w

le
d

g
e 

Epistemic – of 

knowledge 

Additional knowledge and research 

 
 

(3,20,85,95) 
  

(48) 

 

(12, 87,96,101,109) 

Measurement 

error (parameter 

uncertainty) 

Sensitivity analysis 

 

 

(26,31,37,38,78,10

9) 

  
(61) 

 

(13, 15, 54,90 ) 

Different types of confidence intervals, 

Error bands, 

Intervals and sure bounds, 

Widen bounds 

  

(15,19,31,38,109,1

22) 

  

(52) 
  

(1,13) 

Scenario analysis    

(52) 

 
(61,93) 

 

(13,96) 

Statistics, distributions and probabilistic 

modelling 

 

  

(30, 49, 52, 60, 

73,85) 

 

(49) 

 

(28,71, 106) 

 

(1,13,98,) 

Likelihood methods/profiles   

(52,91) 
  

Observers estimate uncertainty around point 

estimates 
 
(44) 

   

Systematic 

error/bias 

(parameter 

uncertainty) 

Bayesian analysis /network/inference for 

parameter values 
 

(21,30, 69,77,100) 

 

(52,79) 
  

(103) 

Bootstrap and Jack knife technique   

(52,79) 

 

(71) 
 

Monte Carlo techniques  
(26,58) 

 

(52) 
  

Recognize and remove bias  

(23) 
   

Info-gap analysis    
(115) 

 

(8) 

Bayesian analysis for model structures and 

parameter values 
 

(18,51, 58,71,107) 
  

(115) 
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Model 

uncertainty  

Sensitivity analysis  
(28, 57,78) 

   
(13,15,102,100) 

Elasticity analysis   
(52) 

  

Probability  

(18,122,) 

 
(52) 

  

Model fitting/Checking 
-Least square residual error approach 

-Maximum likelihood 

-Bayesian statistics 

-Choice of criterion 

-Testing the predictions against independent data 

 

(18,38,122) 

 

(52,47) 
  

Bayesian model averaging 

Continuous and discrete model averaging 
 

(36,38,122) 
   

Uncertainty analyses  
(58,114) 

  
(24, 61,123) 

 
(13) 

Monte Carlo techniques  

(38,122) 

 
(52,53) 

 

(123) 
 

Competing models and compare the outcome 

with data 

 
 (18,27,51, 

57,83,86, 98,122) 

  
(71) 

 

(100) 

Judgment of confidence by weight or credibility 

measure that reflects the degree of faith in that 

model. 

   

(84,106) 
 

Ambiguity 

 

Group-decision-making, Communication,  

Calibrated language and participatory 

management 
-Rational problem solving 

-Persuasive communication 

-Dialogical learning 

-Negotiation 

-Opposition modes of action 

 

   
(71) 

 
(10,11,13) 

 

 

Clarify meaning/definition/terms and 

assumptions 

Specify context 

 

 

 
(3, 20,38, 63) 

  

(71) 

 
(98) 
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O
n

to
lo

g
ic

a
l-

o
f 

p
ro

ce
ss

es
 

Natural 

variation & 

inherent 

randomness 

Probability distribution 

Statistical distributions 

Frequency distributions 

 

(3,38) 
  

(28) 

 
(12, 84,98) 

Scenario    
(71) 

 

(13) 

Recognized, measure and sometimes estimate  

(68) 
   

Dynamics More analysis and long-term data collection  
(35) 

   

L
in

g
u

is
ti

c-
 o

f 

co
m

m
u

n
ic

a
ti

o
n

 a
n

d
 

d
ef

in
it

io
n

s 

Linguistic – of 

communication 

and definition 

Includes: 

vagueness, 

context 

dependence, 

under-specificity 

etc. 

Communication and awareness of uncertainty 

cooperative research efforts 

Appropriate levels of precision 

Clear statements and explicit time frames 

 
(20,76) 

 
(92) 

 
(71) 

 

(96,111) 

Phrasing questions as frequencies  
(69) 

 

(43,110) 
  

Using Sharp boundaries to define terms  

(38) 
   

Define categories  

(20) 
  

 

 

 

 

Calibrated language 

Qualitatively defined levels of understanding 

Calibrated levels of confidence  

   
(71)  

Vagueness/ 

fuzziness 

Use of Fuzzy sets 

Fuzzy logic 
 

(2,3,38,98) 
  

(94) 
 

Supervaluational approach  

(40,98) 
   

Other Multi-criteria decision analysis    

(80) 

 

(101) 
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 Table 5. Summary table across the different disciplines, applied ecology and conservation, fisheries, climate change and social-ecological 

systems, generally is uncertainty discussed, acknowledged and dealt with. represents dealt with the uncertainty, represents dealing 

with the uncertainty, % represent uncertainty is sometimes dealt with and  represents that the uncertainty is not dealt with. The darker 

shading highlights the gaps in dealing with uncertainty. 

 

Applied ecology & 

conservation 
Fisheries Climate change Social-ecological systems 

 

Terms of 

uncertainty 

Dealt 

with 

Terms of 

uncertainty 

Dealt 

with 

Terms of 

uncertainty 

Dealt 

with 

Terms of 

uncertainty 
Dealt with 

Epistemic – of knowledge 
 

Measurement error (parameter uncertainty) 
Lots of different 

terms 
 

Some different 

terms 
 Some different 

terms 
 

Some different 

terms 
 

Systematic error/bias (parameter uncertainty) 
Lots of different 

terms 
 Specific terms  Few terms  Specific term  

Model uncertainty (at a smaller level) 
Lots of different 

terms 
 

Some different 

terms 
% Specific terms % Specific terms % 

Ambiguity(multiple meanings) Little discussed % Not discussed  Little discussed  Little discussed  

Subjective uncertainty (interpretation of data) 
Lots of different 

terms 
 Not discussed  Specific terms  Specific term  

Ontological – of processes:  
 

Natural variation & inherent randomness 
Lots of different 

terms 
 Very few terms  

Some different 

terms 
 

Some different 

terms 
 

Dynamics 
Lots of different 

terms 
 Very few terms  Not discussed  Little discussed  

Linguistic – of communication and 

definition   

Includes: vagueness, context dependence, 

under-specificity etc. 

Lots of different 

terms 
 Not discussed % Little discussed % 

Some different 

terms 
% 
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the one that many ecologists concentrated on, despite acknowledging the impact of  

other uncertainties on model outcomes.  

Social-ecological systems have many overlaps with applied ecology and 

conservation in the terms and ways in which different uncertainties are dealt with. There 

are intrinsic uncertainties in the dynamics and behaviour of the complex interactions of 

social-ecological systems (Allen et al. 2011). Few papers deal with the treatment of 

uncertainty in modelling social-ecological systems (Schlueter, pers. com.). Tyre & 

Michaels (2011) highlighted three case studies with uncertainty in social-ecological 

systems. One example, Slooten et al. (2001) examined the effects of gillnet on Hector‟s 

Dolphins (Cephalorhynchus hectori) used a subjective probability distribution of 

juvenile survival, the social conflict in opinion between fisheries and conservationist on 

the effect of gillnet on mortality due to the subjective probability Tyre & Michaels 

(2011) highlighted could be either pessimistic or optimistic. Acknowledging socially 

generated subjective uncertainty is important for decision making (Tyre & Michaels 

2011). 

Fisheries have classified uncertainty by random fluctuations, uncertainty in 

parameter estimates and states of nature and structural uncertainty (Charles 1998). 

Classification was an important development for the management of uncertainty as it 

provides a platform from which the treatment of defined uncertainties can begin, so that 

fishery managers can be best prepared to make decision under uncertainty (Gray et al. 

2010). Fisheries have more terms for parameter and model uncertainty that the other 

types of uncertainty suggesting that these types of uncertainty are more widely 

discussed than areas such as subjective and linguistic uncertainty, for which there 

appears to be no term of reference (Table S1). Ambiguity and subjective uncertainty not 

treated and barely discussed, possible due to the strategy for dealing with uncertainty by 

concentrating on extensive data collection to reduce inherent uncertainty in parameter 

values and states of nature (Table 3) (Doyen 2003; Halpern et al. 2006). 

There has been limited treatment of uncertainty within marine management and 

fisheries (Halpern et al. 2006). This is re-enforced by the methods for dealing with 

uncertainty, which are for mainly parameter and model uncertainty, for example model 

checking and different types of confidence intervals (Hilborn & Walters 1992; Haddon 

2001). The communication of research by fishery scientists to fishery managers and 
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stakeholders could be misinterpreted due to misunderstanding of probability (Peterman 

2004). Teigen (1994) found that probaility can be intrepreted in six different ways from 

„chance‟ to „confidence‟; to alleviate this issue frequency values are used instead 

(Gigerenzer & Hoffrage 1995; Peterman 2004).   

Addressing uncertainty is becoming an important element of decision making in 

fishery management (Patterson et al. 2001) The development of the management 

strategy evaluation (MSE) framework within fisheries allows many management 

strategies under a range of alternative objectives and circumstances to be simulated to 

be compared scenarios (Bunnefeld et al. 2011). Management strategy evaluation 

incorporates implementation uncertainty, which is the uncertainty surrounding 

executing management rules and maintaining stocks (Fulton et al. 2011), as well as 

parameter uncertainty. In addition resource user and fisherman behaviour are included 

within models by using for example fleet dynamic modelling of fishing boats (Fulton et 

al. 2011).  

Within climate change science the largest number of similar terms used are 

associated with natural variation and inherent randomness (stochasticity, natural 

variation internal variability, random effects unpredictability shown in Table S1). This 

discipline has ways of dealing with epistemic uncertainty and even clear guidelines set 

by the intergovernmental panel on climate change to communicate uncertainty using a 

calibrated language (however these guidelines were intended to assist lead authors of 

the fourth assessment report to deal with uncertainty but a wider application of guidance 

notes could benefit both scientist communication of understand but also assist policy 

makers understanding) (Manning et al. 2005). Unpredictability, structural and value 

uncertainty provide basic classification of the types of uncertainty (Manning et al. 

2005). Working Group III from the Intergovernmental Panel on Climate Change (IPCC) 

2007 qualitatively defined levels of understanding, based on levels of agreement of 

findings in concurrence with present literature and the amount of evidence from the 

number and quality of independent sources (Barker et al. 2007). In addition the 

guidance of calibrated language of three forms qualitatively defined levels of 

understanding, quantitatively calibrated levels of confidence and a likelihood scale to 

provide consistency (Manning et al. 2005).  They emphasize that the future is uncertain 

and that scenarios are not prediction of the future, as well as highlighted that there are 
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gaps in available knowledge particularly from developing countries. To reduce these 

uncertainties by addressing these gaps and thus facilitating improved decision-making 

for mitigating climate change. The positive approach to developing guidelines and 

frameworks for tackling uncertainty seen in climate change research to address 

uncertainty to facilitate improvements in decision making should be more widely 

applied to address uncertainty in other disciplines. 

The future priority for scientists is to improve uncertainty acknowledgement, 

evaluation and communication to improve decision making (Hill et al. 2007; Tyre & 

Michaels 2011). Uncertainty may be seen as an impossible burden to try to deal with 

but by viewing uncertainty as „information about information‟ makes the problem of 

removal turn into a task of discovery (Borchers 2005). 

 

5. Model results 

5.1 Model uncertainty: Single versus age structured model  

Figure 3a illustrates that as the penalty for illegal hunting increases the actual and legal 

harvest means changes in relation to one another correlated also with the mean 

population size in Figure 3b. As the penalty increases the differences between the actual 

harvest and the legal harvest narrows, the single structured model actual and legal 

harvests means match after the penalty of 3. However the age structured model harvests 

narrows but the legal and actual means do not match.  Figure 3a highlights that the age 

structure model behaved similarly in harvesting compared to the single structured model 

in relations to the affect of penalty. However the age structured model has a lower legal 

and actual harvest mean as well as a lower population size compared to the single 

structure model. In addition the age structured model has more fluctuation compared to 

the single structured model in both legal and actual harvest means and population mean. 

The differences between the single and age structured model results are driven by the 

stochastic term, model structure and the parameter differences between birth rate and 

intrinsic rate of increase. This highlight to that structural difference in population 

models can have an impact on population means and harvest means suggestion that 

caution should be taken when applying results of models to real life systems as how the 

model is structured impacts can impact model conclusions. 
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Figure 3: a) The single structure compared with the age structured resource operating model showing how model uncertainty, focusing on 

capturing structural differences, effects population and harvest means over varying penalty values a) represents the mean actual and legal 

harvest dynamics as the penalty for illegal harvesting increases changing harvester behaviour for single structured and age structured 

resource operating model. b) represents the mean population dynamics as the penalty for illegal harvesting increases changing harvester 

behaviour for single structured and age structured resource operating model.                                              

                 

Figure 3a Figure 3b 
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5.2 Household decisions structural uncertainty 

Figure 4 represents the differences between the harvester behaviour, whether to 

sell or consume farm produces, effects on population and harvest due to the different 

equations used to calculate goods and utility values affecting optimal utility. The actual 

harvest is dependent on the optimal utility which affects the population. The mean 

number of individuals actually harvested when the harvester decided to sell farm 

produce was higher than the mean harvest of 26 individuals when the farm produce was 

consumed when the single structured model was used (figure 4a). Similarly when the 

age structured model was used, the harvest mean number of individuals was 24 for 

when the harvester decided to sell farm produce which was higher compared to when 

the farm produce was consumed of which the mean harvest was 22 (figure 4b).  

The population mean for selling compared to consuming farm produce is 

correlated with the harvest mean. The single structured model, the selling population 

mean is lower at 210 compared to the consuming population mean of 259. Similarly the 

age structure model the selling population mean is lower at 161 compared to the 

consume population mean of 199. The error bars represent the co-efficient variation 

highlighting that the single structured model has a lower co-efficient variation showing 

less dispersion around variables to age structured model population and actual harvest 

mean. The differences between the two harvester decisions are driven by the stochastic 

term and model structure. 
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 Figure 4: The harvester decision whether to sell or consume farm produces, in the 

harvester operating model within the integrated model, affects on the population and 

harvest means. Both structures, single and age population models outputs are shown a) 

represents the mean population and harvest for the single structure resource operating 

model and b) represents the mean population and harvest for the age structured 

resource operating model.   

 

5.3 Parameter uncertainty 

Figure 5 shows the effect of parameter uncertainty on model outputs. Figure 5a 

shows that higher juvenile mortality reduces the number of individuals harvested both 

the legal and actual harvest means. Figure 5b shows the effect of juvenile mortality on 

population mean over increasing penalty from 0 to 5. The 50% juvenile mortality mean
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 Figure 5:  Representation of parameter uncertainty using the age structured resource operating model in integrated model with varying 

juvenile mortality of 50% or 10% over varying penalty values a) represents the mean actual and legal harvest dynamics as the penalty for 

illegal harvesting increases changing harvester behaviour. b) represents the mean population dynamics as the penalty for illegal 

harvesting increases changing harvester behaviour. 

Figure 5a Figure 5b 
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population is lower compared to the 10% juvenile mortality. The differences in the 

results are solely driven by the parameter juvenile mortality effect and the stochastic 

term.  

When the penalty value is set at 1 the difference between the population mean 

for the 50% juvenile mortality is 139 compared to the 186 population mean when there 

is 10% juvenile mortality. The difference between the actual harvest mean for the 50% 

juvenile mortality is 15 compared to the 20 actual harvest mean when there is 10% 

juvenile mortality. The difference between the legal harvest mean for the 50% juvenile 

mortality is 9 compared to the 13 legal harvest mean when there is 10% juvenile 

mortality. 

 

6. Discussion 

Across environmental disciplines, climate change, social-ecological systems, 

fisheries and applied ecology and conservation, all vary in how they term and treat 

uncertainty. Applied ecology and conservation has many terms for the same uncertainty 

types compared to climate change that has a more frequent use of the same terms for 

uncertainty types. Fisheries lack terms for definition for linguistic uncertainty, 

ambiguity and subjective uncertainty.  

There are many techniques that are used by scientists across the four disciplines 

to address uncertainty types. Commonly subjective uncertainty, which is the 

interpretation of data uncertainty, across disciplines, is not dealt with effectively 

suggesting a new area of uncertainty research.  Linguistic uncertainty is sporadically 

examined between disciplines but is more often dealt within applied ecology and 

conservation; even through equally the other discipline rely on effective communication 

to decision makers. Interestingly parameter uncertainty was best treated for across 

disciplines which could be due to the ease of identification compared to other 

uncertainty types such as model uncertainty that has a combined cumulative effect from 

other uncertainties. 

Although the majority of studies within applied ecology may consider 

uncertainty (Drechsler et al. 2007), it is clear from investigating the literature that few 

attempt to deal with it thoroughly some uncertainty types are easier to treat as they are 

easier to identify. Many identify parameter uncertainty and investigate the effects of 
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different parameters on model outcomes (Wallach 1998; Drechsler 2000; Clancy et al. 

2010; White 2010; McGowan et al. 2011). Model uncertainty however is often used to 

describe the cumulative uncertainty, including model structure and parameter 

uncertainty (Holland et al. 2009), rather than investigate the structure differences caused 

by modelling techniques and modellers themselves. This review has highlighted that as 

uncertainty is universal across disciplines; interdisciplinary communication between 

disciplines would be highly beneficial as some areas have dealt more effectively with 

certain uncertainties where others lack definition and treatment.  

This investigation has emphasised the difficulty in acknowledging and 

representing uncertainty within modelling; when aiming to study one specific 

uncertainty other uncertainty are also involved in driving the differences between model 

outcomes.  In the single and age structured models and age structured more than just 

model structure uncertainty was driving differences. The stochastic term, logistic 

growth and density dependence functions forms differed as well as parameter 

differences between birth rate and intrinsic rate of increase. This cumulative uncertainty 

resulted in the age structured model having a lower population, actual and legal harvest 

means. In addition the legal and actual harvest dynamics, unlike the single structured 

model, narrowed but did not match this could be due to the three age classes having 

differ harvests rates due to a proportion of the total population in each age class were 

harvested.  

The harvester decision to consume farm produce resulted in a higher population 

mean when simulated in both the single and age structured models. When the harvester 

sold the farm produce the harvest mean was higher for both the single and age 

structured models. By comparing the age and single structured models differences in the 

model outputs of the actual harvest mean emphasises the differing effect between the 

single and age structure to the  due to the differ structural outcome caused by the 

harvester decision making. Model complexity comes from representing complex 

systems. The decision of a harvester whether to sell or consume farm produce, within 

the integrated MSE model, highlights the cascade that model differences from 

functional forms and parameter uses drive model population and harvest mean 

differences.  
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Parameter uncertainty highlighted by the effect of 50% to 10% juvenile 

mortality within the resource operating model identified that higher juvenile mortality 

results in a smaller population mean and lower actual and legal harvest mean. In 

addition the effect of differing penalty values also highlighted differing harvest and 

population dynamics. Parameter uncertainty has a clear effect on model simulations and 

results and therefore exploring parameter space with differing parameters generated 

with real life systems in mind helps validate the models application. 

Uncertainty is an integral component of modelling within the input, model and 

outputs, even in the interpretation of results subjective uncertainty exists humans are 

pattern recognizing facilitators (Doak et al. 2008). We have to live with the fact that 

irreducible uncertainty will always be there, but the way we attempt to recognise and 

eliminate reducible uncertainty is critical. This investigation has highlighted that 

conceptual model uncertainty is difficult to quantify compared to parameter uncertainty. 

There is a priority, as a modeller, to not only identify easily accessible parameter 

uncertainty but also recognise the importance of model uncertainty existence.  

Burgman et al. (1993) emphasised that models fail if the uncertainties that 

surround them are not communicated. Communicating uncertainties in model outputs 

comprehensively to policy makers is essential for the information to be of value and 

application particularly in interdisciplinary research of conservation (Rae et al. 2007; 

Nicholson et al. 2009) Research lacks applicability if uncertainty estimates are not 

applied (Liu et al. 2008). However decision makers often want clear cut answers, not 

uncertainty in estimates and probabilities, to enforce fixed unchangeable management 

rather than appreciating  that most management strategies wouldn‟t work as planned and 

therefore need to be flexible and adaptive (Doak et al. 2008). By using approaches such 

as the management strategy evaluation, uncertainty in intrinsically involved within the 

model from observation uncertainty to implementation uncertainty (Milner-Gulland 

2011). 

Many uncertainties are irreducible but we can‟t measure all the uncertainty of a 

system as some uncertainty might exist that we don‟t know about (Regan et al. 2002; 

Harwood & Stokes 2003; Borchers 2005). We can attempt to quantify uncertainty 

within modelling for example by providing interval, fuzzy number or probability 

distribution around a best estimate but information with high uncertainty could be 
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disregarded (Burgman et al. 2005). In addition to obtaining more data and research, 

investigating uncertainty propagation and the use of expert opinions may give a better 

understanding of epistemic uncertainty (Brugnach 2005; Opdam et al. 2009). The 

difference between disciplines in addressing uncertainty can be highlighted by the 

acceptance of uncertainty within the discipline of climate change, emphasised by the 

IPCC guidance notes on the consistent treatment of uncertainty aiming to communicate 

uncertainty with a calibrated language for findings and describing evaluation of 

evidence (Mastrandrea et al. 2010), which even discusses the differences (see Annex A) 

in the guidance notes for addressing uncertainty between assessment report 3 and 4. In 

addition Hawkins & Sutton (2009; 2010)communicate decadal mean surface air 

temperature uncertainty, in a way that would appeal to decision makers in its 

visualisation of uncertainty, using fraction of total uncertainty represented as colour on 

world maps to represent uncertainty in predictions. An available interface of their 

results, of the regional variations in sources of uncertainty for precipitation and surface 

air temperatures, where uncertainty, year, type of plot and temporal meaning can be 

manipulated to examine and visually illustrate uncertainty 

(http://climate.ncas.ac.uk/research/uncertainty/). 

There will always be a level of uncertainty that must be confronted when 

studying complex life systems. The lack of certainty when facing decision making 

creates a great challenge for conservationists (Schultz 2008).Decision makers faced 

with uncertainty and the lack of information have to decide whether to and how to act 

(Evans & Klinger 2008). Adaptive management strategies may allow flexibility in 

decision making, under uncertainty and unforeseen scenarios (Doak et al., 2008; Pahl-

Wostl, 2007). Allen et al. (2010) illustrated in their „learn by doing‟ figure of resource 

management‟s interaction between uncertainty and management objectives as a 

structured feedback process of adaptive management emphasising that by enhanced 

learning through management experiments reduction of uncertainty is a key focus.  

With the establishment of the intergovernmental science-policy platform on 

biodiversity and ecosystem services (IPBES) bringing together governments and 

organizations to act as a global mechanism of recognition of science-policy interface on 

biodiversity and ecosystem services (IPBES 2011). The aim of joining the scientific 

community and decision makers is to strengthen the use of science in decision making 
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(IPBES 2011). The IPBES‟s priorities include identifying scientific information needed 

for decision makers and identifying tools and methodologies relevant to decision 

makers (IPBES 2011). A unified framework and guidance for uncertainty would be 

greatly beneficial science-policy tool as uncertainty awareness across disciplines climbs 

the research agendas (Doyen 2003; Brugnach et al. 2007; Hill et al. 2007; Nicholson et 

al. 2009; Isendahl et al. 2010, IPBES 2011).  
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9.2 Model code 

 9.2.1 Main model 
####MSE ##### 
rm(list = ls()) #REMOVE other listed items 
Util<<-0; 
 
#The source () opens up the different parts of the code which are used 
within the main model. Ideally the other models need to be saved 
within the same directory and named within source(‘’). Allowing the 
main model to go globally between functions and also allow the main 
function to be used as an easier interface to explore the combined 
harvest household management strategy model. 
 
# Open up other model files saved 
source('variables.r') 
source('pop.r') 
source('manage.r') 
source('util.r') 
source('house.r') 
  
main<-function () 
{ 
#Set parameters 
OM<<-1;      #OM is the observation model representing the resource 
stock dynamics: 0=adaptive monitoring, 1=constant allocation to 
monitoring resource stock, 2=prior OM knowledge of resource stock 
decn<<-1;    # Managers choice: If OM is 0 or 2, 0=managers ignore 
harvestor/hunters decisions/behaviour in budget decisions, 1= managers 
include harvestor/hunters decisions/behaviours in budget decisions 
check<<-1;   # Model choice: REAL 0= harvestor/hunter decisions 
decisions/behaviour not included in model, 1 = harvestor/hunter 
decisions included in model 
HR<<-0;      # Managers set harvesting rate : 0=fixed harvest 
mortality (hm); 1= maximized yeild (maxH) ; 2= maximized Utility 
(maxU)  (both s.t. cons thresh) 
det1<<-0;      # Stochasticity: 0=stochastic 1=deterministic 
 
#Things to loop - choose which to comment out below: 
#Dependant on penalty if caught for illegal harvesting 
Pen<<-1;         #Penalty: if check=1 (that harvestor behaviour 
included in model) penalty if caught 0= no penalty,1= low penalty,5= 
high penalty 
PMalloc<<-0.5;  # Population monitoring allocation: if OM=1 (constant 
allocation to monitoring), allocation to population monitoring, 0= no 
monitoring, all budget antipoaching,0.5= half time spend monitoring, 
half on antipoaching,1= all budget allocation to monitoring 
sdN<<-40;       #Standard deviation of resource stock dynamics 
 
        Ploop<<-1; 
    for (PenL in 0:PenLoop)  #Loop through penalties loop from 0 to 20 
        { 
#highlight in and out to explore population monitoring or penalty or 
standard deviation  
          #PMalloc<-PenL/PenLoop;  #Population monitor allocation 
          Pen<<-PenL/PenLoop*PenMax; #Penalty if caught 0= no 
penalty,1=low penalty,5=high penalty 
          #sdN<-PenL/PenLoop*sdNmax; #Standard deviation of resource 
population 
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          print(cbind(Pen)) #Print Penalty/population 
monitoring/standard deviation loop 
 
           
          OMon<<-0; #Resource population monitoring: OMon= 0 is the 
True population size, OMon= 1 is the observed population size by 
managers 
          HRon<<-0;                 #Number of harvest individuals 
from the resource population: HRon= 0 is the True harvest rate, HRon= 
1 is the observed harvested population by managers 
          testhm<<-0; 
 
          hm<<-HCR();#Set hunting mortality rate 
 
          if (OM>0) #If OM is constant or prior, allocation of 
monitoring is set prior for the observation of the population 
          {propB<<-budget(OM,decn);} 
 
          loop<<-1 
          for (loop in 1:no_loops) #Loop 
          { 
 
           J[1]<<-Jstart;         #Set J true population start value 
           Y[1]<<-Ystart;         #Set Y true population start value 
           A[1]<<-Astart;         #Set A true population start value 
           Jobs[1]<<-Jstart;      #Set Jobs observed population start 
value 
           Yobs[1]<<-Ystart;      #Set Yobs observed population start 
value 
           Aobs[1]<<-Astart; #Set Aobs observed population start value 
           Umax<<-0; 
           OMon<<-0;   
 
              i<<-2 
              #Start the for loop through years at year 2 as first 
vector values if [1] 
             for (i in 2:finish)              #Year 2 to finish year 
             { 
                rule(hm) #Managers set Harvest Rule (HCR) either true 
(Hrule[i]) or observed (omHrule[y]) 
 
                 if  (OM==0)  #OM=0 adaptive management best guess of 
population size from previous year 
                  {propB<<-budget(OM,decn);}   #Manager allocates 
monitoring budget 
 
                  AA[i-1]<<-propB  #A is the proportion of budget 
allocated to monitoring 
 
                  hunt(check,testhm); #Locals perception and hunting 
                   
                  logistic();#Resource population updates 
 
                  observe(propB);  #Manager observation of population 
dependant on budget allocation 
                   
                  if (U[i-1] > Umax)          # If Optimal Utility of 
the household is more than the maximised Utility the Optimal utility 
becomes the maximum utility 



[59] 

 

                  {Umax<<-U[i-1];}            #store maximum Utility 
for this run 
               
                i<<-i+1 
                 
              } #end year=i 
 
              chk<<-0; 
              metric(chk);         #Metric works out means and co-
efficient of variation 
 
          loop<<-loop+1 
 
          } #end loop 
 
          chk<<-1; 
        metric(chk);    #Metric works out means, proportion and co-
efficient of variation 
        Ploop<<-Ploop+1; 
      } #end penalty bracket 
 
} #end main bracket 
 
main()  #RUN 
 
 

 9.2.2 Population model 

#Save as 'pop.r'############################# 
#Population model#### 
#Logistic function - Age structure model 
logistic<-function () 
{ 
    z_N<-0 
    if (OMon==0 || OM>0&& det1==0)  #If operating model is true 
population OM is constant monitoring or prior OM and stochastic 
            { z_N<-rnorm(1,0,1) } 
 
    Nstoch<<-z_N*sdN;  #Stochastic process error-random number from a 
normal distribution times by the standard deviation of the population 
size 
      N<<-A[i-1]+J[i-1]+Y[i-1]; 
 
    if (OMon==0)  #True population 
          { 
            if (N<K) 
            { 
            J_i<<-Nstoch + ((A[i-1]*(1-mort))*birthrate) + ((Y[i-
1]*(1-mort))*birthrate) 
            Y_i<<-Nstoch + J[i-1]*(1-Jmort) 
            A_i<<-Nstoch + A[i-1]*(1-mort)+Y[i-1]*(1-mort) 
            } 
                     
          if (N>K) 
          { 
            J_i<<-Nstoch + ((A[i-1]*(1-mort)/2)*birthrate) + ((Y[i-
1]*(1-mort)/2)*birthrate) 
            Y_i<<-Nstoch + J[i-1]*(1-Jmort) 
            A_i<<-Nstoch + A[i-1]*(1-mort)+Y[i-1]*(1-mort) 
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          } 
           
          if (N<=0) 
          { J_i<<-0; Y_i<<-0; A_i<<-0;} 
          } 
           
    if (OMon==1)  #Observed population 
          { J_i<<-Nstoch + (omA[y-1]*birthrate + omY[y-
1]*birthrate)*(1-mort) 
            Y_i<<-Nstoch + exp(rmax)*omJ[y-1]*K/(K+(exp(rmax)-
1)*omJ[y-1]) 
            A_i<<-Nstoch + exp(rmax)*omA[y-1]*K/(K+(exp(rmax)-
1)*omA[y-1]) + exp(rmax)*omY[y-1]*K/(K+(exp(rmax)-1)*omY[y-1]) 
          } 
 
         if (J_i <0){ J_i<<- 0} 
         if (Y_i <0){ Y_i<<- 0} 
         if (A_i <0){ A_i<<- 0}#correction term population can't be 
below 0 
 
    if (OMon==0)   #True population 
         { 
           if (N>0) 
           { 
            J_ii<<- J_i-H[i-1]*(J[i-1]/N)-H[i-1]*(A[i-1]/N)-H[i-
1]*(Y[i-1]/N);#(1-propJ) 
            Y_ii<<- Y_i-H[i-1]*(Y[i-1]/N);#*(1-propY) 
            A_ii<<- A_i-H[i-1]*(A[i-1]/N); 
            } 
            if(N<=0) 
            {J_ii<<-0; 
             Y_ii<<-0; 
             A_ii<<-0;} 
         }  #True population minius hunting/harvest from previous time 
step 
 
    if (OMon==1)  #Observed population 
         {  J_ii<<- J_i - JomH[y-1] 
            Y_ii<<- Y_i - YomH[y-1] 
            A_ii<<- A_i - AomH[y-1] 
            }  #Observed population minius hunting/harvest from 
previous time step 
 
    if (J_ii <0){ J_ii<-0} 
    if (Y_ii <0){ Y_ii<-0} 
    if (A_ii <0){ A_ii<-0}#correction term population can't be below 0 
 
    if (OMon==0) #True population 
         { J[i]<<-J_ii 
           Y[i]<<-Y_ii 
           A[i]<<-A_ii } 
 
 
    else if (OMon==1) #Observed population 
         {  omJ[y]<<-J_ii 
           omY[y]<<- Y_ii 
           omA[y]<<- A_ii } 
} 
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9.2.3 Harvest control model 

Saved within 'pop.r' 
##################################################### 
#Set harvest rule 
#setHR function  return offtake number of individuals harvested 
setHR<<-function(testhm)  #input harvest mortality 
{ 
    z_N<-0; 
    if (det1==0)           #stochastic 
    { z_N<-rnorm(1,0,1) } 
 
    Nstoch<<- z_N*sdN  #Stochastic process error-random number from a 
normal distribution times by the standard deviation of the population 
size 
 
    hrA[1]<<-Astart;   #Harvesting population start value 
    hrJ[1]<<-Jstart; 
    hrY[1]<<-Ystart 
 
    J_i<<-Nstoch +((A[i-1]*(1-mort))*birthrate) + ((Y[i-1]*(1-
mort))*birthrate)   #Juveniles 
     
    Y_i<<-Nstoch + J[i-1]*(1-Jmort)#  #young adults 
 
    A_i<<-Nstoch +  A[i-1]*(1-mort)+Y[i-1]*(1-mort)  # adults  
 
    if (A_i < 0){A_i <- 0}  #correction term 
    if (Y_i < 0){Y_i <- 0} 
    if (J_i < 0){J_i <- 0} 
 
    offtake<<-testhm*A_i;   #management offtake of harvesting 
population of Adults only 
 
    A_ii<<-A_i-offtake;     #Harvested population of adults 
 
    if (A_ii <0) {A_ii<-0}  #correction term 
 
    hrA[t1]<<-A_ii;          #Harvest rule managed population 
    hrJ[t1]<<-J_i; 
    hrY[t1]<<-Y_i; 
    ##print(cbind(setHR,t,A_i,A_ii,offtake)) 
    return (offtake) 
} 
############################################### 

 

9.2.4 Household model 

#Save within 'house.r'####################### 
####################################################### 
#Household model 
hunt<-function (check,testhm)  #input whether harvester decisions 
included and optimal harvest mortality 
{ 
  #set parameters 
  sdPerc<-10     #Variation in perceived N 
  Lloop<-50      #Labour optimization loop 
  betaF<-0.8     #0.8 return coefficient, farming 
  betaH<-0.8     #0.8 return coefficient, hunting 
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  land<-50       #Amount of land available 
  pG<-1          #Price of goods - keep at 1 
  pF<-1          #Price of farm products 
  pH<-2          #2 price of hunted products 
  cH<-0.2        #Cost of hunting 
  q1<-0.2        #Catchability coefficient 
  alphaG<-0.5    #Elasticity of G (or farmed) consumption - low = H 
pref 
  sell<-0;       #Sell farm produce (1) or consume it (0) 
  bvar<-1        #0=beta const, 1=beta dep on N 
  minbeta<-0.4   #Beta when N is high 
  maxbeta<-1.2   #Beta when N is low 
 
   z_P<-0; #Set to 0 
 
   if (OMon==0 || OM>0 && det1==0)     #If operating model is true 
population OM is constant monitoring or prior OM and stochastic 
   { z_P<-rnorm(1,0,1) }              #stochastic term 
 
   if (OMon==0 && HRon==0)            #True population and not 
harvested 
   {  Nperc<- A[i-1]+ Y[i-1]+ J[i-1]+ sdPerc*z_P   } #perceived 
population size 
 
   if (OMon==1 && HRon==0)            #Observed population and not 
harvested 
   {  Nperc<- omN[y-1] + sdPerc*z_P } #perceived population size 
 
   else if (HRon == 1)                #Harvested population 
   { Nperc<- hrA[t1]+hrJ[t1]+hrY[t1] + sdPerc*z_P  } #perceived 
population size 
 
   if (HRon == 1)  #If harvest population 
   {  hrH<- testhm * hrA[t1]+hrJ[t1]+hrY[t1];   }#number of harvest 
individuals 
 
  # 
   if (check==0)  #Harvesting/hunter behaviour/decision not included- 
just follow the HCR 
   { 
      if (OMon==0 && HRon==0)       #True population and not harvested 
        { H[i-1]<<- Hrule[i-1] }    # harvest rule population equals 
harvested population 
 
      else if (OMon==1 && HRon==0)  #If operating model is observed 
population and not harvest? 
        { omH[y-1]<<- omHrule[y-1]}  # observed rule population equals 
observed harvested population 
    } 
 
   else if (check==1) #Harvesting/hunter behaviour/decision included 
   { 
    L<<-1; 
    for (L in 1:Lloop)          #For labour optimization loop 
        { 
          Lhunt<-L/Lloop;       #Allocation of labour to hunting 
          Lfarm<-1-Lhunt;       #Allocation of labour to farming 
        if (bvar==0)         #If bvar==0 means beta constant 
             { betaHN<-betaH}   #Hunting return co-efficient 
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          if (bvar==1) #If bvar==1 means beta is dependent on 
population N 
             { betaHN <- maxbeta - Nperc/K*(maxbeta-minbeta)} #Hunting 
return co-efficient dependant on maxbeta - perceive population/ 
carrying capacity* maxbeta-minbeta 
 
            Qf<-land*(Lfarm^betaF); #Farming production- area*farm 
labour* farm return coefficient 
            Qh<-q1*Nperc*(Lhunt^betaHN); #Hunting production - 
catchability*hunt labour* hunting return coefficient 
 
            if (OMon==0 && HRon==0) #True population and not harvested 
                {  illegal<-Qh-Hrule[i-1];}   #Hunting production - 
harvested individuals equals the amount of illegal hunting 
 
             if (OMon==1 && HRon==0) #Observed population and not 
harvested 
                { illegal<-Qh-omHrule[y-1];}  #Hunting production - 
harvested individuals equals the amount of illegal hunting 
 
              if (HRon==1)    #Harvested population 
                { illegal<-Qh-hrH;} #Hunting production minus number 
of harvested individuals equals illegal 
 
 
              if (illegal > 0)    #if illegal more than 0  
d=detectability of harvesters 
                { d<-1 }       #illegal harvester caught 
 
              if (illegal < 0)  #if illegal less than 0 
                {d<-0}         #illegal harvester escape 
 
              if (sell==1)      #if sell=1 sell farm product 
                    { goods<-(Qh*pH - cH*Lhunt + pF*Qf - d*(1-
theta)*Pen*illegal)/pG; } 
              #Goods equals the hunting production* price of hunting 
products -cost of hunting + price of farm products* farming production 
-detectabiltiy*proportion illegal hunters caught*Penalty* amount 
illegally harvested/ the price of goods 
 
              if (sell==0)      #if sell=1  don't sell farm product 
                     {goods<-(Qh*pH - cH*Lhunt - d*(1-
theta)*Pen*illegal)/pG;} 
              #Goods equals the hunting production* price of hunting 
products -cost of hunting -detectablity*proportion illegal hunters 
caught*Penalty* amount illegally harvested/ the price of goods 
 
              if (goods > 1)   #if goods>1 
                   { 
                   if (sell==1) #Sell everything 
                       { Util<- alphaG*log(goods); }  #Utility equals 
the elasticity of goods* log of goods 
 
                   if (sell==0 && Qf>1) #Eat farmed product if sell= 0 
and farm production is more than 1 
                       { Util<- alphaG*log(goods) + (1-
alphaG)*log(Qf);} #Utility equals the elasticity of goods* log of 
goods plus elasticity of farmed* log of farming production 
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                   } 
 
 
                  #If Utility is more than or equal to Optimal Utility 
                  if (Util >= OptUtil) 
                      {lastOpt<-OptUtil; #Last optimal= Optimal 
utility 
                       OptUtil<-Util;   #Optimal utility = current 
utility 
                       OptQh<-Qh;       #Optimal hunting production = 
hunting production 
                       OptL<-Lhunt; }    #Optimal labour = Allocation 
of labour to hunting 
 
                  else 
                    {L<-Lloop;} #labour optimization finished 
 
           L<<-L+1 
          # print(cbind(illegal,d,goods,Util,sell,lastOpt,OptUtil,Qh)) 
          #print(cbind(L,Qh,goods,Util,OptUtil,OptL) 
          } #Lloop 
 
             if (OMon==0 && HRon==0) #True population and not 
harvested 
                   { 
                   if(OptQh>0)  
                   {H[i-1]<<-OptQh;}  # Hunt/harvest population number 
= optimal hunting production 
                   else{H[i-1]<<-0;} 
                   if(OptUtil>0) 
                   {U[i-1]<<-OptUtil;} # Utility= optimal utility 
                   else{U[i-1]<<-0;} 
                   if(OptL>0) 
                   {Lh[i-1]<<-OptL; }# Hunting labour = optimal labour  
                   else{Lh[i-1]<<-0;} 
                   }     
                     
 
 
                 else if (OMon==1 && HRon==0)  

 #Observed population and not harvested 
                    { 
              omH[y-1] <<- OptQh;# Observed hunt/harvest population 
number = optimal hunting production 
              omU[y-1] <<- OptUtil;#Observed utility = optimal utility 
              omLh[y-1] <<- OptL;  
                    }    # Observed hunting labour = optimal labour 
 
 
                else if (HRon==1)           #Harvest population 
            { HRutil <<- OptUtil;}#Harvest Utility = optimal utility 
 
 
     #print 
     #if (OMon==0) 
     #    {print(cbind(Hrule,OptQh,OptUtil,OptL)); } 
     #if (OMon==1) 
     #    {print(cbind(omHrule,OptQh,OptUtil,Optl));} 
     # if (HRon==1) 



[65] 

 

     # {   {print(cbind(testhm,OptQh,OptUtil,OptL));} 
 
     } #end hunter decisions 
} 
 
 

9.2.5 Management model 

#Save as 'manage.r'################################## 
##Management sub model ################################ 
#HCR Function   setting the harvest rate HR =0 FIXED ,1 MAXMISE 
HAREVEST/ YIELD ,2= MAXIMISE UTILITY 
HCR<-function() 
 { 
     hmL<- 20;         #Harvest mortality loop ends 
     hmMax<- 0.2;      #Maximum harvest mortality 
     probT<-0.1;       #probability threshold: that the harvest is 
less than population threshold* the carrying capacity 
 
#////////////////////////fixed harvest mortality (hm) 
    if (HR==0) 
     { mort<<-Fixedhm } 
 
#/////////maximize Harvest/yield subject to constant threshold 
    if (HR==1) 
    { 
    for (hmloop in hmloop:hmL) 
      { testhm<-hmloop/hmL*hmMax; #testhm increases 
        hrN[1]<-Nstart;   #hrN- Harvesting population starting value 
        meanBio<-0;               #set mean biomass to 0 
        meanT<-0;                 #set mean threshold to 0 
 
      for (t1 in 1:HRlength) #HRlength is the number of years manager 
looks forward 
      { 
        biomass<-setHR(testhm); #biomass is the offtake of harvest 
taken from the hrN harvesting population 
          if(t1>start1)            #if t is more than start 
            { 
              if(hrN[t1]<Nthresh*K) # if the harvest population size 
is more than the population threshold*the carrying capacity 
                { 
                 meanT<-meanT+1; #mean threshold plus 1 
                 ##print(meanBio) 
                 meanBio<-meanBio+biomass; #mean biomass plus offtake 
                 } 
            } 
      } 
 
      meanBio<-meanBio/(HRlength-start1); #mean biomass is the mean 
biomass divided by the number of years the managers look forward minus 
by the start value 
      meanT<-meanT/(HRlength-start1); #mean threshold is the mean 
threshold divided by the number of years the managers look forward 
minus by the start value 
 
      if (meanT<probT && meanBio>maxBio) #If the mean threshold is 
less than the probability threshold and the mean biomass is more than 
the maximum biomass 
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      { 
      opthm<<-testhm; # The test harvest mortality rate equals the 
optimal harvest mortality rate 
      maxBio<<-meanBio; # The mean Biomass equals the maximum biomass 
      } 
 
      #print(meanT) 
      #print(cbind(meanBio,meanT,maxBio,opthm)); 
 
      } 
      mort<<-opthm;  #optimal harvest mortality equals mortality 
      } 
 
#/////////////////////////////////maximize Utility (maxU) 
  if (HR==2) 
  { 
  maxUtil<-0;   #set maximum utility to 0 
  opthm<-0;     #set optimal harvest mortality to 0 
  HRon<<- 1;     #check the Number of harvest individuals from the 
resource population HRon= 1 is the observed harvested population 
  HRutil<-0;    #set Harvest rate utility to 0 
 
  HRchk<<-1;     # include hunters make decisions 
 
 for (hmloop in hmloop:hmL) 
      { 
      testhm<-hmloop/hmL*hmMax;  #testhm increases 
      hrA[1]<-Astart;            #Harvesting population starting value 
      hrY[1]<-Ystart 
      hrJ[1]<-Jstart 
      HRutil<-0;                 #Harvest rate Utility set to 0 
      meanUtil<-0;               #set mean utility to 0 
      meanT<-0;                  #set mean threshold to 0 
 
    for (t1 in 1:HRlength) #HRlength is the number of years manager 
looks forward 
     { 
      biomass<-setHR(testhm);    #biomass is the off take of harvest 
taken from the hrN harvesting population 
      hunt(HRchk,testhm);   #include harvester decisions for HRon == 1 
check =1 for optimal utility (HRutility) 
      if (t1>start1)              #if t is more than start 
        {   
        hrN[T1<<-hrA[t1]+hrJ[t1]+hrY[t1] 
          if (hrN[t1]>Nthresh*K)  #if the harvest population at time t 
is more than the population threshold times the carrying capacity 
          { 
            meanT<-meanT+1 # mean threshold equals mean threshold add 
one 
            meanUtil<-meanUtil+HRutil; # mean utility equals mean 
utility plus harvest rate utility 
          } 
        } 
     } 
 
   meanUtil<-meanUtil/(HRlength-start1); #mean utility is the mean 
utility divided by the number of years the managers look forward minus 
by the start value 
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   meanT<-meanT/(HRlength-start1); #mean threshold is the mean 
threshold divided by the number of years the managers look forward 
minus by the start value 
 
   if (meanT < probT && meanUtil>maxUtil)   #if the mean threshold is 
less the the probability threshold and the mean utility is more than 
the maximum utility 
   {  opthm<<-testhm; # the test harvest mortality is the optimal 
harvest mortality 
      maxUtil<<-meanUtil;  }# the mean utility is the maximum utility 
 
      } #end hm loop 
 
      #print(meanT) 
      #print(cbind(meanUtil,meanT,maxUtil,opthm)); 
 
  mort<<-opthm;  #optimal harvest mortality equals mortality 
 
  HRon<<-0;      #reset 
 
  } #end HR2 
 
 return(mort) 
} 
 
 
# Rule Function 
rule<-function(hm) 
 { 
  if (OMon==0)  #if Monitoring is true population size 
  { Hrule[i-1]<<-(Aobs[i-1]+Yobs[i-1]+Jobs[i-1])*hm; 
    if(Hrule[i-1]<=0){Hrule[i-1]<<-0} 
  }        #The previous population size Nobs times the harvest 
mortality equals the harvested population at the current time step 
 
  if (OMon==1)     #if Monitoring is observed population size 
   {  omHrule[y-1]<<-(omAobs[y-1]+omYobs[y-1]+omJobs[y-1])*hm; 
      if(omHrule[y-1]<=0){omHrule[y-1]<<-0;}}    #The previous 
population size omNobs times the monitored harvest mortality equals 
the harvest monitored/observed population at the current time step 
 
 } 
 

9.2.6 Monitoring model 

#Saved in 'manage.r' 
#Budget function 
 budget<-function(OM,decn) #input type of monitoring and whether to 
include harvester behaviour 
 { 
 #/////////////////////////////////////////////////// 
  if (OM == 0 || OM == 2)    #if monitoring model monitoring is 
adaptive monitoring=0 and prior monitoring=2 
    { 
    OMon<-1; # monitoring model used for observed monitoring of the 
population 
    alloc<<-0;   #all funding allocated to antipoaching 
 
    B<<-1; 
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    for (B in 1:Bloop)  #Budget allocated to population monitoring 
        { 
        pB<<-1-B/Bloop;  #pB increases, pB allocation to monitoring 
        detn<-(1 - pB)*TotBudget;    #money to patrols 
        theta<<-(1 - Detect)^detn; #theta = proportion escaping from 
detection 
 
        if (OM==2 || i==2) #Prior monitoring model on dynamics of 
resource stock 
        { 
        omA[1]<<-Astart; 
        omAobs[1]<<-Nstart; 
        omY[1]<<-Ystart;                
        omYobs[1]<<-Ystart; 
        omJ[1]<<-Jstart;                
        omJobs[1]<<-Jstart; 
        }             
 
 
        if (OM==0 && i>2)               #Adaptive monitoring 
        {omA[1]<<-A[i-1];#monitored Observed population initial value 
is the previous time step population 
        omAobs[1]<<-Aobs[i-1];#true Observed population initial is the 
previous time step population 
        omY[1]<<Y[i-1];                
        omYobs[1]<<-Yobs[i-1]; 
        omJ[1]<<-J[i-1];                
        omJobs[1]<<-Jobs[i-1]; 
        }          
        omUmax<<-0;     #observed population maximum utility =0 
        omHav<<-0;      #observed harvest population =0 
 
        y<<-2; 
        for (y in 2:OMlength) # monitoring model number of years 
manager looks forward 
        { 
        rule(hm);              # gives harvest population number 
        hunt(decn,testhm);     # gives optimal utility 
        logistic();            # gives population update 
        observe(pB);           # gives observed population 
 
            if (omU[y-1] > omUmax)  # If the observed monitored 
Utility in this time step is more than the observed monitored maximum 
utility 
            { omUmax<<-omU[y-1]; }  #current utility equals maximum 
utility 
        y<<-y+1 
        #print(cbind(y,pB,omA,omY,omJ,omH,omU,omUmax)) 
        } 
 
        chk<<-2;           #gets the correct metrics/matrices 
        metric(chk);                  #get observed harvest 
        Hexcess[B]<<-omHav; 
 
        if (Hexcess[B] >= Hthresh)    #If the observed harvest is less 
or equal to the harvest threshold 
           { 
           alloc<<-pB;  #proportion of budget equals allocation 
           B<<-Bloop;   #optimize allocation found 
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           } 
        #B<<-B+1 
        } # end B 
 
     OMon<<-0;#end of monitoring model 
    } 
 
#/////////////////////////////////////////// 
    if (OM==1)       # monitoring model monitoring is constant 
threshold 
    { 
    alloc<<-PMalloc;  #Constant allocation for monitoring 
    } 
#////////////////////////////////////////// 
    detn<-(1 - alloc)*TotBudget; #Money to patrols to detect 
population 
    theta<<-(1 - Detect)^detn; #Proportion escaping from detection 
 
    #if (OM>0) 
    #{print(cbind(alloc))} 
 
 return (alloc);  # return the allocation to monitoring 
 
} #Budget 
 
 

9.2.7 Observation model 
#Saved in 'manage.r' 
#### 
#Observation function 
 observe<-function(alloc)  #input allocation to monitoring 
 { 
 a<-0.5    #parameters of detection f 
 b<-0.018  #parameters of detection f 
 
 Budget<-alloc*TotBudget;  #budget depends on allocation on monitoring 
times  total budget 
 
 z_N<-0;                        #set to 0 
 if (OMon==0 || OM>0 && det1==0)  #If operating model is true 
population OM is constant monitoring or prior OM and stochastic 
 { z_N<-rnorm(1,0,1) }          #stochastic term 
 
 if (OMon==0)           #True population 
 { JPop<-J[i];        #Current J is the population size 
   YPop<-Y[i];        #Current Y is the population size 
   APop<-A[i];  }      #Current A is the population size 
 
 
 else if (OMon==1)      #Observed population 
 {  JPop<-omJ[y];       #Current J is the population size 
    YPop<-omY[y];       #Current Y is the population size 
    APop<-omA[y]; }     #Observed A is the population size 
 
 CV<-1-(exp(a + b*Budget)/(1+exp(a + b*Budget))); 
 sdJ<-CV*JPop; 
 sdY<-CV*YPop; 
 sdA<-CV*APop; 
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 if (OMon==0)  #True population                
 {Jobs[i]<<-JPop+sdJ*z_N; 
  Yobs[i]<<-YPop+sdY*z_N; 
  Aobs[i]<<-APop+sdA*z_N; 
   # Correction term a population can't be less than 0} 
  if (Jobs[i]<=0)   { Jobs[i]<<-0; } 
  if (Yobs[i]<=0)   { Yobs[i]<<-0; } 
  if (Aobs[i]<=0)   { Aobs[i]<<-0; }} 
 
 if (OMon==1)                 #Observed population 
 {omJobs[y]<<-JPop+sdJ*z_N; 
  omYobs[y]<<-YPop+sdY*z_N; 
  omAobs[y]<<-APop+sdA*z_N; 
 if (omJobs[y]<=0) { omJobs[y]<<-0;} 
 if (omYobs[y]<=0) { omYobs[y]<<-0;} 
 if (omAobs[y]<=0) { omAobs[y]<<-0;}}  
} #end observe 
 

9.2.8 Variables 

#Save as 'variables.r'############################### 
#MSE variables 
  finish<<-50    #where years finish 
  start1<<-1     #where stats start being calculated from 
  no_loops<<-100 #Number of loops - e.g 20 
  OMlength<<-10  #Monitoring number years managers looks forward 
  HRlength<<-50 #Harvesting rule length number of years manager looks 
forward 
  HRstart<<-20   #where harvesting rule is calculated from 
  Bloop<<-20     #Monitoring budget loop increments 
  PenL<<-0;       #where penalty loop start 
  PenLoop<<-20;    #20 number of loops for exploration 
  PenMax<<-5      #Maximum penalty 
  sdNmax<<-200    #Maximum Standard deviation of population N 
 
  mort<<-0.1;     #Mortality 
  Jmort<<-0.5; #Juvenile mortality 
  birthrate<<-0.1 #population birth rate per adult 
  Astart<<-166    #Population starting value 
  Ystart<<-166    #Population starting value 
  Jstart<<-166    #Population starting value 
  TotBudget<<-100 #Total budget 
  Detect<<-0.03   #Hunter/harvester delectability 
  K<<-500         #Carrying capacity 
  rmax<<-0.2      #Intrinsic rate of increase 
  Nthresh<<-0.3   #Proportion of Carrying capacity above threshold 
  Uthresh<<-0.5   #Proportion of maximum Utility above threshold 
  Hthresh<<-0.1   #Illegal hunting as proportion of legal 
  Fixedhm<<-0.07  #0.07 fixed hm throughout 
 
  OptUtil<<-0; 
 
 #Create empty vectors for numerical storage 
  J<<-c()# True population size   (found in pop model) 
  Y<<-c() 
  A<<-c() 
  H<<-c() # Actual hunting  (found in pop model) optimal hunting 
(found in the household model) 
  U<<-c() # optimal utility   (found in the household model) 
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  AA<<-c()# proportion of budget allocated to monitoring (found in 
MSE) 
  Jobs<<-c() 
  Yobs<<-c() 
  Aobs<<-c() 
  Lh<<-c()  # optimal labour            (found in the household model) 
  Hrule<<-c() 
  omJ<<-c() 
  omY<<-c() 
  omA<<-c()  # Observed monitoring population   (found in pop model) 
  omH<<-c() # optimal hunting         (found in the household model) 
  omU<<-c() # optimal utility         (found in the household model) 
  omLh<<-c() # optimal labour         (found in the household model) 
  omYobs<<-c() 
  omJobs<<-c() 
  omAobs<<-c()   # observed population     (found in management model) 
  AomHrule<<-c()#harvest rule set 
  YomHrule<<-c() 
  JomHrule<<-c() 
  hrY<<-c()# Harvested population 
  hrJ<<-c()# Harvested population 
  hrA<<-c()# Harvested population    
  Hexcess<<-c()#Observed harvest population  
#########################################METRIC N 
  Nav<<-c()  Hav<<-c()  Uav<<-c()  Ncv<<-c()  Hcv<<-c()  Ucv <<-c() 
  Nt<<-c()  Ut<<-c()  Lav<<-c()  Lcv <<-c()  Aav<<-c()  Acv <<-c() 
  Lhav<<-c()  Lhcv <<-c()  Np<<-c()  Hp<<-c()  Up<<-c()  Ncvp<<-c() 
  Hcvp<<-c()  Ucvp <<-c()  Ntp<<-c()  Utp<<-c()  Lp<<-c()  Lcvp <<-c() 
  Ap<<-c()  Acvp <<-c()  Lhp<<-c()  Lhcvp <<-c() 
 

9.2.9 Metric model 

#Save as 'util.r'############################################# 
#Utilities  model 
#Metric function 
metric<-function(chk)  #input chk 0,1,2 
{ 
if (chk==0 || chk==1) 
{ Uthr<-Uthresh*Umax;  #Utility threshold 
  Nthr<-Nthresh*K;  }   #Population threshold 
 
#Mean 
if (chk==0) 
{ 
Nmean<<-mean(A+J+Y)            #True Population mean 
Hmean<<-mean(H)             #Actual Harvest mean 
Umean<<-mean(U)             #Utility mean 
Amean<<-mean(AA)             #Mean proportion of budget allocated to 
monitoring 
Lhmean<<-mean(Lh)           #Hunting labour mean 
Hlegalmean<<-mean(Hrule)    #Harvest legal mean 
Nprop<<-length((A+J+Y)>Nthr);      #Proportion population above the 
population threshold 
Uprop<<-length(U>Uthr);      #Proportion utility above the utility 
threshold 
} 
 
if (chk==1) 
{ 
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Nmean1<<-mean(Nav)              #True Population mean 
Hmean1<<-mean(Hav)              #Actual Harvest mean 
Umean1<<-mean(Uav)              #Utility mean 
Amean1<<-mean(Aav)              #Mean proportion of budget allocated 
to monitoring 
Lhmean1<<-mean(Lhav)            #Hunting labour mean 
Hlegalmean1<<-mean(Lav)         #Legal harvest mean 
Nprop1<<-mean(Nt) 
Uprop1<<-mean(Ut) 
} 
 
if (chk==2) 
{ 
Hmean2<<-mean(omH);           #Observed harvest mean 
Hlegalmean2<<-mean(omHrule);  #Observed legal harvest mean 
} 
 
#///////////////////////////// 
#Co-efficient of Variation 
C_V <- function(x) {100*sqrt(var(x))/mean(x)} 
if (chk==0) 
{ 
  if (Nmean > 0)   {N_cv <<- C_V(A+J+Y);}          #Population co-
efficient of variation 
  if (Hmean > 0)   {H_cv <<- C_V(H);}          #Actual harvest co-
efficient of variation 
  if (Umean > 0)   {U_cv <<- C_V(U);}          #Utility co-efficient 
of variation 
  if (Amean > 0)   {A_cv <<- C_V(AA);}          #co-efficient of 
variation Proportion of budget allocated to monitoring 
  if (Lhmean > 0)  {Lh_cv <<- C_V(Lh);}        #Hunting labour co-
efficient of variation 
  if (Hlegalmean > 0) {L_cv <<- C_V(Hrule);}   #Legal harvest mean co-
efficient of variation 
} 
if (chk==1) 
{ 
  if (Nmean1 > 0)   {N_cv1 <<- C_V(Nav);}          #Population co-
efficient of variation 
  if (Hmean1 > 0)   {H_cv1 <<- C_V(Hav);}          #Actual harvest co-
efficient of variation 
  if (Umean1 > 0)   {U_cv1 <<- C_V(Uav);}          #Utility co-
efficient of variation 
  if (Amean1 > 0)   {A_cv1 <<- C_V(Aav);}          #co-efficient of 
variation Proportion of budget allocated to monitoring 
  if (Lhmean1 > 0)  {Lh_cv1 <<- C_V(Lhav);}        #Hunting labour co-
efficient of variation 
  if (Hlegalmean1 > 0) {L_cv1 <<- C_V(Lav);}        #Legal harvest 
mean co-efficient of variation 
} 
if (chk==2) 
{ 
  if (Hmean2 > 0) {omH_cv <<-C_V(omH);}      #Observed harvest co-
efficient of variation 
  if (Hlegalmean2 > 0) {omL_cv <<-C_V(omHrule);}   #Observed legal 
harvest co-efficient of variation 
} 
 
if (chk==0) #Results of the mean and co-efficient of variation 
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 { 
 Nav[loop]<<-Nmean 
 Hav[loop]<<-Hmean 
 Uav[loop]<<-Umean 
 Lhav[loop]<<-Lhmean 
 Lav[loop]<<-Hlegalmean 
 Aav[loop]<<-Amean 
 Ncv[loop]<<-N_cv 
 Hcv[loop]<<-H_cv 
 Ucv[loop]<<-U_cv 
 Lcv[loop]<<-L_cv 
 Acv[loop]<<-A_cv 
 Lhcv[loop]<<-Lh_cv 
 Nt[loop]<<-Nprop 
 Ut[loop]<<-Uprop 
 } 
  if (chk==2 && Hlegalmean2>0) 
  {omHav<<-(Hmean2-Hlegalmean2)/Hlegalmean2;} 
  if (chk==2 && Hlegalmean2<0) 
  { omHav<<-Hmean2;} 
 
if(chk==1) 
{ 
 Np[Ploop]<<-Nmean1 
 Hp[Ploop]<<-Hmean1 
 Up[Ploop]<<-Umean1 
 Lhp[Ploop]<<-Lhmean1 
 Lp[Ploop]<<-Hlegalmean1 
 Ap[Ploop]<<-Amean1 
 Ncvp[Ploop]<<-N_cv1 
 Hcvp[Ploop]<<-H_cv1 
 Ucvp[Ploop]<<-U_cv1 
 Lcvp[Ploop]<<-L_cv1 
 Acvp[Ploop]<<-A_cv1 
 Lhcvp[Ploop]<<-Lh_cv1 
 Ntp[Ploop]<<-Nprop1 
 Utp[Ploop]<<-Uprop1 
 } 
 
 }  #end metric(chk) 

 


