
1 

 

Imperial College London 

Department of Life Sciences 

 

 

Effective design and use of indicators for marine 

conservation 

 

 

 

Michael John Burgass 

 

A thesis submitted for the degree of Doctor of Philosophy 

Imperial College London 

April 2019



2 

 

Declaration of Originality 

This thesis is a result of my own work.  The work and contributions of others have been 

specifically indicated in the text. 

 

Copyright Declaration 

The copyright of this thesis rests with the author and is made available under a Creative 

Commons Attribution Non-Commercial No Derivatives licence. Researchers are free to copy, 

distribute or transmit the thesis on the condition that they attribute it, that they do not use it for 

commercial purposes and that they do not alter, transform or build upon it. For any reuse or 

redistribution, researchers must make clear to others the licence terms of this work. 



3 

 

Abstract 

The design, selection and use of indicators for large-scale conservation policy has been of 

great interest since the Convention on Biological Diversity (CBD) committed to a significant 

reduction in the rate of biodiversity loss by 2010. Following the introduction of the 2020 Aichi 

Targets, there was an increase, not only in demand for numbers of indicators, but the 

requirements that they are expected to meet. The complexities of social-ecological systems 

and the inevitable trade-offs that exist within them mean understanding and validating indicator 

responses are critical if they are to play a role in active management.  

In this thesis, I look critically at uncertainties around how indicators are constructed and used, 

through the lens of marine science and conservation. I start the thesis by exploring the different 

types of uncertainty found when using composite indicators and from reviewing the literature, 

suggest possible methods of dealing with them. I find that structural uncertainties of indicators 

are rarely acknowledged. As a case study of application of composite indicators, I developed 

an Ocean Health Index assessment for the Arctic Ocean, demonstrating how a structured 

framework can be of great use for taking a data-driven approach to assessing social-ecological 

systems in large, data-poor regions. I show the Arctic is sustainably delivering a range of 

benefits to people, but with room for improvement in all areas, particularly tourism, fisheries, 

and protected places. Successful management of biological resources and short-term positive 

impacts on biodiversity in response to climate change underlie these high goal scores.  

I then explore how two biodiversity indicators (Living Planet Index and Norway Nature Index) 

can be better interpreted and validated using an end-to-end ecosystem model, Atlantis, in the 

Nordic and Barents Seas. By simulating different fishing scenarios, I evaluated the extent to 

which the model-based testing approach gave insights into indicator behaviour; while the LPI 

is able to distinguish clearly between three different fishing scenarios, the NNI is only able to 

distinguish the most heavily fished scenario from the other two. I discuss how this approach 
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is useful for indicator testing and to advance integration of large-scale biodiversity indicators 

with goal-setting and decision making at the system scale. I then use the model to explore 

how different indicators of biodiversity from across fisheries and conservation respond to 

management interventions in Norway in the face of climate change. I find that despite having 

the same intentions, fisheries and conservation biodiversity indicators respond differently to 

each other under the same scenarios, due to how they are constructed. This means that 

without proper validation, indicators can potentially give different pictures of the same system 

to different interest groups, meaning greater integration and understanding of conservation 

and fisheries management objectives is necessary. 

Finally, I reflect on the findings of my thesis in light of the CBD Post-2020 Framework. I discuss 

several core areas where the process could be revised to improve biodiversity outcomes. This 

includes formulating a robust theory of change to give the framework a clear conceptual basis 

and explicitly articulate the causal assumptions about the relationship between actions and 

outcomes. I do not focus on what targets should look like, but instead seek proactive, 

solutions-oriented approaches that can help ‘bend the curve’ for biodiversity.   

This thesis highlights the uncertainties and challenges associated with large-scale indicator 

design and use and demonstrates how countries can take steps to reduce these. Greater 

consideration of the systems within which indicators are based can lead to better validation 

and ultimately better decision making. 
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1 INTRODUCTION 

1.1 Background 

 

Oceans cover 71% of the earth’s surface and are home to up to 2.2 million species (Mora et 

al. 2017). The oceans regulate global climate, mediating temperature, driving weather 

systems and determining rainfall, droughts, and floods. Oceans also directly and indirectly 

contribute to the wellbeing of society: Most of the world’s megacities are located in coastal 

zones and coastal communities often have deep-rooted interconnections with the ocean 

culturally, socially and physically (von Glasow et al. 2013). Around 3 billion people source 

nearly 20% of their mean daily animal protein intake from the oceans, providing nutritional and 

health benefits, which are crucial for poverty and hunger reduction (Bailey et al. 2016). 

However, the interaction between people and the environment has meant that global 

biodiversity is threatened by a range of pressures including over-exploitation of species, 

habitat modification, invasive alien species and disease, pollution, and climate change 

(Maxwell et al. 2016). In marine systems, such pressures stem from a range of activities such 

as fishing, coastal development, shipping and energy production (Halpern et al. 2015a), which 

has left only 13% of global ocean as ‘wilderness’ (Jones et al. 2018a). Managing marine 

systems is therefore a complex endeavour, which ideally would result in ‘triple bottom line’ 

outcomes, where conservation goals and social outcomes are maximised and overall costs 

are minimised (Halpern et al. 2013a).   

1.1.1 Integrated Marine Management 

An integrated management approach, considering environmental, social and economic 

outcomes, changes the paradigm of traditional marine management, where individual 

pressures are managed separately, to managing activities in combination through a holistic 

ecosystem-based management approach (Borja et al. 2016). However, doing so is not 

straightforward as each sector tends to have its own organisational bodies, systems, 



12 

 

frameworks and priorities which are a barrier towards true integration (Elliott 2014). 

Nevertheless, a range of different systems and tools have been developed for managing 

marine systems in an attempt to balance economic and social development with 

environmental protection.  

In reality this means that fisheries management should consider conflicting objectives in 

decision-making, but instead typically tends to focus on minimising impacts to aspects such 

as threatened species and habitats, through by-catch or gear usage (Milner-Gulland et al. 

2018). The ecosystem approach to fisheries management or ecosystem-based fisheries 

management (EBFM) is a term that was formally accepted at the Earth Summit in Rio de 

Janeiro in 1992. The United Nations Food and Agriculture Organisation (FAO) states that “An 

ecosystem approach to fisheries strives to balance diverse societal objectives, by taking into 

account the knowledge and uncertainties about biotic, abiotic and human components of 

ecosystems and their interactions, and applying an integrated approach to fisheries within 

ecologically meaningful boundaries” (FAO 2003). Fish stock productivity, and thereby 

sensitivity to harvesting, depends on physical (e.g. ocean climate) and biological (e.g. prey 

availability, competition and predation) processes in the ecosystem (Serpetti et al. 2017). 

While traditional fisheries management focuses on harvest rates and stock biomass, 

incorporating the impacts of such ecosystem processes on fish stocks is one of the main pillars 

of EBFM. However, despite much attention in the literature, EBFM is yet to be widely 

implemented (Skern-Mauritzen et al. 2016). Nonetheless, advances in decision-making theory 

and practice through processes such as Management Strategy Evaluation (MSE) have been 

shown to enable fisheries managers to  balance conflicting priorities in marine successfully 

systems (Fulton et al. 2014). 

Marine Spatial Planning (MSP) has also proved a popular as a spatial tool for controlling 

marine development. MSP is a process of analysing and allocating the spatial and temporal 

distribution of human activities in marine areas to achieve ecological, economic, and social 
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objectives that usually have been specified through a political process (Agardy et al. 2011). It 

is now used in many countries across the world and has developed a strong community of 

practice and guidance through the International Oceanographic Commission of UNESCO 

(IOC-UNESCO) to assist with new implementation. MSP and EBFM tend to operate 

separately, despite both having intentions of being truly integrative, although it is possible to 

implement MSP with minimal loss to fisheries yield (Klein et al. 2010).  

1.1.2 International agreements 

These marine management approaches operate within a complicated legislative framework, 

which covers multiple sectors at multiple scales from local to global. Marine systems by their 

nature are dynamic and cross-boundary and as such international agreements are necessary 

for ensuring coordinated management (Molenaar 2015). In 2015, the United Nations (UN) 

agreed on 169 targets to mobilize action towards sustainable development.  The Sustainable 

Development Goals (SDGs) are 17 broad goals covering a broad range of areas from poverty 

reduction, to clean energy and economic growth. Among those goals, Goal 14: Life Below 

Water aims to “conserve and sustainably use the oceans, seas and marine resources for 

sustainable development”. The targets underpinning this goal range from marine pollution, to 

fisheries management and knowledge transfer. SDG 14, along with SDG 15 (Life on Land) 

are the two SDGs which enshrine ecosystem and biodiversity protection within them. These 

were important goals for the conservation sector as biodiversity has been decreasing at such 

a rate that in 2002, through the Convention on Biological Diversity (CBD), 196 countries 

committed to “to achieve by 2010 a significant reduction of the current rate of biodiversity loss.” 

In 2011, the ambition of the CBD was strengthened, as the Aichi Targets were implemented, 

and many of these were integrated into the SDGs with the overall aim of SDG 14 to halt 

biodiversity loss by 2030 (United Nations 2015). Aichi Target 6 specifically aims to sustainably 

manage marine resources using ecosystem based approaches.   
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Both the SDGs and the Aichi Targets explicitly allow countries to determine their own 

conservation strategies, considering the very different contexts between countries (Singh et 

al. 2018). The SDGs coordinate this around the High-Level Political Forum (HLPF). The HLPF 

is a voluntary and state-led body, which provides a platform for partnerships, including through 

the participation of major groups and other relevant stakeholders. It has the responsibility for 

tracking SDG implementation and achievement through Voluntary National Reviews (VNRs). 

The 2030 Agenda encourages member states to “conduct regular and inclusive reviews of 

progress at the national and sub-national levels, which are country-led and country-driven”. 

These VNRs serve as a basis for the regular reviews by the HLPF of progress for each SDG 

(Committee for Development Policy 2018). Similarly, the CBD requires members both to 

produce a plan for achieving the Aichi Targets through National Biodiversity Strategy Action 

Plans (NBSAPs), but then also to report on progress towards success through the National 

Reports (Secretariat of the Convention on Biological Diversity 2016).  

Outside of the CBD and SDGs, many other international agreements apply to the marine 

realm. Of particular importance is the United Nations Convention on the Law of the Sea 

(UNCLOS), an international agreement signed in 1982 that sets out the legal framework for 

all activities in the oceans and seas and is of strategic importance as the basis for cooperation 

in the marine sector. UNCLOS has 168 parties, including the EU, but is considered in most of 

its provision as customary international law (Hoagland et al. 2001).  It was included as a key 

factor in SDG 14 by being included in Target 14.C “Enhance the conservation and sustainable 

use of oceans and their resources by implementing international law as reflected in UNCLOS, 

which provides the legal framework for the conservation and sustainable use of oceans and 

their resources, as recalled in paragraph 158 of The Future We Want”. It is complemented by 

the 1995 UN Straddling Fish Stocks Agreement, which sets out principles for the conservation 

and management of fish stocks and establishes that their management must be based on the 

precautionary approach and best available scientific information. The Agreement elaborates 

on the fundamental principle of UNCLOS that States should cooperate to ensure conservation 
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and promote optimum utilisation of fisheries resources. These ideals are implemented through 

a framework known as the Code of Conduct for Responsible Fisheries (FAO 1995). 

1.1.3 The role of indicators 

Assessment of progress towards national and international environmental ambitions is 

typically monitored through a series of indicators (Hák et al. 2016a). Monitoring is important 

for three main reasons; to inform decison-makers when a system is departing from a desired 

state, to measure the success of management actions and to detect the effects of disturbance 

or stressors (Legg & Nagy 2006). Indicators often play a major role in monitoring, as they allow 

for the communication of complex information in a more simplistic manner to a range of 

stakeholders and sectors such as governments and business (Jørgensen et al. 2013). Criteria 

for indicator selection are widely discussed in the literature and are generally agreed to include 

aspects such as measurability, scientific basis, ease of communication, sensitivity and 

responsiveness to change, and specificity (Failing & Gregory 2003; Rice & Rochet 2005; 

Niemeijer & de Groot 2008a). Increasingly there is greater understanding and importance 

placed upon interpretability, validation and in turn understanding trigger points or thresholds 

for management interventions (Samhouri et al. 2010; Large et al. 2013; Moriarty et al. 2018).   

A key role of indicators is at the nexus of science and policy, as their purpose is often to 

communicate with broad and non-specialist audiences, requiring scientific rigour but 

straightforward communication. Typically science and policy has had a complex relationship 

as science is rarely used as a sole guide for decision making (Bradshaw & Borchers 2000). 

However, indicators are often primarily designed by scientists as scientific or communication 

tools, with little attention given to the political landscape (Robertson & Hull 2001).  A recent 

review of species indicators found that only 21% explicitly accounted for management 

objectives and actions(Bal et al. 2018). For science to be useful to policy makers it must be 

perceived as credible, salient and legitimate (McNie 2007). Credibility refers to the scientific 

adequacy of the technical evidence and arguments. Bradshaw & Borchers (2000) note that 
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uncertainty is a key blockade in bridging the science-policy gap and can undermine credibility. 

They note that although scientists are comfortable with uncertainty, decision makers are on a 

quest for certainty and deterministic solutions. Salience refers to the information being relevant 

to the specific context in which it will be used and responsive to the specific information 

demands of the decision makers. Legitimacy reflects the perception that the production of 

information and technology has been respectful of stakeholders’ divergent values and beliefs, 

unbiased in its conduct, and fair in its treatment of opposing views and interests (Cash et al. 

2003). All three of these are heavily interlinked such that efforts to enhance any one of these 

usually incur a cost to the others, meaning a successful balance must be struck (Cash et al. 

2003). 

1.1.4 Challenges with indicators 

A challenge in developing large-scales indicators is that they have either been developed by 

scientists without broader consideration of the use of the indicator in the political/management 

process, or in the case of international agreements, targets have been set without 

consideration of what indicators can be measured (Turnhout et al. 2007; Maxwell et al. 2015). 

This means that it is challenging to develop appropriate indicators. In the years after the CBD's 

goal to achieve a reduction in the rate of biodiversity loss had been agreed, a significant effort 

was made to design and select indicators to monitor progress towards this goal (Mace & Baillie 

2007). Nonetheless, by 2010 the indicator set was still not complete (Walpole et al. 2009). A 

similar problem was later identified for the 2011-2020 Aichi Targets, such that again these 

targets appear unlikely to be met (Tittensor et al. 2014). Recognising the intrinsic links 

between biodiversity and human wellbeing, in 2002 the Aichi Targets, as well as the SDGs, 

included more human-centric targets related to concepts such as ecosystem services 

(Shepherd et al. 2016). However, such targets have received criticism for being overly 

complex and ambiguously worded (Butchart et al. 2016). This  has meant that indicators are 

poorly aligned towards their targets (Mcowen et al. 2016). To be most effective, indicators 

should be created in the domains of both science and policy and go back and forth between 
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them until there is consensus (Turnhout et al. 2007). However, in reality targets are heavily 

negotiated in political forums, so that this is not easy to achieve. 

The CBD process for the Aichi Targets has assigned multiple indicators to each individual 

target (Convention on Biological Diversity 2016). This is done by breaking down each target 

into sub-components and then assigning an indicator or indicators to each sub-component, 

based on a series of criteria. This differs somewhat to the SDGs, which nominate a single 

indicator for each sub-target of each SDG. This theoretically makes assessment more straight 

forward, but in reality suffers issues of indicator and target alignment, particularly when the 

sub-targets are multi-faceted (Mcowen et al. 2016). Multiple indicators are often required but 

this presents challenges regarding distilling information (Chatziparadeisis 2007). Dashboards 

have found some use in displaying such information (Han et al. 2014), but composite 

measures are finding increasing use for their ability to measure different types of indicators on 

the same scale (Munda et al. 2009).  

A key issue regarding the science-policy interface of indicators is around scale. In the CBD 

and SDGs, indicators are assigned to global targets, but individual nations are also required 

to report their national progress using indicators through the voluntary processes of the 

National Reports and VNRs (Hagerman & Pelai 2016). It has therefore been a priority to 

ensure that biodiversity indicators are applicable across scales. This has largely resulted in 

indicators containing a spatial element, which allows them to be disaggregated at different 

scales. For instance, the Living Planet Index (LPI) records locations and biomes of where each 

data point is recorded so that it can be later disaggregated (Mcrae et al. 2012). The Ocean 

Health Index (OHI) likewise has the ability to be disaggregated, but has also been designed 

so that the framework can be reused at different scales and global data can be replaced with 

more relevant local data (Halpern et al. 2012; Elfes et al. 2014). However, the extent to which 

CBD indicators are used at the national scale is largely unknown.  
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While ensuring indicators are useful to end-users, they must also be scientifically credible. An 

indicator’s usefulness can be impeded by both the quality of the data which underpins it and 

the design of the indicator itself (Collen & Nicholson 2014). Indicators tend to utilise secondary 

data, meaning the quality of data in theory should be assessed and any uncertainties 

understood and estimated (Regan et al. 2002; Munda et al. 2009). In reality, this is often not 

the case as data quality is traded-off with availability, particularly where monitoring data is 

scarce (Griffiths et al. 2010). This is particularly an issue for large-scale indicators, which utilise 

freely or widely available data. For biodiversity indicators, this might mean geographic or 

taxonomic biases reduce an indicator's overall representativeness of the  biodiversity it is 

attempting to measure (Nicholson et al. 2012). The way an indicator is constructed, particularly 

with aggregate indicators, may make its validation and interpretation challenging, thus 

impacting its credibility (Moriarty et al. 2018). How indicators are weighted has been widely 

discussed, particularly for composite indices, as it can highly impact the outputs of indicators 

and often has a weak basis (Saisana et al. 2005). While indicator construction is widely 

discussed, there are few examples of conservation indicators being formally tested and 

validated, despite this being a priority under the CBD (Collen & Nicholson 2014). 

In fisheries science, indicators have been the focus of widespread attention to formally 

evaluate their usefulness in detecting the effects of changing fishing pressure (Fulton et al. 

2005; Shin et al. 2018). Such approaches are extremely important in helping to understand 

indicator behaviour and thus in directing robust management interventions (Fay et al. 2013). 

Gaining such understanding of large-scale indicators is rarely undertaken and is needed given 

the complex social-ecological systems within which people and biodiversity co-exist (Hill et al. 

2016). These complex systems provide a significant challenge for traditional target 

development and indicator selection approaches, as feedbacks and interactions can change 

parts or all of the system in unforeseen ways (Ostrom 2009; McGinnis & Ostrom 2014; Larrosa 

et al. 2016). Despite being of central importance, these interlinkages are rarely considered up 

front, as targets are negotiated politically (Maxwell et al. 2015). This has meant that there are 
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trade-offs and synergies within the targets which prevents targets simply being ‘ticked off’ (Di 

Marco et al. 2016; Singh et al. 2018). It is important, therefore, that changes in indicators are 

understood within the context of the wider social-ecological system they are within, such that 

they can be appropriately interpreted and used correctly.  

1.1.5 Modelling and scenarios 

When it comes to implementing policy to meet high level political targets, the Driver–Pressure–

State–Impact–Response (DPSIR) framework, and variants of it, have proved popular for 

emphasising the importance of causality (Gari et al. 2015). Although it structures and 

standardizes conceptualizing complex issues, it has been criticised for providing an overly 

simplistic representation of the relationship between pressures and state changes, by 

assuming that increases in pressures lead to state changes, which may not always be the 

case (Smith et al. 2016). It is unable to take account of the interactions between different 

activities and their cumulative pressures occurring simultaneously, which we know to be 

important, particularly in the marine environment (Halpern et al. 2015a; Patrício et al. 2016). 

Furthermore, being a simple unidirectional chain it does not highlight the difference in the 

nature, severity, timescale or longevity of state changes in relation to pressure intensity, 

frequency or duration and thus is not particularly conducive to representing an understanding 

of the complexity of the processes within systems and thus behind environmental indicators 

(Niemeijer & de Groot 2008b). Expanding such frameworks out to network approaches is seen 

as a useful way of improving indicator selection and use (Niemeijer & de Groot 2008a; 

Vugteveen et al. 2015).  

The use of modelling and scenarios has been proposed as a key way of understanding 

systems, setting science-based targets and informing appropriate indicator selection and use 

in conservation science (Nicholson et al. 2019). Models are simplified understandings of 

systems and range from qualitative conceptual models, which display linkages and 

relationships between different elements of a system (Margoluis et al. 2009), through to 
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quantitative models which are built from an in-principle understanding of the system or from 

analysis of emergent patterns of data (Jørgensen 2008). Scenarios depict different future 

states, often influenced through different management interventions. Models and scenarios 

are typically used together to explore management options and have been shown to be useful 

in conservation for testing indicator responses. Costelloe et al. (2015) demonstrated how both 

the Red List Index (RLI) and LPI indicated more effective management would provide greater 

benefits to biodiversity than merely expanding protected areas, when modelling management 

options for Sub-Saharan African protected areas. Nicholson et al. (2012) showed how 

taxonomic bias in the LPI made its interpretation difficult when simulating the effect of a marine 

management intervention (an end to bottom trawling), while Visconti et al. (2016) 

demonstrated business as usual development approaches would mean Aichi Target 12 

(improving conservation status of known threatened status) cannot be achieved. The 

Biodiversity Intactness Index (BII) is currently being used with the Projecting Responses of 

Ecological Diversity In Changing Terrestrial Systems (PREDICTS) project, using annual fine-

scale pressure data to drive annual estimates of how BII has changed in the recent past and 

also using modelling to project the BII using historical and future estimates of land use and 

other pressures from the Shared Socioeconomic Pathways (Scholes & Biggs 2005; Mace et 

al. 2014; Purvis et al. 2018).  

1.2 Aims & Objectives 

 

The aim of this thesis is to investigate the challenges related to the use of large-scale 

environmental indicators and explore how these can be addressed. I frame this investigation 

through the lens of marine conservation, using marine systems and indicators as case studies. 

This is with the aim of informing the creation and use of such indicators for the marine 

environment, but more generally in wider national and international conservation.  

Specific objectives that contribute to the aim of the thesis are to: 
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• Summarise uncertainties associated with composite indicators and review methods of 

treating them; 

• Explore composite indicator usage in a data-poor context; 

• Apply a modelling approach to indicator validation at the national scale; 

• Explore future scenarios to compare biodiversity indicators across fisheries and marine 

conservation; 

• Explore applications of environmental indicators in future international agreements. 

1.3 Thesis Structure 

 

Figure 1-1 below shows a conceptualisation of the thesis structure. It starts with understanding 

the background to the topic (Chapters 1 & 2), before exploring two approaches to indicator 

construction and use; a structured framework approach (Chapter 3) and a systems-based 

approach (Chapter 4). Elements of these two approaches are integrated and compared in 

Chapter 5, before Chapters 6 and 7 explore the wider context of international indicator 

development and use, and application of the thesis's insights in the future.  
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Figure 1-1: Conceptualisation of thesis structure 

 

1.4 Case Study Selection and Overview 

 

In Chapters 3, 4 and 5 I use two case studies to explore indicator design and use. These were 

purposefully selected to explore the need for both structured and systems-based indicators at 

different scales. Chapter 3 takes a structured approach to the Arctic region, where data are 

often lacking, and management approaches differ. Chapters 4 and 5 zoom in to the Barents 

and Nordic Seas, primarily from a Norwegian perspective. Here I focus on large-scale 

biodiversity indicators and how they are used at the system level. 

1.4.1 Case Study 1 – The Arctic Ocean 

The Arctic Ocean is the smallest and shallowest of the world’s five oceans and unique in that 

it is mostly enclosed with limited exchange of water with other seas or oceans. It has a complex 
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circulatory system which drives the accumulation and melt of sea ice. Sea ice is the key driver 

of life in the Arctic Ocean, supporting vast amounts of algal and phytoplankton primary 

production (Arrigo et al. 2012) which provide the basis for the Arctic food web. Life here 

endures some of the greatest extremes in light and temperature known to our planet, but the 

Arctic Ocean contains a rich tapestry of benthos, fish, cnidarians, birds, and some of the most 

recognisable arctic mammals such as cetaceans, pinnipeds and of course polar bears 

(Ursus maritimus).   

The Arctic is also responsible for regulating global climate as sea ice acts as an important 

constraint on methane release from clathrates and permafrost (Parmentier et al. 2013) as well 

as making a significant contribution to the earth’s surface albedo (Deser et al. 2000). Sea ice 

also plays a role in thermohaline circulation as water cools as it enters the Arctic. Freezing 

water rejects its salt content causing surface waters to increase in salinity, sink to the bottom 

and flow out again. This process of North Atlantic Deep Water Formation is critical to global 

thermohaline circulation (Dickson & Brown 1994).  

The Arctic Ocean's biophysical processes are therefore extremely important for regulating 

global climate and supporting fragile ecosystems, but when also considering human interests 

and activities in the Arctic and its sensitivity to change, it becomes one of the most geo-

politically important areas on the planet. The food web supports globally significant fisheries 

of pollock (Theragra chalcogramma) and cod (Gadus morhua), the seafloor is thought to 

contain approximately 13% and 30% of the world’s undiscovered oil and gas reserves 

respectively (Bird et al. 2008) and shipping through the Northern Sea Route is increasing 

annually (Northern Sea Route Information Office 2013), with future projections signalling 

exponential escalation (Smith & Stephenson 2013). Furthermore the Arctic is inhabited by 

roughly four million people of whom approximately 400,000 are indigenous (Arctic Council 

2011). Climate change is beginning to affect the Arctic Ocean with observations of range shifts 

and changes in abundance, growth and phenology of species (Wassmann et al. 2011). Sea 

http://en.wiktionary.org/wiki/ursus#Latin
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ice reduction is also leading to the rush for new shipping routes, mineral resources and fishing 

grounds that have previously been inaccessible and security and defence is also becoming a 

growing issue, with some Arctic states bolstering their forces in their northernmost territories 

(Kraska 2011).  

The issues raised above are cross-sectoral and dynamic in nature, meaning management 

interventions or changes in practices can affect several components of the Arctic Ocean 

system i.e. implementation of protected areas could cause economic losses from lower fish 

catches, ecosystem shifts, increases in tourism revenue etc. However, research in the Arctic 

is usually specific to an individual country or focussed on one dimension of the system 

(biological, physical or social), despite the role of integration being well understood in 

achieving successful conservation and coastal management (Turner 2000; Ban et al. 2013). 

Calls for greater unity in Arctic research are not new (UNEP/GRID Arendal 2006) but existing 

marine monitoring efforts are still not connected on a circumpolar scale, which limits the ability 

to make robust decisions. It would appear Arctic Ocean research is relatively disconnected 

and only now are measures to standardise data collection and outputs being organised (i.e. 

Circumpolar Biodiversity Monitoring Program). Given that the Arctic is potentially changing 

rapidly and data poor, it is an exciting case study to explore the value of a structured indicator 

approach to compiling data and attempting to measure both the biophysical and socio-

economic dimensions of the ocean ecosystem. 

1.4.2 Case Study 2 – The Nordic and Barents Seas 

Norway has a long Arctic and sub-Arctic coastline which borders the Nordic and Barents Seas 

and as such fisheries have been important culturally and socially important for livelihoods in 

Norwegian coastal communities for centuries. In the late 1960s Norway experienced dramatic 

effects on fisheries and coastal communities due to the collapse of the large Norwegian spring 

spawning herring stock, caused by overfishing.  The continuation of overfishing also had 

detrimental effects on the large fish stocks in the Barents Sea, the Norwegian Sea, and the 
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North Sea following rapid technical progress and increased efficiency in the fisheries 

(Gullestad et al. 2014). This gave the Norwegian government the stimulus to reform the fishing 

sector, which it did so over the next 40 years through limiting access, ending subsidies, 

reducing overcapacity, improving quota distribution, altering discard strategy, implementing a 

precautionary approach and improving co-management (Petter Johnsen & Eliasen 2011; 

Gullestad et al. 2014; Grønnevet 2016). The fisheries management system in Norway is now 

rated among the highest anywhere in the world for compliance to UN Code of Conduct for 

Responsible Fisheries (FAO 1995), in which prevention of overfishing is among the central 

principles (Pitcher et al. 2009a, 2009b). Nonetheless, overall compliance to the Code of 

Conduct by Norway was about 60%, still indicating considerable potential for improvement.  

In 2009, a new Marine Resources Act entered into force in Norway. The act shifted the focus 

from merely managing commercial exploitation of marine resources, to all wild living marine 

resources and genetic material derived from them (Gullestad et al. 2017). The act states that 

its purpose is to ensure sustainable and economically profitable management of the 

resources, and several provisions describe conservation of biodiversity as an integral part of 

sustainable management, including requiring “an ecosystem approach, taking into account 

habitats and biodiversity” (Norwegian Government 2010). As part of Norway’s shift towards 

establishing an ecosystem approach, they have implemented a large-scale habitat mapping 

project, known as MAREANO (Buhl-Mortensen et al. 2015) and developed an end-to-end 

ecosystem model, Atlantis, for the Nordic and Barents Seas (Hansen et al. 2016, 2019). This 

ecosystem model and the associated thinking provided an exciting opportunity to explore and 

demonstrate a systems-based approach towards indicators.  
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1.5 Thesis Outline 

 

1.5.1 Chapter 2: Navigating uncertainty in environmental composite indicators 

In this chapter I review the different sources and types of uncertainty found within composite 

indicators, from initial construction to communication and use. I review the literature to suggest 

key areas for how to reduce this uncertainty and use four well known composite indicators as 

case studies to analyse how well this is being done in practice. I find that while there are many 

uncertainties, there are many different potential methods for treating uncertainty. In general 

these are poorly implemented for current indicators.   

This chapter has been published as: 

Burgass, M.J., Halpern, B.S., Nicholson, E. & Milner-Gulland, E.J. (2017). Navigating 

uncertainty in environmental composite indicators. Ecological Indicators, 75, 268–278. 

I conceived the research idea with E.J. Milner-Gulland and Ben Halpern. I chose case-study 

indicators, conducted the review and wrote the paper. All co-authors provided comments and 

revisions. 

1.5.2 Chapter 3: A pan-Arctic assessment of the status of marine social-ecological 

systems 

In Chapter 3 I demonstrate how the structured composite indicator approach can be useful for 

assessments across large, data-poor areas. I use the Ocean Health Index across the Arctic 

Ocean to consolidate data for nine different Arctic regions across nine areas of ocean health. 

I make the first assessment which considers social-ecological conditions across the Arctic. I 

use two different data sets for the fisheries sub-goal, to show how underlying data choices 

can impact scores.  

This chapter has been published as: 
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Burgass, M.J., Milner-Gulland, E.J., Stewart Lowndes, J.S., O’Hara, C., Afflerbach, J.C. & 

Halpern, B.S. (2019). A pan-Arctic assessment of the status of marine social-ecological 

systems. Regional Environmental Change, 19, 293–308. 

I conceived the research idea with Ben Halpern. I identified regions and datasets, wrangled 

data, modified goal models, developed code and wrote the manuscript. Julie Stewart 

Lowndes, Jamie Afflerbach and Casey O’Hara provided technical assistance on code 

development and visualisation. All co-authors provided comments and revisions. 

1.5.3 Chapter 4: Validation and use of large-scale biodiversity indicators at the 

national scale 

Validation of global species-based indicators to test their usefulness at the national scale, 

while being a priority, has yet to be widely undertaken. In Chapter 4, I demonstrate how 

systems thinking can support indicator validation at the national scale in the marine 

environment. I show how two different indicators, the global Living Planet Index and national 

Norway Nature Index, can be generated from ecosystem models and their performance 

explored under different management scenarios. Widespread uptake of such a validation 

approach could help with developing more robust indicators, more meaningful projections of 

biodiversity change into the future and explicit and science-based target-setting at a range of 

scales, by allowing a better understanding of how indicators perform under different scenarios. 

This Chapter was developed with the following co-authors: E.J. Milner-Gulland, Ben Halpern, 

Emily Nicholson, Cecilie Hansen and Bård Pedersen. I conceived the study with E.J. Milner-

Gulland, Ben Halpern and Emily Nicholson. Cecilie Hansen provided ecosystem modelling. I 

analysed model outputs, developed code, generated indicators, conducted analysis and wrote 

the manuscript. Bård Pedersen assisted with coding for the Norway Nature Index. All co-

authors provided comments and revisions. 
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1.5.4 Chapter 5: Assessing biodiversity loss with fisheries and conservation 

indicators 

In this Chapter I apply three contrasting fisheries management approaches within a systems 

model for the region of the Nordic and Barents Seas over a period of 38 years, simulating 

forwards from the present day under a climate change scenario. I do this with two aims; to see 

if these management options could halt and potentially reverse biodiversity loss in line with 

international commitments in the face of climate change, and to see how consistent these 

predictions were between indicator types. I find that fisheries and conservation indicators 

disagree on whether biodiversity loss is halted as a result of the management changes, due 

to how they are constructed and what they intend to measure. In Norway, fisheries are the 

dominant sector in which biodiversity is managed, but the types of indicators used to do this 

are not necessarily well aligned with conservation objectives. This is shown to be problematic 

as fisheries ecosystem indicators do not always reflect the wider ecosystem, particularly 

aspects of conservation concern.  

This Chapter was developed with E.J. Milner-Gulland, Cecilie Hansen and Ben Halpern. I 

conceived the study with E.J. Milner-Gulland. Cecilie Hansen provided ecosystem modelling. 

I analysed model outputs, developed code, generated indicators, conducted analysis and 

wrote the manuscript. E.J. Milner-Gulland and Ben Halpern provided comment and revision. 

1.5.5 Chapter 6: Opportunities for setting a successful post-2020 global biodiversity 

framework 

In Chapter 6, I reflect on key considerations for a solutions-oriented approach to setting a post-

2020 framework to improve outcomes for biodiversity. Three core areas that a post-2020 

framework must consider are: 1) Formulating a robust Theory of Change to link outcomes and 

actions; 2) Being underpinned by models to integrate complexity and uncertainty; and 3) 

Transcending scale to inform meaningful devolved and specific local action. With reference to 
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each consideration, I discuss opportunities for improving the processes around how global 

targets are set and implemented by drawing on a range of examples.  

This Chapter is the output of a three-day workshop was held in Oxford in July 2018 bringing 

together academics and conservation practitioners to share lessons learnt and discuss ways 

forward for international biodiversity commitments.  I planned the workshop with Siso Larrosa 

and E.J. Milner-Gulland. Siso Larrosa and I ran the workshop. All participants contributed to 

conception of the paper and provided text. I led the development of the paper following the 

workshop including drafting the outline, consolidating text, writing the manuscript and 

organising and responding to co-authors. The list of co-authors not yet mentioned is as follows: 

Derek Tittensor, Emily Nicholson, Kate Watermayer, Jessica Rowland, Victor Muposhi, 

Shannon Hampton, Hernan Caceres, Abbey Camaclang, Carolina Pinto, Ciaran McLaverty 

and Simone Stevenson.  

1.5.6 Chapter 7: Synthesis and Discussion 

I conclude the thesis by summarising the main findings and discussing their relevance for 

informing future indicator development and use at large scales. Recommendations are given 

for how the lessons learnt from the thesis can be applied in practice. 
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2 NAVIGATING UNCERTAINTY IN ENVIRONMENTAL COMPOSITE 
INDICATORS 

2.1 Introduction 

 

Human activities have large impacts on natural systems (Halpern et al. 2008; Buma & 

Wessman 2011) that are likely to increase in future, given growing human population and 

demand on natural resources (Kraxner et al. 2013; McCauley et al. 2015). The resultant 

changes in natural systems have important consequences for biodiversity (Chapin et al. 2000), 

but also for people through our reliance on provision of ecosystem services for human well-

being, health, livelihoods and survival (Costanza et al. 1997, 2014; Millennium Ecosystem 

Assessment 2005). Managing these complex interactions to ensure nature thrives and 

continues to provide benefits to people requires integrative and interdisciplinary approaches 

to management that emphasise the complexities of whole social-ecological systems (Folke et 

al. 2005). Effective ecosystem management requires measuring the status and trends of 

ecosystems to inform which management actions are likely to be effective and if these actions 

have had their intended effect (Jones et al. 2011). Measuring all aspects of complex systems 

is impossible due to the range of variables and processes present. Variables deemed to be 

characteristic of the wider system and which are simple enough to be easily measured are  

often employed as indicators, to act as simplified summaries of system condition and 

behaviour (Dale & Beyeler 2001).  

Good indicator design has been widely discussed (Failing & Gregory 2003; Fulton et al. 2005; 

Parr et al. 2010), with general agreement that indicators should: be cost effective; provide 

reliable information on status and trends; provide information at multiple extents and 

resolutions; allow frequent reporting; be meaningful to the public; and respond predictably to 

policy change (Jones et al. 2011). In practice, the EU’s Streamlining European Biodiversity 

Indicators project used a stakeholder-based process to apply stringent criteria and reduce 

over 140 biodiversity indicators to a final 26, while the European Commission assesses 
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indicators based on RACER guidelines; where they should be ‘Relevant’, ‘Accepted’, 

‘Credible’, ‘Easy to Evaluate’ and ‘Robust’ (Best et al. 2008; Eea 2010). Indicators also provide 

a powerful tool for communicating with stakeholders about the status and trends of 

ecosystems, as well as helping identify or illuminate linkages between environmental, human 

and economic subsystems (Jørgensen et al. 2013). However, multi-dimensional processes 

(such as complex ecosystem dynamics) are notably difficult to track with individual indicators 

due to challenges in linking trends across dimensions (Munda 2005) and capturing interactions 

between and within sub-systems (Dale & Beyeler 2001). Multiple indicators are recommended 

to capture different aspects of the relevant systems (Fulton et al. 2005), but without techniques 

to distil or summarise them, can be overwhelming in volume of information (Chatziparadeisis 

2007). For example, the marine “Good Environmental Status” goal for EU countries contains 

11 descriptors with 29 criteria and 62 individual indicators (European Comission 2010).  

“Composite indicators” (CIs) offer a means of aggregating multiple indicators to track and 

communicate complex systems.  CIs are a mathematical combination of a set of indicators 

that have no common meaningful unit of measurement. They are increasingly used for 

decision making in a range of sectors such as economics, business statistics, health and 

academic performance (Munda et al. 2009; Paruolo et al. 2013). In the environmental sector 

they are often used for global scale assessments (see Table 2-1) and to guide policy at local 

to regional scales (Mendoza & Prabhu 2003; Di Franco et al. 2009; Ochoa-Gaona et al. 2010). 

CIs enable direct comparison of disparate social and environmental variables and, due to their 

clear and unidimensional output, can also gain traction with policy-makers and the general 

public. Their increasing popularity is unlikely to slow; many have suggested that in order to 

communicate broad trends effectively and influence conservation policy, meaningful CIs will 

be required (Balmford et al. 2005; Mace & Baillie 2007).CIs are similar to mathematical or 

computational models in that they are simplified representations of reality, although whereas 

models are usually based upon scientific theory and detailed biological or physical dynamics, 

CIs are often simply an aggregation of variables considered relevant to a system or issue 
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(Nardo et al. 2008). Modelling studies also typically address, and when possible quantify, 

inherent uncertainties that arise when simplifying real-world complexities (Kokko 2005).  If CIs 

are to be used more, and more effectively, within conservation, methodological decisions 

made in their construction, and the consequent uncertainties, should be clearly understood, 

described and, if possible, represented or treated – just as with any other type of conservation 

modelling for decision-making (e.g., Regan, et al. 2002).  

Here, I explore the uncertainties that underlie environmental CI construction, with the aim of 

putting recognition of uncertainty at the heart of CI construction and use. I develop a 

framework to capture the full range of types and sources of uncertainty in a systematic fashion, 

using four prominent environmental CIs as primary case studies (but also draw reference to 

others) and suggest methods to navigate them. I first discuss the methods that are specific to 

each individual stage and then address those that deal with multiple sources of uncertainty. 

Finally, I discuss ways forward to improve the development and use of composite indicators 

in practice.  
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Table 2-1 Examples of environmental composite indicators, chosen to display a 

range of different construction techniques 

Composite Indicator Description Construction 

Ocean Health Index 

(Halpern et al. 2012) 

www.oceanhealthindex.or

g 

Evaluates the 

condition of marine 

ecosystems 

according to ten 

‘goals’ of key 

benefits provided by 

the ocean. 

Measures 

sustainable 

provision of benefits 

and gives a score to 

each country. 

Overall score is aggregated from ten 

equally weighted categories (known 

as ‘goals’, each comprised of many 

individual indicators. Subgroups 

measure biological, physical, social 

and economic aspects. 

Environmental 

Performance Index (Hsu 

et al. 2014) 

www.epi.yale.edu/ 

Ranks how well 

countries perform 

on high priority 

environmental 

issues. Focuses on 

ranking individual 

countries. 

Nested structure where overall score 

is aggregated from two equally 

weighted categories of environmental 

health and ecosystem vitality. Each 

category is made up of three and six 

subgroups respectively, which have 

between one and four sub-indicators 

each.  
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Table 2-1 Examples of environmental composite indicators, chosen to display a 

range of different construction techniques 

Composite Indicator Description Construction 

Climate Change 

Performance Index (Burck 

& Bals 2011) 

www.germanwatch.org/en/

9472 

Evaluates and 

compares the 

climate protection 

performance of 

countries that are, 

together, 

responsible for 

more than 90% of 

global energy-

related 

CO2 emissions. 

Nested structure where overall score 

is aggregated from three categories of 

emissions trend (50% weighting), 

emissions level (30% weighting) and 

climate policy (20% weighting). Each 

category is made up of between 4 and 

9 subgroups which are informed by 

several sub-indicators each  

Sustainable Society Index 

(van de Kerk et al. 2014) 

http://www.ssfindex.com/ 

Evaluates countries 

based on their level 

of sustainability 

according to human, 

environmental and 

economic wellbeing. 

Focusses on 

ranking of countries. 

Employs a nested structure with three 

categories; human wellbeing, 

economic wellbeing and 

environmental wellbeing. Categories 

are not aggregated to an overall score 

due to the correlation between human 

and environmental wellbeing. Each 

category is aggregated from 2-3 

subgroups which consist of 2-4 sub-

indicators in each. 
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2.2 Characterising Uncertainty and Understanding Trade-Offs 

 

In order to characterise uncertainties within CIs it first important to understand how CIs are 

constructed. Although individual CIs differ, Figure 2-1 shows the construction stages for a 

typical environmental CI. The typical stages of CI construction are: 

• Theoretical framework is the overarching conception of the CI and choice of 

subgroups and categories, which act as the key areas of the system that are of 

interest to be measured. The theoretical framework can impact technical choices 

such as weighting and normalization.  

• Data selection involves construction and normalization of variables or sub-indicators 

as well as analysis and choice of underlying data.  

• Construction of the CI includes approaches used for aggregation and weighting of 

sub-indicators, subgroups and categories.  

• Post-development communication involves dissemination and communication of 

results. 

Many different types and sources of uncertainty exist, emerging from one or more of these 

stages and requiring different approaches (Figure 2-2). Epistemic uncertainty arises from a 

lack of knowledge of the dynamics and state of a system and includes uncertainty from 

limitations of measurement devices, insufficient data, extrapolations and interpolations, and 

variability over time or space. Linguistic uncertainty is a result of scientific vocabulary being 

under-specific, ambiguous, vague, context dependent, or exhibiting theoretical 

indeterminacies (Regan et al. (2002); see Appendix 1, Table A1-1). These uncertainties can 

be reduced or amplified based on decisions taken during construction (Table A1-2). 

Explorations of uncertainty in CIs have typically focussed on mathematical rules of 

construction, primarily related to statistical coherence and precision of the CI, and explored 

using mathematical techniques such as sensitivity and uncertainty analysis. However, these 

techniques are still not universally applied.  Different construction methods are discussed and 
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summarised in Nardo et al.'s (2008) guidance handbook for CI construction. They note the 

importance of construction decisions, especially an appropriate theoretical framework. Yet 

they offer little advice to constructors, stating the soundness of the framework and fitness for 

purpose of the CI is best assessed by the peer community. As such, the theoretical framework 

for CIs has received less attention in the literature than other sources of uncertainty.  
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Figure 2-1. Typical construction of a composite indicator. The theoretical framework drives the mathematical construction with some to and 
fro likely as the index is pieced together. The red box indicates how a typical sub-indicator might be constructed – ideally the desired model would 
drive the sub-indicator creation, but in reality data availability is often the driving factor.  The subgroup boxes show normalization and aggregation 
of sub-indicators, which in essence create sub-composite indicators. 
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Figure 2-2 Conceptual model of uncertainty flow through a composite indicator. Different stages of construction influence uncertainty in 
different ways. 
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2.2.1 Theoretical Framework 

The theoretical framework is the starting point for all CIs, and comprises understanding and 

defining the system to be measured and the contributing categories and subgroups (Nardo et 

al. 2008; Mendola & Volo 2017). For example, the Environmental Performance Index (EPI) 

has two distinct categories of Ecosystem Vitality and Environmental Health, which contain 

various relevant subgroups such as ‘Biodiversity and Habitat’ and ‘Air Pollution’ respectively. 

These subgroups are in this case in essence also CIs, as they are aggregated from several 

sub-indicators. The final use of the CI is considered here as it affects later decisions on data 

and construction; for example Buckland et al. (2005) suggest criteria for how a biodiversity CI 

should perform in order to inform choices around construction. Despite numerous CIs existing, 

little guidance is found in the literature on how to successfully develop a theoretical framework 

for a CI. General indicator framework advice exists (e.g., using Driving Force-Pressure-State-

Impact Response approaches (OECD 2003)), but the distinctive nature of each CI often 

requires creation of a unique framework that represents the conceptual thinking underlying 

the indicator. For example, the Ocean Health Index's (OHI) ‘goals’ (categories) were selected 

based on subject experts reviewing the literature on what the public expects from a healthy 

ocean. Likewise EPI scanned the literature and policy documents to split their index into two 

‘objectives’ and smaller core categories (based on merging the Pressure-State-Response and 

Driving Force-State-Response frameworks (Hsu et al. 2013)). The Sustainable Society Index 

(SSI) used the Brundtland+ definition of sustainability to pick indicators, which were 

subsequently grouped into five categories (Van de Kerk & Manuel 2008). Theory of Change 

(ToC) may prove a useful technique in giving structure to CI design (Weiss 1997). ToC is a 

useful conceptual tool which works backwards from a desired outcome to consider outputs 

that will achieve the outcomes and inputs or actions required to deliver these. ToC would help 

explore the system in question as well as the indicators required to monitor the various 

outcomes, outputs and inputs.  
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A clear relationship between what a CI measures and its structure helps provide clarity to the 

user.  However, many environmental concepts (e.g., sustainability) are not well defined, 

potentially introducing linguistic uncertainty into a CI from the start. This can make it difficult 

to identify appropriate categories and subgroups. Even widely used terms such as 

“biodiversity” have associated linguistic uncertainties, which means capturing and monitoring 

a vague concept can be difficult and highly uncertain (Morar et al. 2015). Lack of clarity causes 

model uncertainty, as the CI may not actually measure the construct to which it relates.  

Once the system has been defined, effort usually focusses on next defining the categories 

and subgroups which form the structure of the CI. These are outward facing aspects that gain 

significant attention from constructors as they form the overall communication of the CI, and 

once selected often act as guidance in determining the indicators that fill them. This approach 

means that the paths taken to arrive at the final output are often unclear and linkages between 

subgroups are not fully understood. Relying heavily on a pre-determined theoretical 

framework rather than developing a conceptual model of the specific processes underlying a 

given CI runs the risk of arbitrary selection of sub-indicators, which may not be properly 

representative of the system (Nicholson et al. 2012). Here, ToC could prove particularly useful 

in providing a transparent and agreed framework to guide indicator selection and reduce the 

risk of arbitrariness.  

2.2.2 Data 

As in any quantitative analysis, it is important to understand uncertainties in the data that form 

the basis of a CI (Figure 2-1 & 2-2). Challenges here include choosing which data best 

represent components of the theoretical framework, what methods to use to understand 

uncertain data, and how to deal with the uncertainties. 
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2.2.2.1 Data quality 

Composite indicators almost exclusively use existing data collected by various sources other 

than the CI creator, over different temporal and spatial scales (Kaufmann et al. 2011). Data 

are subject to varying levels of uncertainty depending on the credibility of the source, data 

collection methods, timing of sampling, measurement error, natural variation, and data 

interpretation. Data uncertainties are rarely adequately quantified (Munda et al. 2009), and 

most uncertainty in CIs is irreducible. At a minimum, a general audit of data quality should 

therefore be undertaken, with data assessed for relevance, accuracy, timeliness, accessibility, 

interpretability and coherence before being selected for inclusion (Nardo et al. 2008). The EPI 

and OHI do this by setting rough quality standards for data inclusion, however it is not revealed 

which data were discarded nor how robust the included data are. Such a process is inherently 

subjective and users of CIs are not always able to discern where strong or weak data lie. The 

SSI acknowledges that “the reliability of data remains a serious concern”, but similarly does 

not indicate where its strongest or weakest data are found. No discussion of data quality was 

found for the Climate Change Performance Index (CCPI). Lack of clarity around data that are 

entered into, or excluded from, a CI might dissuade users or suggest that the CI is a risky 

basis for policy-making. 

Pedigree matrices can be an effective way of assessing unquantifiable uncertainties in data 

(Van Der Sluijs et al. 2005). This technique involves using qualitative expert judgement to 

assess parameters through pedigree criteria, which are chosen as the most relevant and 

applicable criteria to assess parameter strength. Responses are then coded in the pedigree 

matrix (e.g. between 0 (weak) and 4 (strong)) to reduce arbitrariness and subjectivity. Experts 

are consulted individually so that consistency across scores indicates a common view of the 

underpinnings of the parameters, whereas disagreement reflects an ignorance of these 

underpinnings (Van der Sluijs et al. 2002). This approach thus helps to move consideration of 

uncertainties beyond those that are quantifiable to the large range of qualitative uncertainties. 

Assigning data quality scores, as done by the Living Planet Index, is one means of being 
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transparent about data quality issues (Collen et al. 2009). Scores are assigned to data based 

on their source, methodology and whether a measure of variation was included. Scores can 

be used either to represent uncertainty, test how overall results differ using different quality 

data, or adjust weightings for lower quality data. The EPI used a similar method when it was 

known as the Environmental Sustainability Index, however it was terminated as the method 

was deemed too subjective and problematic when experts disagreed on assessment criteria 

for grading (Hsu et al. 2013). If data quality is not deemed sufficient then reporting units can 

be excluded. The EPI did this in their 2012 assessment by removing North Korea, as several 

anomalous results raised serious questions over data quality.  

2.2.2.2 Treating missing data 

Data that underpin CIs inevitably contain gaps, requiring decisions about methods used to 

address these gaps (See Table A1-3). Although modern imputation techniques (such as 

multiple imputation and maximum likelihood estimation) exist, the use of such techniques may 

be constrained by time, budget or expertise of the team; these trade-offs need to be reported 

and justifications given on why certain methods were or were not used. Understanding and 

displaying where missing data exist is important, as some reporting units (e.g., countries) may 

be composed of significant amounts of imputed data, which may slip through unnoticed if not 

transparently logged.  

The EPI attempted to collect data for 232 countries but calculations were only performed for 

178 due to missing or incomplete data. Conversely, the OHI provides a score for all 221 

Exclusive Economic Zones and 15 high seas regions. The OHI fills gaps using a hierarchical 

decision tree with four different methods: temporal, using data from previous years; alternate 

datasets used as proxies; spatial, using averages from nearby regions; special rules 

applicable to particular instances (Halpern et al. 2015c). The SSI has seemingly high data 

coverage, with less than 10% gaps (Saisana & Philippas 2012), whereas the CCPI offers no 

discussion of missing data. However, none of the four case study CIs offers an easy insight 



43 

 

into which particular data have been imputed, although the OHI has implemented a gap-filling 

tracking methodology that will be incorporated and presented in global 2016 scores (Frazier 

et al, in review). CI documentation should be open about which data have been filled, and 

which reporting regions have been deleted, so the subsequent uncertainty can be properly 

recognised (Frazier et al. 2016). Regions that contain significant amounts of missing data 

should be highlighted or removed from the assessment. Analysis of how data gaps affect the 

overall outcome of the CI is important to guide targeted data collection and inform approaches 

to gap filling. 

2.2.2.3 Data selection and sub-indicator construction 

Data selection and sub-indicator construction are intrinsically linked. Ideally, sub-indicators 

would be selected systematically based on their relevance to what is being measured (Nardo 

et al.  2008; Riedler et al. 2015). In reality, the data required to construct an ideal sub-indicator 

might not be available, be of questionable quality, or have substantial gaps, meaning a trade-

off is required. This may involve discarding a preferred indicator in favour of one which is 

supported by better data, risking introducing severe model error into the CI, or including 

weaker data in a preferred sub-indicator, meaning it is likely to be less robust.  

Typically, individual indicators are chosen using pre-determined selection criteria. Dale and 

Beyeler (2001) suggest that indicators should be: easily measured; sensitive to stress; 

respond to stress predictably; anticipatory; predict changes that can be averted; integrative; 

and have low variability in response to extraneous influences. However, the criteria stated as 

being important vary widely between indicators. The case study CIs show some consistencies 

in selection criteria, but also differences (Table 2-1). Lists of selection criteria can enable a 

more consistent set of indicators, but they do not give much insight into the actual selection 

process because they do not give information pertaining to why a particular individual indicator 

or indicator group was chosen and others were discarded, or any relationships between the 

selected and discarded indicators (Niemeijer & de Groot 2008a). The criteria in Table 2-2 
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focus mainly on data quality and availability rather than understanding the relevance of 

indicators to the dynamics of the system, or how indicators might behave as per Dale & 

Beyler’s (2001) list above. Without knowledge of the system’s dynamics, it is unclear how the 

sub-indicators are linked and if they accurately represent the system. Correctly designing sub-

indicators is important as they are the basis of a CI; uncertainties here will propagate through 

the CI, with a ‘garbage in-garbage out’ logic (Nardo et al. 2008).  

Table 2-2 Selection criteria for data and sub-indicator construction used in the case 

study indices 

Environmental 

Performance Index  

(Hsu et al. 2013) 

Ocean Health 

Index  

(Ocean Health Index 

2015) 

Sustainable 

Society Index  

(Van de Kerk & 

Manuel 2008) 

Climate Change 

Performance Index 

Data must be 

relevant to what is to 

be measured  

Data must be 

relevant to what is to 

be measured 

Data must be 

relevant to what is to 

be measured 

Not located 

Indicator provides 

empirical data on 

ambient conditions 

or on-the-ground 

results for the issue 

of concern.  

Must be able to be 

scaled to a 

meaningful 

reference point 

Data must be 

measurable 
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Table 2-2 Selection criteria for data and sub-indicator construction used in the case 

study indices 

Environmental 

Performance Index  

(Hsu et al. 2013) 

Ocean Health 

Index  

(Ocean Health Index 

2015) 

Sustainable 

Society Index  

(Van de Kerk & 

Manuel 2008) 

Climate Change 

Performance Index 

Data must have 

established scientific 

methodology and 

based on peer 

review or institutions 

charged with data 

collection 

Data must be freely 

accessible 

Data must be from 

public sources, 

scientific or 

institutional 

Must have adequate 

global and temporal 

coverage 

Must have adequate 

global and temporal 

coverage 

Must be available for 

all countries (or all 

but smallest 

countries) 

Data represent the 

best measure 

available. 

Data quality should 

be considered 

Data must be 

reliable 

Data have been 

consistently 

measured across 

time 

Data must be recent 

and ideally regularly 

updated 

Data must be recent 

and regularly 

updated 

  

Independent from 

other indicators with 

no overlap 
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2.2.2.4 Data Normalization 

Data that are used in sub-indicators are often in many different formats and therefore must be 

normalized to the same scale for aggregation (Jacobs et al. 2004). This allows comparison of 

disparate indicators within a single framework. Decisions also have to be made regarding 

outliers, which can cause problems by becoming unintended benchmarks, skewing data and 

biasing statistical approaches to weighting.  Popular normalization techniques include 

(Saisana & Saltelli 2011): 

• Ranking – Simply ranks units in order and therefore does not preserve specific 

information. Final output is rank only. 

• Standardization (or z-scores) – converts indicators to a continuous variable with a 

mean of zero and standard deviation of one. Assumes normality, meaning outliers 

can have a large effect, which might not be desirable.  

• Min-Max – normalizes indicators within a given range (e.g. 0-1) by subtracting the 

minimum value and dividing by the range. Outliers can distort the CI for similar 

reasons.  

• Distance to target – Normalizes indicators by dividing the unit's value by a reference 

target. Can be sensitive to outliers when the best performing unit is used as a target. 

The meaning of the results of a CI could be affected by which technique is chosen and should 

therefore be considered during the theoretical framework stage. Distance to target is a popular 

method as it allows for the inclusion of political goals, for example the EPI uses the Convention 

of Biological Diversity’s 17% target of terrestrial and inland areas under protection as its critical 

habitat protection indicator. Normalizing by such a political goal provides a clear benchmark 

that is relevant and can be easily communicated and frameworks exist for robust selection of 

quantitative management targets (Samhouri et al. 2012). If using the other more arbitrary 
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methods without testing different techniques, subjective judgement error will mean the 

outcome of the CI is affected an unknown amount by the choice of normalization.  

2.2.3 Construction  

This phase determines how normalized sub-indicator scores are aggregated and weighted. 

Although weighting should be considered during the theoretical framework stage, it is 

discussed separately here, as it can be an iterative process.  

2.2.3.1 Weighting 

Weights are often used as measures of perceived importance of the subgroup to the system. 

For example, the CCPI rates its categories of climate policy, emission trends and emission 

levels at 20%, 50% and 30% respectively (Burck, J. & Bals 2011). However, lack of knowledge 

about subgroup importance, or unwillingness to prioritise one area above another, frequently 

results in equal weight being allocated, which although seen as neutral, is still a weighting 

decision. The SSI uses equal weights due to a lack of scientific basis for the attribution of 

weights (Van de Kerk & Manuel 2008). Likewise the OHI uses ten equally weighted ‘goals’, as 

the literature does not distinguish which factors are most important for a healthy ocean 

(Halpern et al. 2012), although the OHI explicitly includes a goal weighting term and 

encourages development and use of weights for localised assessments. The EPI generally 

sets weights based on the quality of data and relevance of the indicator to the issue it is 

measuring. Less robust or relevant data are therefore given a lower weighting (Hsu et al. 

2014). However, despite poor data, the indicator concerned may be key to describing system 

dynamics; giving it a low weight may therefore reduce the meaningfulness of the CI.  

Despite weights often being assigned to different subgroups and/or categories as importance 

coefficients, variation and correlation in data mean assigned or desired weights might not act 

as intended. Weighting may have to be an iterative process in order to achieve a desired 

weighting structure. For example, the EPI performed a sensitivity analysis in 2012 and found 
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that although environmental health and ecosystem vitality had been given equal weights, the 

greater variation in environmental health scores meant that countries that performed better in 

environmental health were more likely to perform better in the overall EPI. The weighting was 

therefore not actually equal and was subsequently adjusted to account for this phenomenon 

(Hsu et al. 2013). However, adjusting weighting to account for variations can be problematic 

as the assigned weighting is therefore not reflective of the importance, as ecosystem vitality 

has a larger weighting on face value. Weightings and importance could therefore be 

misinterpreted by users and therefore should be properly recorded and communicated. 

Likewise, without such analysis and understanding, weights that are assigned as importance 

measures may not actually perform as desired in the CI.  

2.2.3.2 Aggregation 

Two widely used options for aggregation have gained attention in the CI literature; linear and 

geometric aggregation. Linear aggregation involves a summation of (weighted) sub-indicator 

scores (usually averaged around a mean), while geometric aggregation involves aggregation 

by the geometric mean (i.e., using the product of values). 

The choice of aggregation method can be a source of model error and subjective judgement 

uncertainty as it can fundamentally alter how the CI performs. The SSI aggregates through a 

geometric mean (van de Kerk et al. 2014) and the Human Development Index switched from 

linear to geometric aggregation in 2010 (Klugman 2010), while the OHI, EPI and CCPI all use 

linear aggregation. Key considerations are: 

• Compensability –Linear aggregation allows complete compensability and geometric 

partial compensability, which means good performance in one indicator can offset 

poor performance in another. For example, consider a hypothetical subgroup of a 

biodiversity index, made up of sub-indicators for protected areas, endangered 

species and critical habitats (equally weighted). Two countries, A and B, score 9.0, 
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7.6, 0.4 and 6.8, 6.0, 4.2 respectively. If linear aggregation were used then both 

countries perform similarly, with a resulting score of roughly 5.6. However, when 

using the geometric mean, A’s overall score is reduced from 5.6 to 3.0, while B’s 

score remains at 5.6. Should no amount of compensability be acceptable and for 

weights to be truly interpreted as importance coefficients, non-compensatory 

aggregation methods should be used (Munda 2008; Munda & Nardo 2009; Munda et 

al. 2009; Cinelli et al. 2014). However, this method has seen limited use and 

therefore there has been encouragement towards multi-criteria approaches to assess 

robustness (Munda et al. 2009). Given that many CIs now provide transparency to 

indicator level, there is less importance placed on the overall score, which can be 

sensitive to aggregation.  

• Improvement of scores –An improvement in A’s critical habitat score from 0.4 to 1.4 

in our hypothetical index sees an overall improvement under the geometric mean 

from 3.0 to 4.6, and 5.6 to 6.0 under the arithmetic mean. The larger jump in the 

geometric mean could encourage focus on lower performing metrics, which may be 

beneficial from a policy perspective, but could also dissuade action on higher-

performing metrics even if those actions would be beneficial. 

• Communication – linear aggregation is more straightforward for communication and 

engagement as users can clearly trace scores from the bottom level to the top. It also 

rewards proportionally to weights, whereas geometric aggregation rewards units with 

higher scores. 

Aggregation to an overall single value is appealing for media traction and communication but 

may not always be appropriate. For example, the SSI chooses not to aggregate to a single 

figure based on the strong negative correlation of human wellbeing to environmental wellbeing 

and thus gives results for three separate composite indicators (the third being economic 

wellbeing; Saisana & Philippas 2012).  
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2.2.4 Uncertainty in Post-Development  

Communicating a composite indicator can be a complicated undertaking, which can decrease 

linguistic uncertainty if well done, or increase it by not being transparent and using confusing 

or vague language. Poor communication may mean a CI is seen as ineffectual or, worse, used 

improperly. Targeting a technical audience may mean the CI can be critiqued and iteratively 

improved, but it may not gain the desired public or political traction that a more populist CI 

would. Likewise, uncertainties can be openly presented or not discussed, but reaffirming 

complexity within a highly simplified measure is challenging for communication. 

A key challenge is whether to focus on the final single numeric output or delve deeper into the 

CI. By aggregating to a single number, composite indicators can potentially send over-

simplistic messages. The same overall score can be achieved in many different ways; one 

way to overcome this is to give attention to the categories, subgroups and potentially even 

sub-indicators. All the case study CIs presented here give more information than just ranking 

countries/overall scores. Detail is given on how scores are achieved, which sub-indicators 

make up the subgroups and how these have changed over time. The SSI offers downloads of 

the normalized scores, while the EPI and OHI offer normalized raw data and scores. CCPI 

offers a qualitative performance review for each country by category but does not discuss sub-

indicators or provide data. In all the case studies it is also unclear if or how sub-indicators and 

subgroups interact, e.g. where an increase in one might cause a decrease in another, although 

the OHI’s inclusion of pressures derived from each category (or ‘goal’) helps users understand 

potential trade-offs. Understanding linkages and interactions is potentially critical from a policy 

point of view, as it is unclear how attempts to alter the status of one particular sub-indicator or 

subgroup will affect the others. A systems modelling approach could give a starting point for 

decision makers trying to understand how interactions occur and what their consequences 

might be. 
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2.3 Navigating Uncertainty 

 

The range of uncertainties present in CI construction means there is not a single way to treat 

or represent them all (Table 2-3). Single issue solutions have been addressed in the sections 

above, but here I lay out potential approaches to improving CI construction that address 

multiple uncertainties simultaneously.  

Table 2-3: Range of uncertainties in composite indicators and how to treat them 
 

Source of 
Uncertainty 

Issue Reason for Issue Potential solution 

Theoretical 
Framework 

Is theoretical 
framework 
representative 
of the system? 

• No systematic 
process 

• Subjective 
• Lack of 

transparency 
and repeatability 

• Systems Modelling 
• Systematic expert 

judgement/stakeholder 
engagement 

• Transparency and 
iterative improvement 

Data 

Accuracy of 
data 

• Data quality 
rarely assessed 
and therefore not 
really considered 

• Data scoring/pedigree 
matrices 

• Systematic expert 
judgement/stakeholder 
engagement 

• Uncertainty analysis 

Amount of 
missing data 

• Unclear where 
data gaps are 
and number of 
them. 

• Gap filling 
methods are 
subjective 

• Transparency and 
iterative improvement 

• Uncertainty/sensitivity 
analysis 

• Advanced monte-carlo 
gap-filling methods 

Is indicator an 
accurate and 
desired 
representation 
of the system 

• Led by data 
availability, 
stakeholder or 
constructor 
values therefore 
subjective. 

• Unclear how 
indicators relate 
to system 

• Systems modelling 
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Table 2-3: Range of uncertainties in composite indicators and how to treat them 
 

Source of 
Uncertainty 

Issue Reason for Issue Potential solution 

Representation 
vs quality 

• Trade-off 
between data 
accuracy and 
missing data v 
how well it 
represents the 
system  

• Subjective 

• Transparency and 
iterative improvement 

• Systematic expert 
judgement/stakeholder 
engagement 

Data 
Normalization 

Different 
methods • Subjective 

• Transparency and 
iterative improvement 

• Uncertainty/sensitivity 
analysis 

Weighting 

Arbitrary 
weighting 

• Unclear how 
weights were 
assigned. 

• "Neutral" 
weighting still a 
weighting 
decision 

• Subjective 

• Systems modelling 
• Systematic expert 

judgement/stakeholder 
engagement 

Implicit weights 
may be 
different to 
assigned 
weights 

• Statistical 
properties mean 
assigned weights 
don't always 
work as intended 

• Correlation analysis 
• Uncertainty/sensitivity 

analysis 

Aggregation 
Different 
methods • Subjective 

• Transparency and 
iterative improvement 

• Uncertainty/sensitivity 
analysis 

Communication 
Different 
interested 
parties 

• How to 
communicate to 
public/policy 
makers/scientists 

• Transparency and 
iterative improvement 

• Multi-layered 
approach of 
engagement/analysis 

 

2.3.1 Systems Modelling 

Without a proper understanding of the system and how individual indicators represent its 

dynamics, CIs risk severe structural uncertainty and improperly informing management 

decisions. There is a lack of guidance in the literature on how to construct CI theoretical 

frameworks and as such they tend to follow general approaches such as Driving Force-

Pressure-State-Response framework (OECD 2003) or be purpose-built, often informed by 
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literature, experts or stakeholders, focussing on perceived key areas of the system which form 

the sub-categories (Nardo et al. 2008). However, the processes involved in this construction 

often go undocumented, meaning the resultant structure could be seen as arbitrary and 

techniques are impossible to replicate. Sub-categories are then populated by relevant sub-

indicators. A key feature of any environmental indicator, including CIs, is that it is able to reflect 

changes in a system. It is therefore crucial that the theoretical framework and selected sub-

indicators accurately represent the system. Without first understanding system dynamics, and 

testing the behaviour of the sub-indicators as the system changes, it is impossible to know if 

the chosen CI sub-indicators do accurately reflect the system. This means it is not clear 

whether changes in the sub-indicators are reflecting real system change, or whether critical 

data gaps exist which could impact on the ability of the CI to track system change. 

Systems modelling is an effective approach to representing understanding and thus provides 

a systematic, transparent and repeatable way to aid sub-indicator selection and theoretical 

framework development. This approach defines variables or processes which are most 

important to a system's dynamics, and their interactions, thereby mapping the system and the 

linkages within it (Niemeijer & de Groot 2008b).  Using quantitative modelling approaches to 

select indicators is well explored in environmental science and is seen as one of the most 

effective methods of understanding how indicators respond to change. It has been suggested 

or used as an approach for selecting indicator sets in forest management (Brang et al. 2002; 

Mäkelä et al. 2012) and commonly used for testing and refining indicators in fisheries (Fulton 

et al. 2005; Branch et al. 2010).  Complex social-ecological models such as ‘Atlantis’ (Fulton 

et al. 2011a) can provide a basis for understanding systems and picking out key indicators to 

be included in a CI. Once sub-indicators have been selected, a systems model could be 

altered based on policy options to test how CIs react to underlying changes in the data; CIs 

are then able to be validated and act as a decision making aid (Nicholson et al. 2012).  

However, given CIs often aim to represent highly complex concepts or systems, quantitative 
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models might not be available, or qualitative conceptual and/or expert-based models may be 

more appropriate.  

Qualitative modelling approaches, which map out a system diagram, have proved useful 

frameworks, for example in indicator selection for sustainable tourism (Margoluis et al. 2009;),  

fisheries (Vugteveen et al. 2015), land use change (Benini et al. 2010; Van Oudenhoven et al. 

2012), land degradation (Gisladottir & Stocking 2005; Agyemang et al. 2007), urbanization 

(Jago-on et al. 2009) and water management (Chung & Lee 2009). Conceptual modelling like 

this allows stakeholders to come together and help develop the model, which enables sharing 

and inclusion of perspectives and values. A conceptual systems model can be used to select 

indicators by first defining clearly a concrete question to be answered. In the case of CIs, this 

is likely to be broad (i.e. measuring sustainability of countries) but could also be very specific 

(i.e. the effect of increasing protected areas on biodiversity). Broader questions will naturally 

require indicators that span multiple issue areas and will not be as fine-tuned as those that 

are selected to help track more specific questions; indeed, specific questions may require 

more detailed construction of the systems model. In order to select indicators, nodes must first 

be identified: Root nodes which have many outgoing arcs typically provide information on 

sources of issues; central nodes with many incoming and outgoing arcs are usually important 

for the most general of indicators as they provide information on many issues; end of root 

nodes with many incoming arcs allow the gauging of multiple issues at once. These nodes 

can then provide guidance on the types of indicators that are required to answer the question. 

Niemeijer & de Groot (2008a) provide a detailed example using this approach to select 

indicators for ecological impact of nitrogen fertilization on surface waters. Such an approach 

could then allow CIs as a means to track specific issues, by using the systems model to pull 

out sub-indicators relevant to a specific issue. A systems model means indicators are not 

selected arbitrarily, have a wider and understandable function and can be interpreted 

effectively, minimising the risk of incorrect analysis.  
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A system model could also inform weightings by pinpointing those system areas that are more 

central or peripheral, meaning final weights could be selected by an informed systems 

approach, thereby constraining uncertainty.  Selected sub-indicators found to be suboptimal 

due to data issues could be highlighted, aiding in representing uncertainty as well as showing 

key data gaps that should be filled in order to have a more robust understanding of the system. 

Starting with a systems approach could help balance the current top-down framework creation 

and reduce arbitrary indicator selection.  

Of course, in a CI, subgroups are often based on stakeholder values or perceptions, and this 

is recognised as an important facet of CIs. While stakeholder engagement is always important, 

it is particularly critical where highly complex models include large amounts of uncertainty or 

system dynamics are unclear. I therefore encourage an iterative back-and-forth approach 

between the modellers who can point to expected important variables based on their system 

models and stakeholders who can likewise do the same based on societal values.  

2.3.2 Systematic expert judgement and stakeholder engagement 

Expert-led or stakeholder-participation approaches and are often used for CI construction, but 

with little information supplied on how or why decisions were made. This lack of transparency 

means the results of engagement are often unknown and methods unrepeatable.  Structured 

elicitation of knowledge from experts is well explored and can be a powerful tool if used 

correctly. Key lessons include; elicit knowledge from groups rather than individuals, carefully 

choose members, strive for group heterogeneity, calibrate and weight experts, train experts, 

and give feedback (Burgman et al. 2011a, 2011b; Sutherland & Burgman 2015). Using these 

techniques opens up many options throughout constructing a CI; such as providing judgement 

on theoretical framework and sub-indicator selection, estimating data accuracy by providing 

bounds or data scoring, providing guidance on weighting and help with communication and 

analysis of results. McBride et al. (2012) demonstrate how such techniques were applied to 

the IUCN Red Listing of Australian birds in order to reduce bias and error amongst experts. 
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Furthermore, their elicitation was carried out online, showing that lengthy and costly 

workshops do not always have to be undertaken. 

Stakeholder engagement is important for ensuring that the CI is useful for the intended 

audiences, and should be done at an early stage and throughout CI development and 

implementation. The more diverse the perspectives involved in developing the conceptual 

framework and exploring sub-indicator selection, the more likely it is to represent meaningful 

reality for the end users (Burgman et al. 2011b; Fulton et al. 2011b). This engagement can be 

more difficult when large numbers of different types of stakeholder are involved. Even at the 

global scale, representatives of particular groups can be consulted. Stakeholder input can be 

particularly vital, however, when CIs are used at more regional or local scales. Systematic, 

recordable techniques are useful in order to document engagement outcomes. Halpern et al. 

(2013) used such methods (based on random utility theory and analytical deliberation) to elicit 

stakeholder preferences for indicator weighting in the OHI in a regional assessment of the 

California Current. However, such a task was considered by Halpern et al (2013) to be 

unworkable on a global level as the range of preferences would be so vast. Indicators tend to 

be less successfully utilised when they are purely scientific; involving stakeholders and leaving 

room for negotiation in CI construction can be highly beneficial in the messy situations CIs 

tend to be needed for (Turnhout et al. 2007).  

2.3.3 Statistical coherence and robustness 

The combined use of uncertainty and sensitivity analysis for CIs is well explored within the 

literature but is still not universally applied (Saisana et al. 2005; Munda et al. 2009; Paruolo et 

al. 2013). Uncertainty analysis focuses on how uncertainty in inputs, such as poor data or 

subjective construction choices about aspects like the weighting scheme, propagates through 

the CI to affect outputs. Results are usually represented by uncertainty bounds around output 

values. Sensitivity analysis looks at how each individual source of uncertainty contributes to 

this variation, and has been used to investigate the robustness of several CIs, including the 
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SSI and EPI. The latest report on the EPI (Athanasoglou et al. 2014) found that three of the 

nine issue areas did not contribute significantly to EPI ranking, suggesting that changes to 

these indicators should be made. Aggregation function choice was found to account for 94% 

of sample variance, whilst choice of weighting for the objectives only accounted for 4%. This 

suggests that further discussions surrounding methodological choice should focus on 

aggregation method rather than weighting. Ninety percent of SSI countries shifted less than 

±1 position with respect to the simulated median, suggesting that the 2012 SSI is not unduly 

driven by methodological assumptions (Saisana & Philippas 2012). The OHI and CCPI have 

yet to undertake uncertainty/sensitivity analyses, although they are planned for the OHI. 

The combined use of uncertainty and sensitivity analysis provides an evaluation of confidence 

in the mathematical properties of the CI, assessing uncertainties associated with the 

construction process. This can help with many of the methodological decisions I highlight. 

However, uncertainty and sensitivity analyses only deal with a limited part of the uncertainty 

surrounding CIs. For example, they can show how rankings change based on the 

methodological choices made, or if any bias is present. They cannot, however, detect whether 

indicators are measuring what they intend to, or whether the CI represents overall system 

dynamics.  

2.3.4 Communication and transparency 

A key benefit of CIs is their ability to communicate issues clearly, to a wide audience, by 

aggregating sub-indicators to a single figure. However, many CIs act as more than a 

communication tool and are used for tracking trends and decision making. This simplistic 

output of a single number or score then becomes problematic, as some parties will not believe 

in complete aggregation as an approach to summarising complex and interacting systems. 

The deeper a CI can be explored, the more useful it will be for technical audiences. Therefore, 

complete transparency to sub-indicator level, including documentation of the issues covered 

here is desirable, which is not usually the case (Freudenberg 2003; Munda 2005; Böhringer & 
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Jochem 2007; Singh et al. 2009). Users such as scientists and management authorities may 

require different or more detailed information, particularly related to how sub-indicators were 

selected, how they interact, where data gaps are found and why methodological decisions 

were made. This information is necessary for management, can ensure CIs are quality 

checked appropriately through peer review, and supports their iterative development. 

Transparency should involve acknowledging the methodological decisions made during 

construction and the rationale for employing certain methods over others. 

All CIs in Table 2-1 provide detailed documentation on their methods and results in an 

accessible format through their website. Currently, however, none of them discuss uncertainty 

beyond the uncertainty and sensitivity analysis performed for the EPI and SSI. This limits 

constructive criticism and improvement. Given the variation in sources of uncertainty and 

methods of treating them, communicating these effectively becomes problematic. Those who 

solely use CIs for their most simplistic numeric output are unlikely to be interested in the 

technical uncertainties. Attempting to communicate these uncertainties might dilute the 

effectiveness of CIs themselves. Therefore, although uncertainty considerations are critical, I 

believe they should be reserved for more technical audiences.  

2.4 Future Considerations 

 

Environmental CIs are increasingly produced, but have often been criticised for their lack of 

acknowledgement and treatment of uncertainty (Böhringer & Jochem 2007; Jørgensen et al. 

2013; Giampietro & Saltelli 2014). I have provided a comprehensive assessment of the 

sources of uncertainties and methods to treat, represent or reduce them. Articulation and 

treatment of uncertainty within CIs is underdeveloped; how it is accounted for will depend on 

individual CIs’ aims and audiences. Transparency and acceptance of uncertainty may be 

sufficient in some CIs, but others may require reworking of sub-indicators and construction 

methods. I hope this framework can act as a basis for considering uncertainty at each stage 
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and recording not only why certain decisions were taken, but why others were not. Choices 

are unavoidable during CI construction but should always be acknowledged.   

The focus to date on mathematical techniques for dealing with uncertainties in CIs has meant 

the role of the theoretical framework and sub-indicator selection has received less attention. 

Approaches such as systems modelling are fundamental for proper selection and grouping of 

indicators and their interactions, if a CI is properly to represent reality. This would also increase 

their usefulness in a policy setting, by testing policy scenarios and selecting specific sub-

indicators to help answer more explicit questions. Importantly, development of a CI should be 

an iterative process. Expressing the location and importance of different types of uncertainty 

can then be a catalyst for new data collection or conceptual development that is targeted at 

reducing the most influential uncertainties. Communicating these uncertainties may need to 

be done separately from the public-facing communication of the main CI, so as to not dilute 

its impact. However, there is much scope for novel, simple and clear techniques for 

communicating uncertainties effectively to technical audiences who require such information. 

This will build trust in CIs and thereby enhance their ability to support decision-making.
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3 A PAN-ARCTIC ASSESSMENT OF THE STATUS OF MARINE SOCIAL-
ECOLOGICAL SYSTEMS 

3.1 Introduction 

 

Arctic ecosystems are experiencing profound physical, ecological and social changes, driven 

largely by a warming climate and increasing economic development (Hovelsrud et al., 2011; 

Wassmann et al., 2011). There is a need to establish a baseline of the biophysical and socio-

economic dimensions of ocean ecosystems across the Arctic, which can then be used to assess 

the consequences of future change (IOC/UNESCO 2010). Such baseline assessments are 

necessary to support strategic and evidence-based decisions for conservation and economic 

investment through Ecosystem-Based Management (Elliott 2014). Tools such as the Ocean Health 

Index (Halpern et al. 2012) can help provide a framework for collating and analysing a wide breadth 

of baseline data to facilitate management (Borja et al. 2016).   

Each Arctic state above the Arctic Circle (Russia, Canada, USA, Norway, Denmark [Greenland]) 

responds to and manages its Arctic areas through its own national governance system. However, 

many issues are transboundary in nature, requiring co-management and collaboration (Van Pelt 

et al. 2017). For example, Arctic ecosystems support globally significant fisheries, with many 

species already undergoing range shifts and changes in abundance, growth and phenology 

(Wassmann et al. 2011; Pinsky et al. 2018). Also, shipping through the Northern Sea Route is 

increasing annually (Northern Sea Route Information Office 2013), with future projections signalling 

exponential increases (Smith & Stephenson 2013).  Yet while there is some international 

cooperation through bodies such as the Arctic Council, there have been few legally binding 

commitments across nations to collectively and systematically manage the challenges facing the 

Arctic marine areas. Such examples are limited to international agreements on oil spill 

preparedness, search and rescue at sea, and the Oslo Declaration preventing fishing in the 

currently ice-covered central Arctic Ocean (Baker & Yeager 2015; Molenaar 2015).  A review by 

Protection of the Arctic Marine Environment (2013), an Arctic Council working group, found that 
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there was a need for further coordination across institutions (e.g., monitoring conducted on a polar-

wide basis using consistent methods, with central data storage) and further cooperation and 

knowledge-sharing between Arctic countries and institutions.  The current disconnect in monitoring 

and policy at the pan-Arctic scale ‘limits the ability to efficiently make effective management 

decisions’ (CAFF 2014). Ultimately it recognised that there is a need to amend existing instruments 

or develop new ones to strengthen governance for the conservation and sustainable use of the 

Arctic marine environment.  

The Ocean Health Index (OHI) is a tailorable marine assessment framework to comprehensively 

and quantitatively evaluate ocean health (Halpern et al. 2012; ohi-science.org). It is increasingly 

being used to help guide thinking around marine management, particularly in data-limited areas, 

by providing a structure to analyse data availability (Lowndes et al. 2015). I performed an OHI 

assessment for the Arctic to bring together disparate data and establish an initial baseline of social-

ecological conditions, with a focus on highlighting areas of potential concern (both geographically 

and by goal), exposing data uncertainties, and highlighting potential interactions between marine 

management goals and short and long-term outcomes. I discuss the results in the context of future 

management and decision-making in the pan-Arctic region. Like the OHI (Lowndes et al. 2017), 

the Arctic OHI (AOHI) is a flexible framework with accompanying open software, and can be 

iteratively improved over time as better data becomes available or stakeholder values are more 

comprehensively included.  

3.2 Methods 

 

3.2.1 Pan-Arctic Region 

Many different definitions of the Arctic exist, with boundaries defined by physical delineations (e.g., 

climate), latitude, extent of continuous permafrost or sea ice, treeline, or geopolitical borders 

(Maher 2007). Indeed, spatial delineations of the Arctic even differ between Arctic Council Working 

Groups (Koivurova 2010). I used Exclusive Economic Zone (EEZ) boundaries that fall above the 
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Arctic Circle as the primary filter for developing an Arctic OHI (AOHI) that can feed into national 

and international monitoring and policy efforts across the Arctic, with the exception of Southern 

Greenland which was included because data reported for Greenland often included this area 

(Figure 3-1; Table A2-1).  I excluded the high seas regions because I chose to focus on comparing 

national Arctic EEZs for management potential. I call this case study region the pan-Arctic area. 

I further subdivided the Norwegian, Greenland and Canadian EEZs based on defined management 

areas and scales of data reporting. I could not subdivide Russia’s Arctic region, despite it being the 

largest of all countries, due to Russia’s marine governance structure, which is managed centrally 

and thus limited data was available at sub-national scale for many goals.  

 

Figure 3-1: Pan-Arctic Region 

3.2.2 Index Calculations 

The OHI framework and methods are detailed extensively in the literature and public domains 

(Halpern et al., 2012, 2015, 2017; ohi-science.org); here I present a brief overview and focus on 
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changes and new approaches instituted for the AOHI. The OHI is based on assessing the status 

of an area against a set of goals, which represent key values and benefits people hold and want 

from a healthy ocean (Table 3-1). A healthy ocean is defined as one that sustainably delivers a 

range of benefits to people now and in the future (Halpern et al. 2012). A key design element of 

the OHI is that it can be adapted to fit different scales and incorporate different values and benefits 

into its goals, depending on the location and aim of the assessment (Lowndes et al. 2015); for 

example, OHI assessors determine the number of goals to be evaluated depending on the region 

of interest and the aspects of ocean health relevant to that region. Numerous OHI assessments 

have been completed all over the world (Halpern et al. 2013b; Elfes et al. 2014; Selig et al. 2015; 

Daigle et al. 2017; Longo et al. 2017), with many more in progress. Relative to the global 

assessment, localised assessments are able to take advantage of higher-resolution data, more 

locally relevant reference points, and goals adapted to local values (Daigle et al. 2017). Where 

localised data are unavailable, regional assessments can use existing country-level data from the 

global OHI. 

The OHI is calculated by combining individual indicators via a structured framework designed to 

measure progress toward optimal sustainable delivery of each of the goals (four of which are further 

subdivided into sub-goals). For the AOHI, I assess 9 of 10 goals in the global OHI, with Carbon 

Storage not assessed due to lack of data for calculating a meaningful indicator (Table 3-1). Each 

goal and sub-goal is measured on a scale of 0-100, with 100 being the highest possible score. 

Each goal score, 𝐺𝑖, is calculated as the average of the current status, 𝑥𝑖, and the likely future 

status, 𝑥𝑖,𝐹: 

𝐺𝑖 = 𝑥𝑖 + 𝑥𝑖,𝐹2  

(Eq. 1) 
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Current status measures the most recent year’s performance relative to a reference point of the 

highest sustainable performance for that goal. Likely future status captures the near-term (five 

years from current status) future performance for the goal based on recent trend in status, (𝑇𝑖, 
calculated as the slope in the change of the status score of the previous five years), pressures that 

can threaten the delivery of each goal 𝑝𝑖), and resilience factors (ri) which can mitigate these 

pressures. 

 𝑥𝑖,𝐹 = [1 + 𝛽𝑇𝑖 + (1 − 𝛽)(𝑟𝑖 − 𝑝𝑖)]𝑥𝑖 
(Eq. 2) 

Following Halpern et al. (2012), 𝛽 represents a weighting factor of 0.67, giving trend twice the 

importance compared to pressure and resilience terms, reflecting the better indication of near-term 

trajectory that trend provides. Resilience typically measures policies or international conventions 

to which regions are or are not party, but also includes ecological and socio-economic resilience. 

For climate change-related pressures, resilience layers were set as zero for the AOHI, as no 

resilience measures adequately offset the pressures of climate change in the Arctic (Bennett et al. 

2015). See Table A2-2 and A2-3 for pressure and resilience matrices.  

I calculated the overall regional AOHI scores as an equally weighted average of goal scores 

because, given the heterogeneity of people and environments across the Arctic, determining 

weightings would be a substantial undertaking and outside the scope of this study. Furthermore, I 

focus on results comparing goals and regions to avoid focus on higher aggregation and weightings.  

Weightings could be altered in the future based on stakeholder consultations (Halpern et al. 2014; 

Daigle et al. 2017). Finally, the overall AOHI score was derived using an area-weighted mean of 

scores for each region within the assessed area. Below I describe the data and methods used to 

calculate AOHI scores. All original data, scripts used for processing, final data layers and goal 

models are open access and freely available online at https://github.com/OHI-Science/arc. The 

AOHI was calculated using the R package ‘ohicore’  (Ocean Health Index 2016).

https://github.com/OHI-Science/arc
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Table 3-1: Goal by goal overview of the Arctic OHI. Details of any differences from the global OHI are discussed in the text. 
 

Goal Sub-goal Reference Point Model 
different 
from 
Global 
OHI? 

Data Regions included* 

Food 
Provision 

Fisheries All stocks fished at levels that 
afford maximum sustainable 
yield. 

N  Spatial fisheries data from the Sea 
Around Us Project (Pauly & Zeller 
2015) 
 

All regions 

Mariculture 95th percentile of best 
performing region 

N Norway production data from Arctic 
counties. Russian Arctic production 
data from Food and Agriculture 
Organisation (FAO 2011-2017). 

Arctic Norway, Russian Arctic 

Clean 
Waters 

 Zero nutrient and chemical 
pollution, pathogens and 
marine debris 

N Spatial data for each pollution type 
from global assessment (Halpern et 
al. 2015) 

All regions 

Coastal 
Economies 
and 
Livelihoods 

Coastal 
Economies 

Moving window of revenue 
values over previous 5 years  

N Marine sector revenue data for each 
region, limiting to Arctic areas where 
possible. Revenue data purchasing 
power parity (PPP) adjusted for 
comparison across regions 

Arctic Alaska, Canadian 
Beaufort Sea, Nunavut, 
Russian Arctic, Arctic Norway, 
Svalbard, W. Greenland, E. 
Greenland. 

Coastal 
Livelihoods 

Moving window of number of 
jobs and average wages over 
previous five years. 

N Marine sector employment and 
wage data found for each region, 
limiting to Arctic areas where 
possible. Wage data PPP-adjusted 
for comparison across regions  

Arctic Alaska, Canadian 
Beaufort Sea, Nunavut, 
Russian Arctic, Arctic Norway, 
Svalbard, W. Greenland, E. 
Greenland. 

Sense of 
Place 

Iconic 
Species 

All iconic species at Least 
Concern on IUCN Red List 

N Pan-Arctic iconic species; those 
included on the WWF Iconic 
Species list and the Arctic 
Biodiversity Trends Indicator 
Species.  
 

All regions 
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Table 3-1: Goal by goal overview of the Arctic OHI. Details of any differences from the global OHI are discussed in the text. 
 

Goal Sub-goal Reference Point Model 
different 
from 
Global 
OHI? 

Data Regions included* 

Local iconic species selected for 
each region through literature 
review. 

Protected 
Places 

30% of coastal areas (within 
3nm and 1km inland) under 
protection (as defined by 
World Data Base for Protected 
Areas (WDPA) 

Goal 
definition 
changed 

WDPA (IUCN & UNEP-WCMC 
2017) 

All regions 

Coastal 
Protection 

 Average extent of shoreline 
sea ice 1979-2000 

N Spatial shoreline sea ice data from 
NSIDC. 
(Cavalieri et al. 2015) 

Arctic Alaska, Canadian 
Beaufort Sea, Nunavut, 
Russian Arctic, Arctic Norway, 
Svalbard, W. Greenland, E. 
Greenland. 

Marine 
Mammal 
Harvest 

 Sustainable harvest of marine 
mammals: Catch/Catch Limit = 
1 

Y, 
replaces 
global 
Natural 
Products 
goal  

Marine mammal harvest data and 
corresponding quota or potential 
biological removal for each region. 

Arctic Alaska, Nunavut, 
Russian Arctic, Norway, Jan 
Mayen, W. Greenland, E. 
Greenland. 

Biodiversity Habitats Sea ice: No loss of sea ice 
habitat compared to average 
extent 1979-2000 
Soft bottom: Inverse 
relationship to 95th percentile 
of highest global trawl density 

N Sea ice: Spatial sea ice data from 
NSIDC (Cavalieri et al. 2015) 
Soft bottom: Trawling density maps 
(Halpern et al. 2015) 

All regions 

Species All assessed species at Least 
Concern on IUCN Red List 

N IUCN Red List spatial data (IUCN 
2017) 

All regions 
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Table 3-1: Goal by goal overview of the Arctic OHI. Details of any differences from the global OHI are discussed in the text. 
 

Goal Sub-goal Reference Point Model 
different 
from 
Global 
OHI? 

Data Regions included* 

Artisanal 
Needs 

 Sea Ice: Average overall sea 
ice extent 1979-2000 
 
Marine Mammals: Artisanally 
targeted marine mammals all  
Least Concern on International 
Union for Conservation of 
Nature (IUCN) Red List 
 
Fisheries: Artisanally targeted 
species have sustainable 
stocks (B/BMSY = 1). 
 

 
 
 
 
Y, goal 
altered 

Sea Ice: Spatial sea ice data from 
National Snow and Ice Data Centre 
(NSIDC) (Cavalieri et al. 2015) 
 
Marine Mammals: IUCN Red List. 
(IUCN 2017) 
 
Fisheries: Artisanal catch data from 
Sea Around Us Project. (Pauly & 
Zeller 2015) 

Arctic Alaska, Canadian 
Beaufort Sea, Nunavut, W. 
Greenland, E. Greenland, 
Arctic Norway, Russian Arctic 

Tourism  90th percentile of region best 
performer 

N Tourism employment data Arctic Alaska, Canadian 
Beaufort Sea, Nunavut, 
Russian Arctic, Arctic Norway, 
Svalbard, W. Greenland, E. 
Greenland. 

*Regions are excluded from certain goals due to lack of relevance for that region (i.e. Jan Mayen is uninhabited and so many human-oriented 
goals are not included) 
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3.2.3 Arctic Ocean Health Index Goal Calculations 

Given the scale and heterogeneity of the region and to facilitate comparisons across these 

scales, most goal models and reference points were not changed from methods used in global 

assessments (Halpern et al. 2017), except for two new goals, Marine Mammal Harvest and 

Artisanal Needs, which were adapted Natural Products and Artisanal Opportunities goals to 

better suit the Arctic region (Table 3-1). An overview and key details on all goals are provided 

below (with expanded detail in Appendix 2); greater detail is provided for the two goals that 

were adapted for this assessment. Data sources are listed in Table 3-1 and a full list of data 

layers can be found in Table A2-4. 

The AOHI focusses on the Arctic region, including partial coastlines of several nations. This 

scale results in added complexity because many data sources are reported at national-level 

resolution, and so cannot be directly used. For example, data for the entire USA are not 

representative of the North Arctic Alaskan coast, as they represent all USA regions. 

Furthermore, the large study area and heterogeneity of the region made obtaining data 

challenging; when local data were not available or not comparable across all Arctic regions, I 

often used global spatial data refined to the Arctic region (detailed below). In tailoring the 

assessment to the Arctic, I was able to replace or adapt 74% of the data layers (n=81) to be 

specific to the Arctic. The unchanged 26% mainly consisted of resilience scores for national-

level factors, such as whether each country was a signatory to the Convention on International 

Trade of Endangered Species (CITES).  

Due to difficulties and gaps in monitoring the Arctic, pan-Arctic datasets are likely to contain 

many uncertainties or errors which could affect the results of the AOHI. It is beyond the scope 

of this work to fully assess and account for these possible sources of uncertainty (Burgass et 

al. 2017). As an example to help illustrate and understand how uncertainty might affect results, 

I recalculated the Fisheries sub-goal of Food Provision using a different source dataset for 

fisheries catch. 
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3.2.3.1 Food Provision 

This goal intends to capture whether seafood provisioning potential is sustainably maximised 

in each region, through both wild harvest (Fisheries sub-goal) and cultivation (Mariculture sub-

goal). The two sub-goals are combined to give an overall score for Food Provision, weighted 

by their tonnage contributions. 

Fisheries 

The Fisheries sub-goal is based on the amount of wild-caught seafood that is sustainably 

caught within the study area. I used data for this goal taken from the Sea Around Us Project 

(www.seaaroundus.org), which reconstructs catch data and spatially distributes catch across 

the world at half-degree resolution (Watson et al. 2004; Pauly & Zeller 2016). In line with 

(Halpern et al. 2015c), I used catch data to calculate B/BMSY
1
 as a measure of stock status 

when stock assessments were not available, and penalized scores when taxa were not 

reported at species level to highlight a potential lack of adequate species-level management. 

Finally, I calculated overall status as the mean of the stock status scores, weighted by the 

average overall catch in that area, across the time series (see Appendix 2). I also used an 

alternative fisheries dataset, from Watson (2017) to test the sensitivity of results to the data 

used. These data are spatially disaggregated catch data at 0.5 degree cells, similarly 

presented to the Seas Around Us dataset. As such I processed the data in a similar manner 

and ran this through the AOHI to see how scores might change.  

Mariculture 

The Mariculture sub-goal assesses the sustainability and production of ocean-farmed 

seafood. Mariculture currently only occurs in Norway and north-west Russia, which were the 

only two regions to include this sub-goal. I estimated sustainability of production based on 

Trujillo (2008), as has been done in other OHI studies (see Appendix 2). The goal model 

                                                
1 For a particular fish stock, the ratio of observed biomass (B) to the biomass that would provide 
maximum sustainable yield (BMSY). When B/BMSY = 1, then biomass equals BMSY. If B/BMSY falls below 
1, biomass is too low to provide maximum sustainable yield. 

http://www.seaaroundus.org/
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calculates status as the mariculture yield multiplied by sustainability coefficient and normalised 

by coastal population, which is necessary for undertaking aquaculture. Arctic aquaculture is 

limited and a global reference point would not be appropriate, so a regional reference was set 

as the 95th percentile of the top performing region, Norway. While this currently only includes 

two regions, the expansion of aquaculture in to new regions in the future means the same 

reference can be used for repeat assessments. 

3.2.3.2 Clean Waters 

The objective for the Clean Waters goal is to maintain the ocean free of contamination, 

pathogens and anthropogenic nutrient enrichment, for both recreation and environmental 

health. This goal used four types of pollution data: trash (marine plastics), chemical (runoff, 

shipping and ports), pathogen (sewage waste) and nutrients (land-based inputs). I refined  

each of these global data layers (Halpern et al., 2015) at the 1km2 raster level to only include 

areas within the AOHI and scaled each raw pollution data layer from 0 to 1, with 1 indicating 

the highest level of global pollution (Halpern et al. 2015a). I calculated goal status for each 

region by determining mean rescaled score for each pollution type, subtracting the mean 

rescaled pollution scores from 1, and combining the four scores using a geometric mean.  

3.2.3.3 Coastal Livelihoods and Economies 

This goal tracks the number and quality of jobs and the amount of revenue produced from 

marine-related industries and sectors through two sub-goals, Livelihoods and Economies. A 

score of 100 reflects productive coastal economies that avoid the loss of ocean-dependent 

livelihoods while maximizing livelihood quality. 

Livelihoods 

This sub-goal describes livelihood quantity and quality for people living on the coast. The 

livelihoods subgoal includes two equally weighted sub-components; the number of jobs, which 

is a proxy for livelihood quantity, and the per capita average annual wages, which is a proxy 
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for job quality. I obtained job and wage data for marine sectors from within each region at as 

fine a scale as possible (Table A2-7 and A2-8), and then aggregated it by region (e.g. Arctic 

Alaska data aggregated from Northwest Arctic Borough and North Slope Borough statistics). 

Wages were then adjusted using Purchasing Power Parity (PPP) which enables direct 

comparison between nations and across years. As per Halpern et al. (2017), the reference 

point for jobs is a temporal comparison using a five-year moving reference value, in which a 

score of 100 indicates that the number of marine jobs in a given area has not declined relative 

to five years previously. Similarly, for wages, a score of 100 means the adjusted wage has not 

declined relative to the highest average annual wage observed across all reporting units five 

years previously. 

Economies 

The Economies sub-goal captures the economic value associated with marine industries 

based on reported revenue from marine sectors. I obtained revenue data for marine sectors 

across the Arctic (see Table A2-9). Values were adjusted by PPP, and as for livelihoods, the 

reference value was a moving target temporal comparison. A score of 100 indicates that 

revenue has not decreased compared to its value five years previous. 

3.2.3.4 Sense of Place 

The Sense of Place goal aims to capture the desire to preserve areas and species that 

contribute to peoples’ connection to the oceans. This connection might arise from socio-

cultural values which local communities have for traditions tied to the existence of these places 

or species, or from the existence of species or locations that are iconic to a wider public, 

though they may never be experienced directly.  

Iconic Species 

Iconic marine species fell into three categories: 1) Those that are considered globally iconic 

were taken from the WWF Global Priority and Flagship species list and are selected for all 
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regions in which they occur, or 2) Those that were considered regionally iconic were taken 

from CAFF (2010) who identified species that were of wide relevance to indigenous or local 

people across the Arctic and 3) Those that are locally iconic for cultural or social reasons, 

which may differ between regions. Locally-iconic species were selected based on a review of 

grey literature to help synthesise and identify which species were culturally important for each 

region. Determining what is iconic is ultimately subjective, but methods such as those used by 

Daigle et al. (2017), who defined iconic species as those that appear on Canadian coins in 

their Canadian OHI assessment, or Roll et al. (2016) who investigated cultural importance of 

reptiles through internet interest, show that more systematic methods are possible. Iconic 

species selected for each region can be found in Table A2-9. The average conservation status 

of these iconic species (from the International Union for Conservation of Nature (IUCN) Red 

List) was converted to a numerical score (see Table A2-13), with the reference point equal to 

having all these species listed as Least Concern. Given the plethora of species that could 

potentially be considered iconic across the Arctic, a more systematic and locally-driven 

selection process would be beneficial in the future. 

Protected Places 

I altered the name of this goal slightly to focus on ‘Protected Places’, rather than ‘Lasting 

Special Places’ found in other OHI assessments, although it is assessed in the same way. 

This name change was due to the lack of information related to what areas might be 

considered special in the Arctic, and the fact that many of these areas might be unsuitable for 

protection given their cultural importance as fishing and hunting grounds. I scored this goal by 

comparing the amount of protected area within 3 nautical miles offshore and 1 km inland, as 

defined by the World Database on Protected Areas (WDPA), compared to a reference point 

of 30% of the total area protected. 
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3.2.3.5 Coastal Protection 

This goal assesses the amount of protection provided by marine and coastal habitats against 

erosion to coastal areas. In the global assessment, saltmarsh, coral, mangrove and sea ice 

habitats are all assessed, while in the Arctic the main habitat offering coastal protection 

benefits is sea ice. In the AOHI I assessed the current amount of shoreline sea ice (averaged 

over the previous 3 years to help reduce the impact of natural variation) compared to the 

reference condition (average sea ice extent between 1979-2000).  

3.2.3.6 Marine Mammal Harvest 

This goal is analogous to the Natural Products goal that is assessed globally, in that it aims to 

measure the sustainable harvest of non-food marine resources – in this case the harvesting 

of marine mammals for furs, ivory and other resources, which is an important activity 

commercially and culturally across the Arctic (Hovelsrud et al. 2008). While marine mammals 

are also eaten, this is not a sole reason for their exploitation and thus I do not count marine 

mammal harvests under the Food Provision goal. Accurate and repeated measures of sub-

population sizes are not available for many Arctic marine mammals, which are actively hunted, 

making construction of a meaningful indicator challenging (Laidre et al. 2015). I therefore only 

considered species for which either a quota (assumed to be sustainable) or potential biological 

removal (PBR) rate was available (Table A2-12); these tended to be pinniped species which 

haul out of the water, making population estimates easier. Several whale species are hunted 

by Arctic communities under aboriginal quotas issued by the International Whaling 

Commission (IWC). These are issued over a five-year period, rather than annually, and the 

current quotas are operational until 2018, at which point they can be properly assessed for 

under- and overharvest. I do not include these whale species in this iteration of the AOHI, but 

assessing a wider array of species than just pinnipeds would provide a more comprehensive 

understanding of the status of marine mammal harvest across the Arctic. I calculated the goal 

status as the ratio of current harvest compared to the current reference point (quota or PBR), 
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similar to the natural products goal for the Southern Ocean OHI assessment (Longo et al. 

2017).  

A Catch per Catch Limit score (C/CL) was initially calculated to determine landings relative to 

the quota or PBR (catch limit) for each region and year: 

𝐶/𝐶𝐿 = 𝑐𝑎𝑡𝑐ℎ𝑐𝑎𝑡𝑐ℎ𝑙𝑖𝑚𝑖𝑡 
(Eq. 3) 

These values were then converted to a stock status score (S’), which ranges from 0 to 1 

(Figure 3-2), and penalized for over- and under-harvesting (although over-harvesting is more 

harshly penalized). The lowest value that can be obtained when the catch is lower than the 

catch limit (i.e. under-harvest) is 0.25 as under-harvesting can be beneficial to rebuild 

populations.  A buffer range of 0.9 to 1.1 was established around a C/CL score of 1.0 to 

account for uncertainty and fully reward regions aiming to meet quotas. If a region contains 

more than a single species of hunted marine mammal, then scores were averaged across 

species.  
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Figure 3-2: How stock status score was generated from the Catch per Catch Limit score 

(Equation 3) for Marine Mammal Harvest 

 

3.2.3.7 Biodiversity 

The Biodiversity goal captures the preservation of biodiversity for its aesthetic, existence, and 

supporting service values into the future. Biodiversity is measured through two proxy sub-

goals, habitats and species. Monitoring biodiversity on a pan-Arctic scale until recently has 

been disjointed and non-standardised, meaning I relied heavily on global data. With the launch 

of the Circumpolar Biodiversity Monitoring Plan, this is a goal which hopefully can be improved 

in the future (M.J. Gill, et al. 2011) . 
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Habitats 

Soft-bottom habitat and sea ice were the only habitats for which data exist across the entire 

assessment region, signalling a requirement for greater monitoring of Arctic marine habitats. 

Habitat condition for soft bottom subtidal habitat was estimated using a proxy based on the 

intensity of trawl fishing relative to soft bottom subtidal habitat area (see Appendix 2). Sea ice 

condition was estimated by comparing the average extent of all current sea ice edge 

(averaged over the previous 3 years), compared to the reference point of the 1979-2000 

average extent. 

Species 

Species status data come from the IUCN Red List, which assesses entire taxonomic groups 

in categories of threatened status. Thus, the reference point for this goal is to have all 

assessed species in the region with an extinction risk status of Least Concern, scaled so that 

a score of zero is reached when 75% of species are extinct (following Halpern et al. 2012). 

Species distributions were determined using IUCN (IUCN 2017) and Aquamaps (Kaschner et 

al., 2015) species range maps. Species scores (Table A2-13) were averaged for each 0.5-

degree cell, and then cell scores were averaged for each region (adjusting for the area of the 

raster cell and number of species present within the cell).  

3.2.3.8 Artisanal Needs 

This goal was altered from the original ‘Artisanal Fishing Opportunities’ following the approach 

taken by Daigle et al. (2017), who changed the goal to a more Canadian-centric approach. As 

such, this goal assesses what is required from the ocean to allow people to hunt and fish 

artisanally. I recognised three broad themes to assess this: 

1) Shoreline sea ice extent – fluctuating and/or diminishing shoreline sea ice can 

physically restrict access for artisanal hunters and fishers and can shift species 

distributions, making them harder to track (Laidler et al. 2009; Huntington et al. 2016). 
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2) Extinction risk of artisanally targeted marine mammals – marine mammals are widely 

hunted across the Arctic for their furs, ivory and as a food source (Hovelsrud et al. 

2008). 

3) Sustainability of artisanally targeted fish stocks – to ensure that artisanal fishers have 

healthy fish stocks to harvest into the future (Zeller et al. 2011). 

Shoreline sea ice scores (h) were calculated in the same way as the coastal protection goal, 

comparing the current condition of the previous three years (Cc) with a reference point of 

average extent 1979-2000 (Cr) so that: 

ℎ =  𝐶𝑐𝐶𝑟 
(Eq. 4) 

The less shoreline sea ice, the lower the score.  

Extinction risk of targeted marine mammals (xmm) was calculated in the same way as the Iconic 

Species sub-goal, but only included marine mammals that are artisanally targeted in each 

region (Table A2-12). The reference point was to have all targeted marine mammals at ‘Least 

Concern’ status:  

𝑥𝑚𝑚 = ∑ 𝑆𝑖𝐿𝐶𝑖=𝐸𝑋 × 𝑤𝑖∑ 𝑆𝑖𝐿𝐶𝑖=𝐸𝑋  

(Eq. 5) 

where for each IUCN threat category i, Si is the number of assessed species and wi is the 

status value (Table A2-13). Sustainability of artisanally targeted fish stocks (xart) was 

calculated as per the Food Provision goal but included only those species listed as artisanally 

targeted in the Sea Around Us Project data, and with no under-harvesting penalty applied: 
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𝑥art =∏S𝑆𝑖( 𝐶𝑖∑𝐶𝑖)𝑛
𝑖=1  

 

(Eq. 6) 

where i is an individual taxon and n is the total number of taxa in the reported artisanal catch 

for each region throughout the time-series, and C is the average catch, since the first non null 

record, for each taxon within each region.  Stock status scores (SS) are derived from B/BMSY 

values – where for B/BMSY < 0.95 (1.0 - 5% buffer), status declines with direct proportionality 

to the rate of decline of B with respect to BMSY. No under-harvesting penalty was applied so 

any B/BMSY score > 0.95, received a SS of 1.  

The status for this goal is an average of scores for each of the sub-components: 
𝐴𝑂 = ℎ + 𝑥𝑚𝑚 +𝑥art3  

(Eq. 7) 

Norway’s score included only artisanal fish stocks, as artisanal marine mammal hunting is not 

practiced and sea ice is not plentiful or used for fishing. 

3.2.3.9 Tourism and Recreation 

A healthy ocean should provide tourism and recreation opportunities for people to enjoy. This 

goal uses employment in tourism as a proxy for the number of people engaged in tourism and 

recreation across the Arctic. As such it should respond dynamically to the number of people 

actively seeking tourist opportunities in each region, because if tourism increases or 

decreases then the number of jobs needed to service this sector should respond similarly. The 

number of tourism jobs are converted to percentage of employment in tourism to adjust for 
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population size differences and multiplied by a sustainability coefficient drawn from the Travel 

and Tourism Competitiveness Report, which assesses countries for their overall quality, future 

potential and long term sustainability of tourism (Crotti & Mashri 2015). For a region-wide 

comparison, the reference point is set as the 90th percentile of the best performing region 

across all years, to account for outliers. 

3.3 Results 

 

Overall, the Arctic within EEZs scored 78 out of 100 (Figure 3-3). Scores varied substantially 

across assessed regions, from 65 in Jan Mayen to 87 in Svalbard (Figure 3; Figure S1). 

Averaged across the Arctic, three goals scored 90 or above: Biodiversity (95), Livelihoods and 

Economies (93), and Clean Waters (90). Marine Mammal Harvest scored 88 and Artisanal 

Needs 81. Coastal Protection scored 79 and Sense of Place scored 77, but there was disparity 

between the sub-goals, with Iconic Species scoring 85 and Protected Places scoring 68. Food 

Provision scored 67 overall, while its sub-goals of Mariculture and Fisheries scored 36 and 68 

respectively. Tourism and Recreation was the lowest scoring goal (33).  
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Figure 3-3: Arctic Ocean Health Index scores for each assessment region. Scores can 

range from 0 (bad) to 100 (excellent). Grey petals indicate that particular goal was not relevant 

to that region and thus not assessed. 
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Overall, species-related goals (Species sub-goal of Biodiversity and Iconic Species sub-goal 

of Sense of Place) scored highest across all regions but still show substantial room for 

improvement, with 82% of the 401 marine species assessed by the IUCN in the study region 

considered to be Least Concern, 5% Near Threatened, and 13% Threatened (Vulnerable, 

Endangered or Critically Endangered). Habitat-related goals (Coastal Protection goal and 

Habitat sub-goal of Biodiversity) presented mixed results. For soft-bottomed habitat, large 

areas remain free from disturbance of commercial fishing. For example, Arctic Alaska’s 

northern coast is designated a Fishery Control Zone, with no commercial fishing activity 

allowed. As such, habitat scores were higher in regions which were more remote and under 

less fishing pressure (Russian Arctic, Greenland, Canada, Arctic Alaska). The Barents and 

Norwegian Seas are subject to trawling for key target species (Buhl-Mortensen et al. 2016), 

meaning Arctic Norway and Jan Mayen received lower scores for soft-bottom habitat (81 and 

63 respectively). Sea ice related goals (sea ice edge extent within the Habitat sub-goal, 

shoreline sea ice extent for Coastal Protection) are also high with the exception of Arctic 

Norway and Svalbard, which are lower because the Barents Sea has experienced some of 

the most significant warming and variable sea ice conditions on the planet (Sato et al. 2014; 

Eriksen et al. 2017; Onarheim & Årthun 2017). 

The Clean Waters goal scored well for all regions; this reflects the low population density of 

the Arctic in general and few sources of pollution. Norway scored the lowest (87), which was 

largely driven by a much higher chemical pollution score than other regions and reflects both 

the higher population density along the coastline and prominent shipping routes. 

The Protected Places sub-goal of Sense of Place varied widely across regions, with both very 

high and very low scores. Although there has been an expansion of Arctic protected areas 

over the last 50 years, across the CAFF area, only 4.2% of marine areas are protected, with 

terrestrial areas garnering a much higher 20.2% protection, showing there is room for 

improvement in this area (CAFF & PAME 2017).  
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Marine Mammal Harvest scored high across all regions, except Arctic Norway and Jan Mayen, 

which scored lower primarily due to a significant under-harvest of seals compared to their 

quotas. Significantly, the Canadian commercial seal hunt occurs largely outside of the AOHI 

study area and so was not included. Marine mammals were also considered in the Artisanal 

Needs goal, which also included sustainability of artisanal fish stocks and extent of shoreline 

sea ice. Scores for this goal were generally high, in part because the fisheries component of 

the goal did not penalize underfishing and many artisanal stocks appear healthy.  

Fisheries scores were between 50-75, with the exception of West Greenland (87), Arctic 

Norway (87) and Jan Mayen (11). High scores for Arctic Norway and West Greenland align 

with landings primarily being from Marine Stewardship Council (MSC) certified fisheries. The 

Jan Mayen score potentially reveals issues with the spatial distribution of the catch data from 

SAUP. For this region, 96% of landings are classified as “marine fish unidentified” – which is 

heavily penalised for poor taxonomic reporting in the OHI. Unidentified landings for Arctic 

Norway and Svalbard (part of the same management area) are much lower at 4% and 13% 

respectively, meaning the methods for distributing catch data for this region may be causing 

unfair penalty.  

Running the Watson (2017) dataset through the AOHI reduced the overall Index Fisheries 

score by 13 (68 to 55), however overall AOHI scores declined by just one point from 78 to 77 

when using this alternative fisheries dataset. From a regional perspective, Watson’s data 

resulted in a dramatic improvement of Jan Mayen’s Fisheries score, from 11 with the SAUP 

data to 59 with Watson’s (Figure 3-4). East Greenland also saw an improvement using 

Watson’s data (54 to 62). However, all other regions saw a decrease in scores. Arctic Alaska, 

Nunavut, Canadian Beaufort and Svalbard all had scores reduced by less than 10, yet Arctic 

Russia (20), Arctic Norway (28) and West Greenland (34) all had large decreases. . All regions 

except West Greenland (83 down to 79) and Jan Mayen (65 up to 75), showed a decrease in 

overall OHI scores of 2 or less.  
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Figure 3-4: Comparing difference in scores for Fisheries (top) and overall AOHI (bottom) 

when using different fisheries catch data 
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3.4 Discussion 

 

The Arctic is a globally unique and important geography for biophysical, cultural and economic 

reasons; yet its management is disjointed and resources for monitoring are limited. I have 

made the first attempt to piece together disparate data-sets across the pan-Arctic area to 

quantitatively assess ocean health from a human-centric perspective. Despite challenges, I 

have shown such studies are possible and provide an initial baseline of current pan-Arctic 

social-ecological conditions using freely available data, and sharing the AOHI framework and 

open code for future iteration and improvement (Lowndes et al. 2017). Given the Arctic is 

rapidly changing, baselines need to be established and systems continually evaluated in order 

to inform management (Hussey et al. 2016). I discuss the context of the results below and 

highlight spatial patterns of interest.  

3.4.1 Spatial patterns and management considerations 

Relatively high scores for species-related goals are likely due to rebuilding of once heavily 

exploited whale and pinniped populations, absence of large commercial fishing fleets in many 

parts of the Arctic, and increased productivity from climate change being beneficial to many 

fish species, at least in the short term (Mcrae et al. 2012). This assessment falls largely in line 

with the Arctic Species Trend Index (ASTI), which found an increase in Arctic marine 

vertebrates from 1970 to 2005 (Eamer et al. 2012). While the AOHI reflects the fact that in the 

short-term climate change may be having a potentially beneficial effect for many species, it 

does not account for long term risks to marine biodiversity. Arctic species often have 

particularly narrow temperature ranges and are highly susceptible to invasions. Projections 

indicate that the Arctic could be at high risk of invasive species and localised extinctions, 

highlighting the need for ongoing monitoring, and dynamic and predictive management 

(Cheung et al. 2009; Eamer et al. 2013; Garciá Molinos et al. 2016).  
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Arctic sea ice is critical for climate regulation, coastal protection and as habitat to a range of 

species that live in or around the ice or use it for life history events such as reproduction, 

moulting or resting (Laidre et al., 2015). It is therefore also important to people who depend 

on sea ice-associated species as resources and for cultural reasons. Sea ice dynamics in the 

Arctic are being altered by warming at twice the global mean rate, and some projections 

suggest an ice-free summer by 2040 (AMAP 2017). Therefore, measuring these changes is 

an important component of the AOHI (Overland & Wang 2013). High sea-ice related scores 

(Habitat and Coastal Protection) are in keeping with the global OHI assessment, which found 

reduced sea ice scores in sub-Arctic countries (Lithuania, Sweden, Finland, Norway [which 

includes Svalbard], Estonia, Latvia), but not yet at higher latitudes (Halpern et al. 2017). While 

the data I used considers temporal and spatial extent, it does not consider depth of sea ice, 

which may be important to sea ice-associated biodiversity (Kovacs et al. 2011). Further work 

could also include representing the shifting seasonality of sea ice (Haine & Martin 2017).  

The Livelihoods and Economies goals do not currently consider informal economies or 

subsistence livelihoods, which are prevalent in many regions across the Arctic (Larsen et al. 

2015). I was unable to find data to support the development of an indicator reflecting these 

less formal elements of the economy at the pan-Arctic scale, particularly as the informal 

economy varies widely between regions (Schmidt et al. 2015). Furthermore, many indigenous 

communities view economic development differently; while many wish to maintain traditional 

lifestyles, many communities are keen to mitigate high levels of poverty, ill health, and food 

security issues through full-time employment and the benefits that economic development can 

bring (Stewart et al. 2011; McCauley et al. 2016). These issues are inherently local, making it 

challenging to find a meaningful reference point at the pan-Arctic scale. Gaining a better 

contextualised understanding of how people conceptualise the elements of wellbeing within 

each region might yield information allowing relative change in wellbeing to be compared 

(Woodhouse et al. 2015).  
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Arctic tourism above the Arctic Circle is largely dominated by cruise ship tourism, which has 

grown markedly since 2008, particularly for Svalbard where tourism employment is high 

relative to the permanent population (Viken 2011). However, numbers remain far below more 

accessible sub-Arctic areas (Maher 2017), indicating that demand may be present and there 

is much room for growth, as indicated by the AOHI scores. The future of tourism in the Arctic 

is unclear but has the potential for significant social, economic, and ecological impacts, both 

positive and negative (Stewart et al. 2015). There are already concerns of exceeding carrying 

capacity in countries such as Iceland, which has seen a six-fold increase in tourism since 2008 

(Maher 2017). Balancing the economic benefits of tourism while maintaining the 

environmental and cultural sense of place that makes tourism attractive is a difficult 

undertaking.  Setting out a shared vision for Arctic tourism and developing infrastructure in 

areas that will have positive social impacts and minimise negative environmental impacts 

should be a priority for Arctic nations.  

The Marine Mammal Harvest goal indicates that marine mammals with population data are 

being harvested sustainably across the Arctic, showing that sustainable management of these 

species is possible if supported by scientific research. For example, although controversial, 

the management of the Canadian harp seal hunt can be considered a conservation success, 

with the number of individuals rising from a low of 1.1 million in the early 1970s to over 7 million 

today. This supports the importance of robust monitoring and evidence-based quotas 

(Hammill et al. 2015). However, the analysis of Marine Mammal Harvest was restricted by the 

need for information relating to both landings of marine mammals and viable population 

estimates leading to quotas or PBR estimates, which unfortunately excluded most marine 

mammals in each region. Abundance and trend data for Arctic marine mammals is poor or 

largely absent, which makes quantifying the sustainability of harvests difficult. Obtaining 

population estimates for new metrics from sources such as indigenous knowledge or the 

Circumpolar Biodiversity Monitoring Plan (Gill et al. 2011) should be a priority in aiding 

management of marine mammals, particularly in the face of climate change (Laidre et al., 
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2015; Gill et al. 2011). Ideally, establishing metrics and quotas would be a systematic process 

that would enhance co-management of marine mammal species locally and at a pan-Arctic 

scale.  

The Food Provision scores reward areas with the highest levels of sustainable catch, showing 

the benefits of well managed and productive fisheries. Arctic fisheries are an increasingly 

controversial topic; seemingly offering large potential for food provision and economic 

benefits, but with high ecological risk (Lam et al. 2016). The USA has recognised this risk by 

closing a large proportion of its Arctic EEZ to industrial fishing and all the Arctic countries have 

signed an agreement to prohibit fishing in the Central Arctic Ocean. Fisheries in the Barents 

and Norwegian Seas have been recovering from previous exploitation, improved management 

and beneficial effects of climate change, which have led to a threefold increase in spawning 

stock biomass in the last 15 years (Dalpadado et al. 2014; Grønnevet 2016). Using a different 

dataset revealed changes in scores, showing that data selection can be a critical component 

driving scores. While this study often did not have the luxury of multiple datasets, exploring 

two Fisheries goal datasets revealed potential issues in each, showing that this type of 

sensitivity analysis would be useful in similar studies. The increased score for Jan Mayen with 

Watson’s data shows that key differences exist in the spatial disaggregation of the catch data 

in this area; the higher SAUP scores for Norway and West Greenland, where commercial 

fisheries operate mainly under MSC certification, align with what I would expect to see. 

3.4.2 Implications for future pan-Arctic management 

The AOHI assessment provides a starting point for consideration of pan-Arctic social-

ecological dynamics, which like other composite indicators can be iteratively improved over 

time as more and better data become available and dynamics are better understood (Burgass 

et al. 2017). Understanding current limitations and how social-ecological systems are 

changing is necessary for effective management (Harris et al. 2017). Many of the goals within 

the AOHI are transboundary in nature and require co-management (Biodiversity, Marine 
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Mammal Harvest, Coastal Protection, Tourism and Recreation, Clean Waters, and Fisheries). 

Consideration of these interlinkages is critical for management; the heterogeneity of the Arctic 

means that system dynamics are important not only between different goals but also across 

regions and localities. For example, co-management of many marine mammal species such 

as walrus and polar bears across national borders and between indigenous groups has been 

successful in ensuring sustainability and maintaining human wellbeing (Laidre et al., 2015).  

The AOHI provides a snapshot in time of the current status of the Arctic, as well as an 

indication of the near-term future state. The biggest driver of change in the Arctic is climate 

change. Although it is included in the assessment and its effects are already being felt, these 

will be most noticeable over the medium and long terms (Bennett et al. 2015). Subsequent 

AOHI assessments will be required to track the impacts of climate change across the region. 

As the Arctic ‘opens up’, the opportunities for economic development will become even more 

numerous for oil and gas extraction, tourism, shipping and infrastructure. Understanding the 

risks that climate change poses to the health of the ocean, and the wellbeing of the people 

who depend on ocean resources, will require multi-faceted modelling, with a strong emphasis 

on social science (Ford et al. 2015).  Given the sensitivities of people and environments in the 

Arctic, pan-Arctic assessments such as ours can help inform decision making on strategies 

for investment to minimise social-ecological risk and maximise benefits across the region. 

Pan-Arctic plans for environmental protection and sustainable development would limit ad-hoc 

developments, which could otherwise pose severe risks to unique ecological communities or 

areas of biodiversity. Similarly, given the heterogeneity of the region and in order to protect 

and restore the full range of biodiversity across the Arctic, coordinating efforts across large 

scales is required to ensure an ecologically coherent network of protected areas (Harris et al. 

2017).  

A key area of uncertainty for marine management in the Arctic is the potential for tipping points 

or thresholds, which can be classified as periods of rapid, non-linear change (Serrao-
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Neumann et al. 2016). Given the range and scale of pressures on the Arctic, particularly 

climate change, these tipping points may well be crossed even in the short-term, which would 

compromise the predictions of the AOHI. Late action to halt or reverse a tipping point is highly 

ineffective compared with early identification and preservation of system resilience (Selkoe et 

al. 2015). Through this assessment I provide data for a range of different physical, biological 

and social data layers that can be accessed from raw data through to aggregated final scores 

of the AOHI to inform system-wide management. Monitoring of these layers should be focused 

towards identifying potential tipping points in order that pre-emptive action can be taken. 

Ultimately, threats such as climate change go beyond pan-Arctic governance and will require 

global mitigation in reducing greenhouse gas emissions. Despite climate change being a huge 

risk to the Arctic, the disconnection of communities, authorities and governments at the pan-

Arctic scale prohibits a clear and united message. This work provides foundational datasets 

which can be of use for both pan-Arctic assessment and local-decision making for Arctic 

futures. Ensuring a participatory process and inclusion of the full range of stakeholders is often 

vital in ensuring evaluation of management strategies or alternative futures is appropriate and 

useful (Dichmont & Fulton 2017). Promoting pan-Arctic monitoring, management and 

decision-making, joined with a bottom-up approach of case studies and storytelling, could help 

position the Arctic as a bellwether for climate change and help create increasingly ambitious, 

robust and equitable climate policy at the global scale. A data-driven approach such as the 

OHI allows the quantification and clear communication of broad results to a range of 

stakeholders both inside and outside the Arctic. It can therefore help communicate complex 

issues and include more stakeholders through transparency and open web-based tools. 

However, when being used for management purposes, the data and models must be 

interpreted carefully as with any scientific output. As such, I have been transparent with the 

data that has been used and their limitations such that these can be factored in to any future 

use of the AOHI. 
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The OHI goals are intended to provide a broad comparative framework, and to encourage 

thinking about what we consider to be a "healthy" system, and how far we are from that state 

in relation to a range of human-defined functions and goals. It can be updated and improved 

iteratively over time should new data become available, or should new social considerations 

need to be factored in. This will be particularly important for risks such as ocean acidification 

and climate change, which has the potential to alter the structure and biodiversity of 

ecosystems (and subsequently impact people), but the long-term effects of which are not well 

understood (Lam et al. 2016). Likewise, while oil and gas extraction is not included here (as 

with other OHI assessments), due to it being intrinsically unsustainable, it is undoubtedly of 

huge economic and social importance to some Arctic areas and therefore stakeholders may 

wish to include it in future assessments.  

 

3.5 Conclusions 

 

The AOHI is a first step towards measuring the status of the ocean across the high pan-Arctic 

area. In general, I found the Arctic to be sustainably delivering a range of benefits to people, 

with room for improvement in all goals, but particularly in sustainable tourism, mariculture, 

fisheries, and protected places. Biodiversity-focussed goals presented encouraging scores, 

showing how improved ecosystem management through recovering fisheries and sustainable 

marine mammal exploitation were having a positive effect. However, the assessment was 

constrained by limitations in pan-Arctic data, in particular the disjointed and non-comparable 

nature of data from different Arctic regions. While validating a composite index is a difficult 

undertaking, the process of its formulation and understanding where conceptual and data 

uncertainties are located is inevitably crucial for informing management. Obtaining 

comparable data from across the Arctic to minimise these uncertainties is a priority for 

informing robust pan-Arctic stewardship; such efforts should be targeted towards the most 
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pressing and urgent transboundary management challenges, such as fisheries, biodiversity 

and economic development (shipping, tourism, extractive activities; Tesar et al., 2016). 
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4 VALIDATION AND USE OF LARGE-SCALE BIODIVERSITY 
INDICATORS AT THE NATIONAL SCALE 

4.1 Introduction 

 

Tracking the status and fate of biodiversity remains a fundamental conservation and 

management need, and challenge. Many international conventions and treaties have set forth 

goals to halt (and ideally reverse) biodiversity declines and have established targets to help 

managers make progress towards these goals. For example, the Convention on Biological 

Diversity's (CBD) Aichi Targets provide global aspirations for biodiversity. Yet the degree to 

which global biodiversity indicators can adequately track progress towards these targets 

remains unclear (Tittensor et al. 2014). In part these shortcomings are due to the targets being 

developed largely without consideration of whether and how they can be quantified by specific 

indicators (Butchart et al. 2016), but also because many indicators suffer from a variety of 

uncertainties related to their mathematical construction or the data that underpins them 

(Burgass et al. 2017). There are several desirable characteristics of the global biodiversity 

indicator suite: they should be cost-effective, taxonomically diverse, frequently reported, 

meaningful to the public, informative across scales, should reliably inform status and trends of 

biodiversity, and respond predictably to policy changes (Jones et al. 2011). Indicators based 

on species metrics, such as abundance, often struggle to meet these characteristics  

(Stephenson et al. 2017) and therefore require additional validation that many are not currently 

subject to (Moriarty et al. 2018). Global species-based biodiversity indicators, such as the Red 

List Index or the Living Planet Index, utilise species data from across the world and synthesise 

information at the planetary scale. These large-scale indicators tend to be cost-effective by 

utilising open source data, are reported upon frequently and resonate well with the public. 

However, they have been criticised for having limited taxonomic diversity (with bias towards 

well studied species and certain geographies) and little or no in situ validation; thus it is often 
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unknown how well they reliably inform users about status and trends of biodiversity (Collen & 

Nicholson 2014).   

An important consideration when selecting global biodiversity indicators was their applicability 

across scales, particularly for national-level decisions (Biodiversity Indicators Partnership 

2018). The Ocean Health Index has made this central to its design, providing data and scores 

for each country in the world (Halpern et al. 2012). However, the limitations around taxonomic 

bias and lack of validation has meant global indicators are rarely disaggregated and used for 

decision-making at the national scale. Nations have therefore tended to use their own existing 

biodiversity indicators or created new ones (i.e. Government of Pakistan (2017) set their own 

indicator approach for monitoring biodiversity goals in their National Biodiversity Strategy 

Action Plan), rather than improving the science and uptake of the existing indicator suite, which 

is already linked to high-level political goals. While this approach is more straightforward for 

countries, often easily fitting in with ongoing monitoring programmes, the national indicators 

that are used are still likely to have the same uncertainties around reliability and the 

predictability of their response to change, and are often not subject to validation. There is 

therefore an urgent requirement for further validation of species-based biodiversity indicators 

across all scales in order to refine indicator suites  (Moriarty et al. 2018).  Here I highlight why 

a lack of consensus on biodiversity indicators is problematic across scales and demonstrate 

how indicator validation using a modelling framework at the national scale can be beneficial 

to understanding indicator performance and achieving agreement on species-based 

biodiversity indicators. 

4.1.1 Connecting biodiversity indicators across scales 

Current global biodiversity indicators draw on synthesised global datasets to report on 

progress towards international biodiversity goals. This remains largely separate from the CBD 

process, where the achievement of biodiversity goals is predicated on the commitments and 

actions of member states who pledge and report on their progress through National 
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Biodiversity Strategies and Action Plans (NBSAPs) and National Reports (NRs) respectively. 

Synthesis of these NRs is carried out by the CBD, who assess how well aligned national 

commitments are to the Aichi Targets and how much progress is being made towards them 

by each country (and in turn globally; Convention on Biological Diversity 2018). Data that are 

used to generate local or national indicators and reported through the NRs is therefore often 

not feeding into the global indicator suite, which would help to improve the overall global 

taxonomic and geographic diversity of global indicators. There is therefore a disconnection 

between monitoring, reporting and decision-making at the national and international scales; 

this means that global indicators may not be representative of global biodiversity and local or 

national indicators are poorly understood and have difficulties in scaling up to the global level. 

These issues hinder the ability of indicators to be used for policy and scenario testing. If 

indicator validation was improved, a consensus around the appropriate indicators to use to 

monitor biodiversity change could be achieved, thereby focussing monitoring efforts and 

enabling nations to use data in a standardised way to global effect (Figure 4-1).  While the 

period of the Aichi Targets is coming to an end, the post-2020 biodiversity agenda will probably 

see a new set of targets formulated. Effective science-based targets will require clear 

leadership on how they are achieved through an analysis of policy pathways for biodiversity; 

in order to achieve this there will need to be further development and testing of biodiversity 

indicators across a range of scales.  
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Figure 4-1: Disconnection and reconnection of global and national biodiversity 
indicators. Width of blue arrows show strength of connection. A) Current disconnection of 
national biodiversity monitoring and indicators, which are poorly linked back in to global 
biodiversity indicators and targets. Subsequently this means that global targets are more 
poorly formulated and have a weaker connection to national level decision making. In B) there 
is consensus between national and global biodiversity indicators, which increases the overall 
quality of global biodiversity indicators being fed from a variety of national sources. This allows 
for improved global target formulation and thus a stronger connection to country-level decision 
making.  

4.1.2 Models and indicator testing for consensus 

Achieving consensus on a set of biodiversity indicators which clearly meet the criteria set out 

by Jones et al. (2011) would allow for biodiversity to be better linked to policy making, by 

enabling users to project scenarios and understand the potential effects of policy interventions 

on biodiversity across a range of scales (Pereira et al. 2013). However, consensus can only 

be achieved if there is confidence in the ability of indicators to be useful proxies for biodiversity 

change. Fisheries science has focussed much attention on the development and testing of 

indicators which report on the effects of fishing (Fulton et al. 2005), given the strong and direct 

link between fishing mortality and fish species status. This has enabled fisheries managers to 

gain confidence in a suite of indicators that point towards underlying changes in the 

ecosystem; this allows for more robust target setting, quantitative measurement of target 

achievement and analysis of policy scenarios (Fay et al. 2013). Global biodiversity indicators 
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have received limited testing, which means that they have mostly been used to report on 

trends and remain poorly linked to overall target setting and policy evaluation (Collen & 

Nicholson 2014).  

Understanding how indicators respond based on an analysis of real-world data is challenging 

as biodiversity is complex and can be prone to non-linearities and driven by numerous factors. 

Indicator testing is therefore best done using models, as they allow for explicit consideration 

of the drivers underlying change in the indicator, look at the effects of different policies and 

thus understand the link between intended actions and outcomes. Using quantitative models 

to generate indicators through various scenarios can thus reveal system dynamics that might 

cause unintended responses in indicators from unanticipated responses to policy (Nicholson 

et al. 2012) or reveal issues with indicator construction (Costelloe et al. 2015). As such, models 

can be used to mimic the real world and gain a virtual ‘truth’ not possible in real world datasets 

(Branch et al. 2010). This helps users to understand whether or not indicators respond 

predictably to interventions and tease apart different drivers of change to inform decisions 

(Link et al. 2010).  

Many new indicator frameworks have been proposed since 2010 that have found use at the 

national scale, with the potential to scale up or feed into a global system (Certain et al. 2011; 

Pereira et al. 2013; Coll et al. 2016; Miloslavich et al. 2018). Even with perfect representation 

of species, without understanding the drivers of change that underlie the data, how they relate 

to each other and how change in the world manifests as change in the indicator, then indicators 

will remain of limited use to decision makers (Collen & Nicholson 2014).   In order to obtain 

the most useful indicators for reporting against science-based targets, it is necessary to test a 

wide variety of indicators across different models to understand how they respond to changes 

within the system. This would help to transition from indicators simply reporting on trends to 

being useful tools to assist with decision making. Here, I demonstrate how a modelling 
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framework can be used to support biodiversity indicator validation through exploring indicators' 

responses to system changes. 

I used the Norway and Barents Sea Atlantis model (NoBa) to generate two different types of 

species-based biodiversity indicator; the Living Planet Index (LPI), a global indicator, and the 

Norway Nature Index (NNI), a national indicator, representing two different types of indicator 

construction method, based on abundance data, that have received little testing. I 

parameterised the model to an unfished system to ask the question does sustainable fishing 

or overfishing lead to damaging trends in the wider ecosystem? I compared these two 

scenarios to a no fishing scenario over a period of 35 years to see how each indicator 

responded to each management scenario. Fisheries have some of the largest impacts on 

marine systems (Halpern et al. 2015a) and by simulating varying fishing pressures on an 

unfished system, I aimed to  perturb the virtual ecosystem and trigger indicator responses. I 

analysed the extent to which the indicators can distinguish between the scenarios and if they 

could report conclusively whether fishing was damaging. I then evaluate the extent to which 

model-based testing gave insights into indicator behaviour.  

4.2 Methods 

 

4.2.1 Model Overview 

The Norway and Barents Sea (NoBa) Atlantis model was developed by the Institute of Marine 

Research in Norway to represent the key species and processes in the Nordic (Norwegian, 

Greenland and Iceland seas) and Barents Seas, with the intent of exploring combined climatic 

and fisheries scenarios (Hansen et al. 2016).   

Atlantis is an end-to-end marine ecosystem model that provides a repeatable and transparent 

basis for modelling ecosystem dynamics, considering different parts of marine ecosystems - 

oceanographical, biological, economic and social (Fulton et al. 2011a). The need for such 



98 

 

models has been amplified by the desire for ecosystem-based management. Originally 

focused on ecology and then fisheries dynamics, it has begun to be used to assess 

interactions among and impacts of multiple uses of marine systems beyond fisheries, as well 

as climate impact questions. Full details of the Atlantis model, including the user guide, can 

be found in Audzijonyte et al. (2019); here I summarise its key components and setup. At its 

core it consists of deterministic physics and ecology submodels, which are spatially-resolved 

in three dimensions using a map made up of user-defined boxes and depth layers, as well as 

three types of habitat; water column, epibenthic habitat and sediment. The physics submodel 

includes oceanographic processes such as water fluxes, salinity and temperature which are 

often forced from relevant oceanographic models. Together with forcing of nutrient inputs, 

oceanographic processes drive deterministic primary productivity and influence movement of 

organisms between polygons. The ecology submodel explicitly tracks the flow of nutrients 

through trophic levels, with the main ecological processes being production, consumption and 

predation, waste production and cycling, migration, reproduction and recruitment, habitat 

dependency and mortality. Species are represented either by biomass pools or age-structured 

groups. Biomass pools typically are used for invertebrates, while age-structured groups used 

for vertebrates. Age-structured groups are modelled using the principles of physiologically 

structured models, where growth and reproduction is dependent on food availability and 

feeding interactions and reproductive output depend on the realised size and condition. For 

age-structured groups, all individuals within an age group are identical within one cell of the 

model domain, and their numbers and body condition are tracked as energy allocation to 

structural and reserve nitrogen pools.  

Fishing fleet dynamics are included through the harvest submodel and can be standalone or 

used with an economics submodel but can be customised to simulate management or 

exploitation regimes. At its simplest this can include constant fishing on a single functional 

group or at its most complex dynamic fisheries comprised of interacting fleets with different 
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gear, bycatch and management characteristics that are affected by compliance decisions and 

economic incentives such as quotas or fish price. 

Atlantis has been applied in assessing alternative fishery management strategies, historical 

impacts of harvesting, compliance with fishery regulations, robustness of ecological indicators, 

impacts of global change (including coral), effects of changes in fish body size on ecosystem 

dynamics, and the implications of model complexity. Given the overall Atlantis model is a 

framework, validation is required for individual model applications in different parts of the 

world. The extent to which this has been done differs due to the complexity of the model and 

complexity of model validation in general, but examples exist and the field of end-to-end model 

validation is growing (Olsen et al. 2016; Ortega-Cisneros et al. 2017; Hansen et al. 2019; 

McGregor et al. 2019).  

As with all Atlantis models, NoBa is a spatial box model, covering the area shown in Figure 

4-2. The total area is 4 million km2 divided into 60 polygons, which were decided upon by a 

group of experts covering fields such as oceanography, demersal fish, pelagic fish, benthos 

and marine mammals. Polygons were created to be relatively homogenous with respect to 

hydrography and bathymetry, as these are important features determining the distribution of 

biota in the Barents Sea. The boundaries of the model are in large part defined by “natural” 

boundaries, such as land and topography. Each polygon has up to seven depth levels, 

depending on their total depth. The depths of the vertical layers are 0-50m, 50-150m, 150- 

250m, 250-375m, 375-500m, 500-1000m and 1000-1200m. If the mean depth of the polygon 

is more than 1200 m, the lowest depth level will stretch to the bottom.  

The NoBa model was initiated from 1981. Atlantis requires time series of temperature, salinity 

and volume fluxes across the polygon borders, and NoBa gets these from a Regional Ocean 

Modelling System (ROMS; Shchepetkin & McWilliams 2005) covering the Northeast Atlantic 

(Skogen et al, 2007). Within the model, 53 different functional groups represent the 
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ecosystem, including detritus, carrion, bacteria, zooplankton through to marine mammals such 

as polar bears and killer whales (see Appendix 3 for full list). Many functional groups are 

individual species, but some groups are aggregations of several species.  

In order to perturb the system in a way that we would expect the biodiversity indicators to pick 

up, I ran the model under three different fishing scenarios for seven different commercial 

fisheries consecutively; FMSY0 (no fishing), FMSY1 (considered a desirable rate of fishing in the 

Barents Sea) and FMSY2 (overfishing). FMSY1 is the maximum rate of fishing mortality that will 

eventually result in a population size of BMSY. BMSY is the biomass that enables a fish stock to 

deliver the maximum sustainable yield and is often used as a reference point for managing 

fisheries. The baseline rate of fishing for these runs was no fishing. This meant that for the 

FMSY1 and FMSY2 scenarios they were initially fishing an unimpacted system. 

 

Figure 4-2: Model domain for the Norway and Barents Sea Atlantis Model 
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4.2.2 Indicator overview 

The Living Planet Index (LPI) is a composite of time series of vertebrate abundance and 

biomass (Collen et al. 2009). It was adopted in 2006 as a headline indicator to the Convention 

on Biological Diversity (CBD) and is now used to track progress towards Aichi Target 12 

(UNEP 2006). It contains trends for 14,152 populations of 3,706 species from across marine, 

terrestrial and freshwater realms and has had its methods and data continuously updated 

since its inception in 1998 (McRae et al. 2017). While the LPI has been disaggregated to track 

trends in regions such as the Arctic (Mcrae et al. 2012) and for species classes such as reptiles 

(Saha et al. 2018), it is rarely disaggregated for use at the country scale, a key requirement of 

CBD indicators. A disaggregation was performed for the Netherlands, where the globally 

available data were heavily supplemented with local data not included within the global LPI 

database, including from non-vertebrate groups (van Strien et al. 2016). As a response to the 

taxonomic biases that are inherently introduced from utilising available data, the LPI has 

altered its approach to weighting, to make the index more representative of vertebrate 

biodiversity (McRae et al. 2017), although invertebrates are still not included due to the lack 

of availability of consistent time-series.  

The Norway Nature Index (NNI) is built from the Nature Index (NI) framework, which was 

proposed to facilitate the transfer of information from science toward other areas of society 

(Certain et al. 2011). The NNI was designed to show trends in biodiversity in major ecosystems 

across both marine and terrestrial realms. It is based on a large number of indicators 

representing different aspects of biodiversity. The overall objective is to measure whether 

Norway is succeeding in halting the loss of biodiversity, as has been pledged under several 

international agreements, but mostly notably under the CBD. The Norwegian Government 

made the Norwegian Environment Agency responsible for developing a biodiversity index to 

document overall trends for major ecosystems and the species they support and has 

committed to updating it every five years (Norway Ministry of Climate and Environment 2016). 

The NNI is included in the Norwegian official set of indicators for sustainable development, 
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presented annually in the reporting on sustainable development indicators by Statistics 

Norway and by the Ministry of Finance in the National Budget.  

The NNI aims to give an overview of the state of Norway’s environment by focussing on trends 

in major ecosystems including forest, mires and wetlands, open lowland, fresh water, coastal 

waters, and the open sea. For each of these ecosystems, indicators were chosen for a variety 

of species groups, so that they aimed to be representative of overall species diversity. 

Indicators were selected from the main species groups – algae, lichens, fungi, plants, 

invertebrates, fish, amphibians, birds and mammals. In addition, indirect indicators that give 

information on the biodiversity potential of an area were included, for example the presence 

of dead wood and the degree to which open lowland landscapes (semi-natural habitats) are 

becoming overgrown. In all, the NNI uses more than 300 indicators in totality. 

The NNI is a composite index, which is an amalgamation of indicators that are originally 

measured on different scales, but normalised to allow for comparison and aggregation (Becker 

et al. 2017). It uses expert judgement to selects indicators which are taxonomically 

representative, represent different trophic levels and functions of species, include common, 

rare and key species, are collectively sensitive to different types of pressures and represent 

different habitats within major ecosystems (Pedersen et al. 2016). 

As such, the data the NI seeks to encompass and the structure of the index itself are selected 

in order to obtain meaningful ecological representation (e.g. covering a range of species that 

have different functional roles) and present the information in a way that is transparent and 

accessible to policy makers and environmental managers (Aslaksen et al. 2015). The NI was 

designed for use at the national scale and therefore does not aggregate up to the global 

biodiversity targets such as the CBD, although this could be possible with widespread uptake 

(Certain et al. 2011). The NI framework utilises a reference point approach to normalising 

indicators within the index, which is common for this kind of indicator (Burgass et al. 2017). 
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This means a reference point for a desirable state is established for each indicator and any 

value over this reference point is regarded as fully desirable and scored as ‘1’. Indicator values 

below the reference point are scaled to a score of ‘0’. This does, however, present problems 

for global aggregation if desirability is differently defined between countries. 

The NI and the LPI are designed based on different approaches to biodiversity monitoring and 

reporting (see Figure 4-3). The LPI synthesises disparate abundance data of vertebrates from 

around the world in a consistent way for use at the global scale, but can subsequently be 

disaggregated by taxonomy, ecosystem type or region. The NI uses species data across 

several different ecosystems in an attempt to factor in ecological representation and selects 

sub-indicators to be representative across taxonomic groups including fish, mammals, birds, 

invertebrates and plants as well as applying weightings for ecological function. Both indicators 

in essence utilise the same types of abundance monitoring data, but for different species and 

in different ways.     
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Figure 4-3: Steps taken to produce Norway Nature Index (green boxes) and Living 

Planet Index (yellow boxes) 

I used the NoBa model to generate the LPI and NNI for the Norway and Barents Seas across 

the whole model domain, with the intention to see how changes in the system are reflected in 

these indicators. The LPI was generated using the 47 vertebrate species contained within the 

NoBa model (regardless of whether or not they were included in the LPI database), 

representing 29 functional groups. The LPI uses relative measures of change in abundance 

of species as input data; I utilised modelled biomass and assumed changes in species 

biomass as a result of the management scenarios were proportional to changes in abundance, 

as per Nicholson et al. (2012). I calculated the LPI using the ‘R’ package, rlpi (Zoological 

Society of London 2018), calculating a geometric mean of trends for each species using 

Generalised Additive Modelling (GAM; (Collen et al. 2009). If the GAM fit for a particular 

species was poor, modelling was conducted using the chain method (Loh et al. 2005). Each 

species within the model was considered part of a single population, trends in which were 

calculated using the logarithm of the ratio for successive years (d) 

𝑑𝑡 = log10 ( 𝑁𝑡𝑁𝑡−1) 
                  (Eq. 1) 

Where N is the species population and t is the year. The index value (I) is subsequently 

calculated in year t as  

𝐼𝑡 = 𝐼𝑡−110𝑑𝑡 
                   (Eq.2) 
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with the index value set to 1 in year 1. This treats all species as equally weighted; I did not 

pursue taxonomic weighting in this study as the species included were deemed to be 

representative of the ecosystem and such weighting can be considered subjective. A bootstrap 

resampling technique was then applied for 10,000 iterations in order to generate 95% 

confidence limits. Such an approach demonstrates the uncertainty in the index inherited from 

the baseline in year one and propagated through the time series, not that there is no 

uncertainty associated with year one (Collen et al. 2009).  

I calculated the NNI for the demersal ocean and pelagic ocean ecosystems. Coastal 

ecosystems could not be included separately as the NoBa model was not designed specifically 

for coastal ecosystems, although coastal areas fall within the model domain. Sub-indicators 

(which are the selected species) from the NNI which were represented by functional groups 

in the NoBa model were included in the analysis. I generated 55 species sub-indicators using 

biomass trends from 24 functional groups within the model. Indicators were scaled between 0 

and 1 using a reference value and a non-linear scaling function. The NNI reference point 

should be equivalent to an intact natural environment, with little human activity and as such I 

used the modelled virgin biomass for each sub-indicator.  All sub-indicators were normalised 

using the LOW scaling model, meaning there is a positive relationship between these 

indicators and biodiversity (Pedersen et al. 2016): 

𝑆𝑡 = { 𝑈𝑡𝑈𝑟𝑒𝑓 , 0 ≤ 𝑈𝑡 ≤ 𝑈𝑟𝑒𝑓      1,          𝑈𝑡 > 𝑈𝑟𝑒𝑓           

      (Eq. 3) 

where S is the normalised indicator, Ut is the indicator before scaling, t is the year and Uref is 

the indicator's reference value. Weights for each sub-indicator take into account the sub-

indicator's specificity to a given major ecosystem (specificity weight) as well as the sub-

indicator's ecological function (trophic weight). Sub-indicators were assigned to one of six 

functional groups (top predator specialist, top predator generalist, intermediate predator 
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specialist, intermediate predator generalist, herbivore/filter feeder, primary producer), which 

were given equal weighting within the index. Some species are considered key sub-indicators 

if they are representative of populations of a hundred species or more, occur in a large area 

and are well documented with good data; key sub-indicators were given additional weighting, 

accounting for 50% of the index (Certain et al. 2011). Specificity is the extent to which the 

indicator reflects the major ecosystems. As this study included only two major ecosystems, 

species could belong to either the pelagic ocean and/or demersal ocean ecosystems, with 

each indicator’s total specificity being 100% (i.e. Greenland halibut was assigned 60% benthic 

and 40% pelagic). Weighting and assignment of functional groups matched that of the NNI 

wherever possible. Overall weights were determined as a product of both the trophic weight 

and specificity weight (Pedersen et al. 2016). The NNI (NI) was thus calculated for each major 

ecosystem (j), for each year (t): 

𝑁𝐼𝑗𝑡 =∑ 𝑆𝑖𝑗𝑡𝑛𝑗𝑖=1 𝑤𝑖𝑗 
(Eq. 4) 

Where w is the weighting term and summation is over indicators documented from the major 

ecosystem.  

The LPI and NNI were generated for each year of the model run for each of the three scenarios 

(FMSY0, FMSY1, FMSY2).  

Regression analysis 

To analyse whether the indicators distinguished between management scenarios I used linear 

regression to fit a slope coefficient. It was hypothesised that a useful indicator should be able 

to differentiate between scenarios such that: lm(indicator ~ year) would be statistically 

significant versus lm(indicator ~ year + scenario) when using an analysis of variance test. 
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Regressions were subsequently visualised by using the regression equations to plot trends 

for each indicator and scenario with 95% confidence intervals. Secondary exploration was 

conducted by eye to see if the trend of the indicator reflected the expectation for a given 

scenario; it would be expected that biodiversity would decline more strongly under FMSY2 than 

FMSY1 than FMSY0.  

4.3 Results 

 

4.3.1 Ecosystem dynamics 

As was expected, demersal fish declined most severely under fishing pressure, as their 

biomass was directly removed from the system (Figure 4-4). With the exception of capelin 

(Mallotus villosus), all commercial fishing species’ biomass declined most sharply and 

consistently under FMSY2, while remaining largely stable under the no fishing scenario (FMSY0). 

FMSY1 saw a similar, but lesser, decline to FMSY2 before both fishing scenarios stabilised. 

Capelin exhibited unusual patterns of a large spike in its biomass under the heaviest fishing 

pressure near the start of the scenario before a steep decline and similar, but lesser spikes 

under FMSY1. 
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Figure 4-4: Changes in biomass of commercial fish species exposed to three different 

fishing pressures in the NoBa Atlantis model. 

Diverse changes were seen in the wider ecosystem when comparing each of the three 

management scenarios (Figure 4-5, A). Changes in functional groups were most prevalent for 

those groups that were highly reliant on or predated by these demersal fish species; 

assemblages such as sea birds and marine mammals which have large ranges and varied 

diets showed little difference between scenarios (biomass changes for each functional group 

can be found in Appendix 3). Assemblages overall showed both gains and losses, showing 

the importance of understanding system dynamics. There were differing responses of 

functional groups within assemblages (Figure 4-5, B); notably pelagic fish and invertebrates 

showed large variation. One species of pelagic fish, Capelin, had a particularly severe 

increase under the FMSY1 scenario, increasing by over 600%. Capelin have an extremely high 

reproductive potential and their stock size can fluctuate enormously over time as a result of 

both ecological system feedbacks and exploitation (Hjermann et al. 2004). Its population 



109 

 

increase in this case is likely to be the result of the species itself coming under heavy fishing 

pressure, while many of its predators were also being removed from the system, allowing for 

great reproductive expansion. Invertebrates (such as prawns and cephalopods ) experienced 

high inter-annual variation but overall increased their biomass under increasing fishing 

pressure, due to being released from predation pressure by reductions in demersal fish 

populations. 

 

Figure 4-5: Changes in biomass of different species assemblages over 35 years under 
three different fishing scenarios in the NoBa Atlantis model. A) Shows the total change of 
biomass for each assemblage. B) Shows variation in the changes in biomass of different modelled 
functional groups within each species assemblage. 

 

4.3.2 LPI and NNI trends 

By displaying the indicators across the time period, we can better understand system changes 

over time (Figure 4-6). The LPI under the FMSY0 shows the natural variation of the system with 

no fishing mortality applied; the LPI fluctuated over time, reflecting the trophic dynamics of the 
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system, with an overall trend from 1981 to 2015 of -2% (95% CI -4.4%, -0.4%). When applying 

a fishing pressure of FMSY1, the LPI shows an initial relatively steep decline in biodiversity 

followed by a more gentle decline from 1991 to 2008, followed by an increase in the final 

years, for an overall trend of -6.4% (95% CI -10.7%, -1.7%). These are in contrast to the 

scenario of FMSY2 which shows a sharp decline in the LPI across the entire time period, 

producing a 26.1% (95% CI -30.4%, -21.8%) overall decline.  

The regression analysis allowed us to generate 95% confidence intervals around the trend to 

test the extent to which each indicator was able to distinguish between the scenarios and 

better to understand the overall trend. A polynomial regression including scenario was 

significant for the LPI (F(11, 303)= 305.6, p<2.2e-16). The LPI can clearly distinguish between 

the three scenarios, displaying significantly different trends for each fisheries scenario (Figure 

4-7). This shows clearly that the LPI differentiates between the three scenarios and that fishing 

at FMSY2 is most damaging to the ecosystem. The indicator picks up ecosystem changes very 

quickly; all three scenarios diverge within three years. The LPI indicates that the ecosystem 

stays relatively stable across the time period under no fishing, while fishing at FMSY1 causes 

an initial decline in the ecosystem, which then stabilises. Fishing at FMSY2 declines strongly 

and shows no sign of stabilisation, indicating that the ecosystem would decline further in time. 
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Figure 4-6: Responses of the modelled LPI to three different fishing pressures within 

the NoBa Model 
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Figure 4-7: Regression analysis of LPI under three fishing scenarios. Grey shading denotes 
95% confidence intervals and dots represent mean, upper and lower LPI scores.   

The modelled NNI decreased overall by 13% under the FMSY2 scenario and 5% under FMSY0, 

although it increased by 0.7% under FMSY1. While in the FMSY2 scenario, the NNI showed a 

relatively consistent decline, under FMSY0 and FMSY1 it followed a general pattern of an initial 

increase, followed by a decrease (Figure 4-8). When breaking the NNI down by ecosystem 

type, the effects of fishing are clearer within the index. The Benthic NNI showed an increase 

of 1% under FMSY0 and a decrease of 3% and 15% under FMSY1 and FMSY2 respectively. The 

Pelagic NNI decreased by 7% under FMSY0 and 19% under FMSY2, while it increased by 1% 

under FMSY1. Confidence intervals are not available for the NNI as no uncertainty estimation 

is included.  The variation in the pelagic NNI, which subsequently affects the overall NNI, is 

largely down to the inclusion of species with high natural variation such as zooplankton and 

mesopelagic fish. Invertebrate species such as zooplankton are not included within the LPI, 

and species such as mesopelagic fish carry more weight within the NNI than the LPI (which 

treats all species equally), due to the aim of weighting for ecological representation. 



113 

 

A multiple linear regression including scenario was significant for the NNI overall (F(8, 96)= 

21.52, p<2.2e-16), the NNI pelagic (F(11, 93)= 19.06, p<2.2e-16) and the NNI benthic (F(8, 

96)= 608.4, p<2.2e-16) (Figure 4-9). The NNI indicates that the FMSY2 scenario is significantly 

more damaging for biodiversity for the overall score, the benthic score and pelagic score, 

however it was unable to distinguish between FMSY0 and FMSY1 for the pelagic and overall 

scores; even with a narrowing of the confidence intervals, the trend is unlikely to be 

distinguishable between the scenarios given the overlapping nature of the trend. The NNI 

appears to be much less responsive than the LPI, taking eight years to show differentiation 

between the three scenarios across all three formats of the NNI. 

 

Figure 4-8: Responses of the modelled NNI to three different fishing pressures within 

the NoBa Model 
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Figure 4-9: Regression analysis of the NNI under three fishing scenarios. Grey shading 
denotes 95% confidence intervals and dots represent NNI scores per year.   

4.4 Discussion 

 

Biodiversity is dynamic and constantly changing with and without human intervention. This 

makes the design, selection and use of indicators of the effectiveness of biodiversity 

conservation policy challenging, particularly at large scales. Nonetheless, there has been little 

evaluation of the ability of indicators to track underlying trends of interest, and to disentangle 

natural variation from human-induced changes in biodiversity. The LPI takes a best-available 

data approach, amalgamating as many vertebrate data sources as possible (which meet 

selection criteria), and applying a relatively simple weighting scheme. Alternatively, the NNI 

takes an ecosystem approach, targeting species that are most representative and applying a 

complex weighting scheme, based on species function and trophic level.  
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Overall, the indicators respond differently; the LPI is sensitive to change and quickly changes 

under the management scenarios. The NNI, however, takes longer to respond and finds no 

difference for biodiversity between the no fishing and sustainable fishing scenarios. In the 

example, both indicators signalled that the most heavily impacting management strategy was 

FMSY2. This direct removal of biomass from the system caused a decline in biodiversity even 

once fishing effort had stabilised, showing the ongoing effects on the system of large human-

induced mortality. However, the difference between FMSY1 fishing and no fishing was not 

clearly pronounced. While fishing at this level caused a substantial decline in target species 

(Figure 4-4), the ecosystem in general at the guild level remained stable, with certain species 

benefitting from this level of fishing effort and others declining. The resultant trend in the LPI 

pointed to a decline in biodiversity between FMSY1 and no fishing, however this was not the 

case for the NNI, which signalled no difference between no fishing and FMSY1 for the overall 

score and pelagic score. While the LPI represented all vertebrate functional groups within the 

model, the NNI represented fewer functional groups overall, but contained nine invertebrate 

functional groups including phytoplankton, zooplankton, sponges and coral. As an 

assemblage, invertebrate species increased their biomass under all scenarios, showing 

underlying ecological conditions were favourable during the modelled period; in particular 

increasing water temperature from climate change has allowed for range expansion and 

increased productivity of these groups (Dalpadado et al. 2014). The LPI did not account for 

invertebrates and therefore was more sensitive to the declining target species and not 

accounting for externally-driven increases in abundance of other species. When separating 

out by ecosystem, however, there was a clear differentiation between the management 

scenarios for the Benthic NNI, which contained many of the exploited fish species. The Pelagic 

NNI contained many of the species with high inter-annual variability such as zooplankton, 

phytoplankton and small forage fish, which clouded indicator signal. 
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4.4.1 Linking models and indicators 

Global biodiversity models do not yet contain sufficient information to enable species metrics 

to be modelled at the global scale (Hill et al. 2016), unlike global climate models, for example 

(IPCC 2014). As such, validating indicators at regional or national scales should be a priority 

for determining which should be scaled up or down for tracking global biodiversity targets. This 

will require different models being deployed in a number of regions and exploring a variety of 

indicators. Marine modelling is becoming increasingly advanced, with multi-modelling studies 

providing interesting insights into the difference between different models and regions (Olsen 

et al. 2018; Tittensor et al. 2018). Terrestrial modelling has tended to lack the mechanistic 

elements that are regularly explored in marine models, although new developments in this 

area show this may be improving (Rangel et al. 2018). If wide testing and validation of 

indicators can be achieved, then consensus on which indicators to use for which purpose will 

be more likely. Indicators can then act as a tool to guide and align species data collection, 

seeing use at multiple scales from local to global (Kissling et al. 2017).   

Importantly, this co-development of indicators and models will then allow biodiversity 

indicators to be used for decision assistance. By projecting forward different scenarios, 

expected biodiversity change as a result of policy interventions can be estimated in an agreed, 

transparent and understandable manner, making explicit how policy decisions could impact 

biodiversity. By understanding the underpinnings of the indicator, as I have demonstrated 

here, we can predict the way in which different components of biodiversity might change, 

provoking discussions of how we would like biodiversity to look in the future. In the example, 

the NNI detect little change between no fishing and FMSY1, while the structure of the ecosystem 

is being altered. By utilising a modelling approach, we can obtain a representation of the 

ecosystem, understand these changes and observe how the indicator responds.  

In the real world, as with our example, there are inevitably many trade-offs between 

biodiversity and human activity but also within biodiversity itself. Overfishing has led to the 
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reduction in marine biodiversity in many parts of the world, with invertebrate species replacing 

demersal fish in the ecosystem. This has led to new productive fisheries with high commercial 

value, such as for lobster, where a shift back to traditional fisheries might result in socio-

economic loss (Howarth et al. 2014). Deciding whether society prefers mixed finfish 

ecosystems or invertebrate-dominated ones inevitably incurs trade-offs, but by better 

understanding how indicators used to make these trade-offs will pick up trends, society can 

be more explicit about what the future can look like and the paths we should take to get there.  

The complexities of species-based mechanistic modelling, particularly at the global scale, and 

the general disconnection of this modelling to political targets and indicators has perhaps 

slowed progress in both using indicators to drive policy and monitor policy effectiveness. This 

work was possible because of the years of work developing the Atlantis modelling framework 

generally and the NoBa model specifically (Fulton et al. 2011a; Hansen et al. 2019). While 

such end-to-end models are not universal, they have significant global coverage and are 

constantly being developed, signalling great scope for advancing indicator testing with 

scenario analysis (Fulton 2010). Models should not, however, simply be believed and the 

benefits of this integration are both ways. The values that are incorporated within biodiversity 

indicators are not always reflected in the models (e.g. the LPI looks to measure all vertebrate 

life, no matter its ecological function, whereas NoBa is intending to be a representative sample 

of an ecosystem); by modellers and conservation scientists working together, models can be 

adapted to better parametrise certain aspects of conservation value (Wood et al. 2018). For 

example, while the model was primarily produced for exploring fisheries examples, with further 

work and assistance from conservationists, the number and quality of functional groups for 

sea birds could be greatly improved.  

4.5 Conclusions 
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George Box’s adage of “all models are wrong, but some are useful” is apt for biodiversity 

indicators. While many individuals and groups continue to generate new indicators, often 

striving for the impossible task of finding one that is “right”, there is a lack of evidence to 

suggest which indicators are or are not practically useful. To have practical value, indicators 

must be designed carefully and clearly linked to what they are measuring, and the policy 

question they are meant to answer (Mcowen et al. 2016). While the CBD 2010 Framework 

committed to “immediate testing” of indicators, with a handful of exceptions this has largely 

not been enacted. This is potentially due to the complexities of doing so and the disconnection 

of conservation indicator scientists with ecosystem modellers, but may mean useful indicators 

are being side-lined or bad indicators are being adopted. Here I have provided a relatively 

straightforward example of how existing models and indicators can be brought together and 

adapted to help understand the drivers of ecological systems and indicator performance at the 

national scale. Wider adoption and application of such techniques would allow for better 

consensus on biodiversity indicators, can guide data collection to fill important data gaps, and 

assist in the production of science-based targets for biodiversity at a range of scales.   
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5 ASSESSING BIODIVERSITY LOSS WITH FISHERIES AND 
CONSERVATION INDICATORS 

5.1 Introduction 

 

Halting and reversing the loss of biodiversity is of critical importance to maintaining healthy 

natural systems where both nature and people are able to thrive (Watson et al. 2018). As such 

the principle of biodiversity restoration has been embedded as a core component in 

international agreements such as the Convention on Biological Diversity (CBD) and the 

Sustainable Development Goals (SDGs), particularly SDG 14 and SDG 15. While there is 

widespread agreement that biodiversity loss must be halted, how to best achieve this is less 

clear, as efforts to conserve biodiversity comprise a patchwork of international goals, national-

level plans, and local intervention which overall are failing  (Ripple et al. 2017). In marine 

systems, fisheries managers and conservationists play a key role in maintaining and 

preserving biodiversity, but often remain disconnected, operating independently of each other 

and having different histories, values and epistemologies (Salomon et al. 2011). As such these 

two sectors have typically had different objectives, tracking marine systems with different 

indicators and implementing different management measures, which are often not reconciled 

(Davies & Baum 2012). Being able to compare how management interventions impact both 

fisheries and conservation objectives is crucial for halting biodiversity loss while maintaining 

acceptable ecosystem services for people (Friedman et al. 2018). Making robust predictions 

about the future impact of human interventions is particularly important as the interactions 

between climate change and other anthropogenic impacts on biodiversity, such as fishing, 

remain unclear (Engelhard et al. 2014; Segan et al. 2016).  

Norway is a maritime nation with a long history of fishing, which has been closely managed to 

ensure the future prosperity of fisheries resources (Grønnevet 2016). Norway has 

implemented knowledge-based fisheries management, based on the principle of sustainable 

harvesting, which has been the main management process for the preservation, restoration 
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and continuation of marine ecosystems in Norway’s waters. Sustainably managing fisheries, 

including wider ecosystem considerations, is seen as a key tool for Norway to meet its 

international obligations for species under the CBD (Norwegian Government 2018). This 

approach seems to be favoured over marine protected areas (MPAs) as Norway has 

designated just 1% of its territorial waters as MPAs, far below the 10% required under the 

CBD (Protected Planet 2019).  In such a case it is important to assess how fisheries 

management approaches contribute to biodiversity performance and how consistently 

biodiversity indicators perform between sectors. Here we use the Nordic and Barents Sea 

(NoBa) Atlantis Model to explore the possibility of halting and reversing biodiversity loss into 

the future by simulating three different management approaches, which include climate 

change projections at RCP4.5, to 2068. The three different management approaches are 

Global Sustainability (fishing at FMSY1), Precautionary Fishing (fishing at FMSY0.6) and Strict 

Conservation (no fishing). I generate a range of indicators from across fisheries management 

and conservation to analyse progress towards halting and ultimately restoring biodiversity loss 

at three key timepoints; 2030 (the timeline for the SDGs), 2050 (the overall vision for the CBD) 

and 2068 (the end of model run). I likewise generate economic indicators to consider the trade-

offs between biodiversity and socio-economics inherent in these management interventions. 

While also assessing management performance of each scenario we can also compare how 

different biodiversity indicators respond. By taking a modelling approach, we can compare 

changes in the indicators to what is happening in the ‘virtual truth’ of the model, which helps 

greatly with the interpretation of indicators which is so difficult in the real world (Nicholson et 

al. 2012).  

5.1.1 Study Area 

The Barents Sea is an open sub-Arctic shelf ecosystem situated north of Norway and north-

west of Russia that covers an area of 1.6 million km2 with an average depth of 230m 

(Dalpadado et al. 2014). The Barents Sea connects to the Norwegian Sea to the west and the 

Arctic Ocean to the north. The Norwegian Sea has a surface area of about 1.1 million km2 with 
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an average depth of about 1800m, resulting in a total volume of about 2 million km3  (Loeng & 

Drinkwater 2007). Although they are designated as separate Large Marine Ecosystems 

(LMEs), the Barents and Norwegian Seas are highly interconnected. The physical conditions 

in both seas depend to a large extent on the inflow of Atlantic Water and share similar 

atmospheric driving forces. Herring (Clupea harengus) is a both culturally and economically 

important fish stock, which spawn along the Norwegian coast, using the Barents Sea as a 

nursery area, and feed in the Norwegian Sea as adults. Similarly, one of the world’s largest 

stocks of cod (Gadus morhua) also spawns along the Norwegian coast, and their larvae drift 

with the currents into the Barents Sea, where they remain through their adult life. The seas 

also contain huge concentrations of seabirds and a diverse assemblage of marine mammals.  

The area is considered to be exceptionally well managed by fisheries standards and  continues 

to provide large catches of cod and other species well within safe and sustainable biological 

parameters as assessed in 2018 (ICES 2018). This is largely down to good management and 

long-term cooperation with neighbouring Russia (Grønnevet 2016). Despite fisheries success, 

some seabird populations have been declining rapidly (Fauchald et al. 2015) and sea ice loss 

in the Barents Sea has accelerated, with potential impacts on many species, but particularly 

marine mammals (Laidre et al. 2015).  

5.1.2 Scenarios 

The three scenarios were selected as a range of potentially plausible management 

interventions when thinking about fisheries and biodiversity. The first scenario, Global 

Sustainability, undertook fishing at FMSY1. FMSY1 is the maximum rate of fishing mortality that 

will eventually result in a population size of BMSY. BMSY is the biomass that enables a fish stock 

to deliver the maximum sustainable yield and is often used as a reference point for managing 

fisheries.  Although the concept of Maximum Sustainable Yield (MSY) is somewhat 

controversial (Rindorf et al. 2017), MSY is a key part of the United Nations Convention on the 

Law of the Sea (UNCLOS) : 
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“…State(s) must set an allowable catch, based on scientific information, which is designed to 

maintain or restore species to levels supporting a maximum sustainable yield (MSY).” 

(United Nations General Assembly 1982) 

As such it has gained global support as a way of achieving sustainability in fisheries. The 

second scenario, Precautionary Fishing, includes fishing at FMSY0.6, which might be 

considered a rather low rate of fishing. Fishing below MSY in theory allows fish stocks to 

recover if overfished or adds a precautionary buffer so that they do not subsequently become 

overfished. The third scenario is Strict Conservation, which ended all fishing in the model. 

Such a scenario is interesting as it would be considered to be pro-biodiversity, but with 

significant socio-economic and cultural impacts.  

5.2 Methods 

 

5.2.1 Model Overview 

An updated version of the NoBa model, as described in Chapter 4, was parameterised with 

historical fishing data from 1980-2017 and run forward under three different management 

intervention scenarios from 2017-2068. This meant that baseline conditions at the 

implementation of management interventions were intended to be representative of a situation 

similar to reality, unlike Chapter 4, where the starting conditions represented an unfished 

system. Although end-to-end models are never finished, the NoBa model has undergone 

sensitivity to analysis to explore parameter uncertainties, which is largely uncommon for end-

to-end models (Olsen et al. 2016; Hansen et al. 2019). All scenarios included historic 

temperature and salinity data, projected forward to 2068 under Representative Concentration 

Pathway (RCP) 4.5 from the Regional Ocean Modelling System (ROMS; Shchepetkin & 

McWilliams 2005) covering the Northeast Atlantic (Skogen et al. 2007). This represents a 

moderate climate change scenario, with peak emissions around 2040, and then declining. 

Fishing mortality was included for 11 commercial species within the model, which was ended 
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for the Strict Conservation (no fishing) scenario. The other two scenarios applied fishing 

mortality at FMSY1 (Global Sustainability), and FMSY0.6 (Precautionary Fishing) for each of the 

fished species. It is not possible to calculate MSY for capelin (Mallotus villosus) as it is a short-

lived species which dies after spawning. For this species, mortality was included by taking the 

average annual catch from 2007-2017 to represent FMSY1 and multiplying by 0.6 for FMSY0.6, 

on the assumption that the species is currently fully but sustainably exploited.  

5.2.2 Indicator Overview 

I generated three types of indicators used to measure marine systems to represent how 

different sectors might monitor the effect of management on biodiversity trends. These 

included conservation indicators, fisheries ecosystem indicators and IndiSeas indicators, 

which are a general set of indicators used for comparing biodiversity impacts across marine 

systems. I also generated a selection of fisheries/economic indicators used regularly within 

fisheries management to monitor fisheries outputs.  

For the conservation indicators, I generated the Living Planet Index (LPI) and Norway Nature 

Index (NNI) similarly to the approach set out in Chapter 4. The LPI represents a typical 

abundance-based indicator, which can be translated for use at the national scale and easily 

reported back to the global scale. The NNI was developed by Norway for use at the national 

scale to track its biodiversity performance in light of international commitments like the CBD. 

The LPI requires a time-based reference point which was set as 2015, as this is when the 

SDGs were established and could be considered a suitable timepoint to measure against. The 

NNI typically requires a reference point for each species in what would be considered its 

‘undisturbed’ state. From a modelled perspective this would be difficult to estimate for these 

scenarios as they are parameterised with historical fishing data. As such, to keep in line with 

other indicators, I established the reference point for each species as the average biomass in 

2010-2014, thus setting 2015 as the baseline reference against which future biodiversity loss 

could be measured. I also generated a third conservation indicator measuring the state of 
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iconic species. The Ocean Health Index contains iconic species as a sub-goal to the Sense of 

Place Goal (Halpern et al. 2012), which is calculated from IUCN Red List status. I calculated 

the relative abundance of iconic species, based on Fulton et al. (2018). This indicator included 

typical species of conservation concern such as vulnerable (slow growing) species – in this 

case it included all cetaceans, pinnipeds and seabirds. Higher scores for this indicator convey 

that the system structure has not been distorted by the loss of these vulnerable and culturally 

important species.  

I also generated ecosystem indicators used by the IndiSeas project to reflect the ecological 

and biodiversity status of marine ecosystems (Shin & Shannon 2010; Shin et al. 2010a, 

2010b). A key aim of this project was to provide a set of synthetic indicators, which could be 

used comparatively across different ecosystems of the world (Shin & Shannon 2010). The 

initial suite of IndiSeas indicators was supplemented with a list of empirically-based candidate 

biodiversity indicators initially established based on ecological significance (Coll et al. 2016). 

IndiSeas indicators have been subject to testing and analysis to support their selection (Link 

et al. 2010; Shin et al. 2018), but reference point selection has proved a challenge as they 

have been primarily designed for comparison between different systems (Shin et al. 2010a). 

In this case, I use a time-based reference point of 2015 for comparing progress for each 

scenario. Higher values of the IndiSeas indicators correspond to good ecological status of 

ecosystems, and improving scores corresponds to positive trends in indicators. They contain 

both ecosystem-based and catch-based indicators. A full list and description of IndiSeas 

indicators can be found in Table 5-1. 
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Table 5-1: Description of IndiSeas indicators generated from the NoBa Model 

Indicators Descriptor Notations 

Total biomass of 
surveyed species 

biomass  B surveyed (tons) 

1/(landings /biomass) 
inverse fishing 

pressure  
B/Y retained species 

Trophic Level landings 
trophic level 

landings 

 

𝑇𝐿𝑙𝑎𝑛𝑑 = ∑ 𝑇𝐿𝑠𝑌𝑠𝑠∑ 𝑌𝑠𝑠  

Proportion of predatory 
fish 

% predators 
prop predatory fish= B predatory fish/B 

surveyed 

Mean life span life span 
∑ (𝑎𝑔𝑒𝑚𝑎𝑥𝐵𝑠)𝑠 ∑ 𝐵𝑠𝑠 (𝑦𝑒𝑎𝑟) 

TL Community 
Trophic level 
Community 𝑇𝐿𝑐𝑜𝑚𝑚 = ∑ 𝑇𝐿𝑠𝐵𝑠𝑠∑ 𝐵𝑠𝑠  

s: species, N: abundance, B: biomass, Y: catch, TL: trophic level 

Surveyed species are species sampled by researchers during routine surveys (as 
opposed to species sampled in catches by fishing vessels), and include species of 
demersal and pelagic fish (bony and cartilaginous, small and large), as well as 
commercially important invertebrates (squids, crabs, shrimps) (IndiSeas 2019). 

 

Ecological and biodiversity indicators for fisheries have been widely discussed, tested 

extensively and used in a variety of studies (Fulton et al. 2005). In addition to the indicators 

listed above I also chose a set of six indicators which are widely used to track status and 

trends of ecosystems and have been used in various other modelling studies analysing 

ecosystem responses to fishing pressure, which can be found in  

Table 5-2 (Fay et al. 2013; Olsen et al. 2018). Good ecological status of ecosystems is 

characterized by high values of these indicators, and improving scores corresponds to positive 

trends in indicators. 
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Table 5-2: Description of fisheries ecosystem indicators generated from the NoBa 

Model 

Indicators Description Notations 

Pel bio/PP 
Ratio of pelagic biomass to 

primary production 
B pelagic / B primary production 

Bio/PP 
Ratio of total biomass to 

primary production 
B / B primary production 

Dem/Pel  
Ratio of demersal to 
pelagic fish biomass 

B demersal fish / B pelagic fish 

Dem bio/PP  
Ratio of demersal biomass 

to primary production 
B demersal / B primary production 

Prop Pel  
Proportion of total biomass 
that is made up of pelagic 

species 
B pelagic / B 

PropPred  
Proportion of total biomass 

that is comprised of 
predatory species 

B predators / B 

 

To explore socio-economic changes under the scenarios I used a series of indicators which 

measure fisheries and economic properties and can be used as a proxy for the socioeconomic 

effects of management decisions (Olsen et al. 2018). These indicators can be found in  

Table 5-3. 

Table 5-3: Description of fisheries indicators generated from the NoBa Model 
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Indicators Description Notations 

Total Catch 
Summed catch of all 

species 
Y 

Pelagic 
Catch 

Summed catch of pelagic 
species 

Y pelagic 

Demersal 
Catch 

Summed catch of demersal 
species 

Y demersal 

Fish Catch 
Summed catch of fish 

species 
Y fish 

Fish 
Exploitation 

Rate  
 Total catch/Fish Biomass Y/B fish 

Target 
Species 

Exploitation 
Rate  

Total Catch/Target Species 
Biomass 

Y/B target species 

 

All ecosystem indicators were measured annually through time and then compared to their 

2015 baselines (2010-2014 average) in 2030 (measured as average of 2025-2029 inclusive), 

2050 (measured as average of 2045-2049 inclusive) and 2068 (measured as average of 2063-

2067 inclusive) to see to what extent that they reported on biodiversity loss being halted. This 

enabled me to pinpoint and interpret similarities and differences across scenarios and indicator 

groups. In the case of halting biodiversity loss, there is no consensus on indicator reference 

points. Comparing indicators against time-based reference points is one of the most common 

ways of measuring progress against policy goals, which often lack science-based reference 

points (McQuatters-Gollop et al. 2019). As such I assume a time-based reference point of 

2015 and any indicators that fall below this reference point indicate that biodiversity loss has 

not been halted. By taking such an approach, I can clearly communicate results and compare 

between indicators to a broad audience, in keeping with the purpose of indicators (ten Brink 

2006). 
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5.3 Results 

 

5.3.1 Ecosystem Dynamics 

The three different management scenarios altered the ecosystem in different ways, 

particularly at the functional group level (Figure 5-1). The most significant changes were to 

commercially caught species, such as the Greenland halibut (Reinhardtius hippoglossoides), 

which directly responded to the changes in fishing pressure as their mortality was increased 

or decreased depending on the scenario and their current fishing pressure. Other species 

such as the Long rough dab, (Hippoglossoides platessoides), although not under any direct 

fishing mortality, had its biomass altered significantly by the management scenarios. This is 

because of its close relationship to those species that are caught commercially; as it is 

outcompeted by them as their numbers increase from reduced fishing pressure under Strict 

Conservation. Other species, such as the Killer whale (Orcinus orca), showed less response 

to the management scenarios but still displayed strong underlying trends over time as a result 

of the climate change built into the model. 
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Figure 5-1: Responses of selected functional groups to three different fishing scenarios in NoBa model 
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Underlying trends are clearer when looking at the guild level (Figure 5-2). Many guilds show 

little differentiation between the management scenarios, showing there are strong ecosystem 

dynamics underpinning and stabilising the relationships in the system, driven by historical 

exploitation, interactions between species and also the added effect of climate change. For 

instance, filter feeders such as coral and sponges increased strongly under all scenarios; more 

than doubling their biomass by 2068, probably due to increased productivity under climate 

change.  Demersal fish show one of the greatest changes between scenarios, increasing 

22.6% by 2030 under Strict Conservation, compared to an 8.2% decrease under Global 

Sustainability. However, this pattern was not uniform across guilds; primary production 

showed a large decreasing trend under Strict Conservation, reducing by 74% by 2068, 

compared to a 3.6% increase under Global Sustainability.  

 

Figure 5-2: Guild level biomass responses at three time points across three fishing 

scenarios from the NoBa model 
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5.3.2 Indicators 

A summary of whether each indicator reports that biodiversity loss has been halted at key 

timepoints is shown in Table 5-4. Exact values and full timeseries can be found in Appendix 

4. When comparing against 2015 baselines, by 2030, one indicator reported that biodiversity 

loss had not been halted under Strict Conservation, four under Precautionary Fishing, and six 

under Global Sustainability. Every indicator except total surveyed biomass had Strict 

Conservation as the best performing scenario to 2030. Indeed, when exploring the total 

surveyed biomass indicator, and removing zooplankton (Figure 5-3), the signal became much 

clearer and Strict Conservation became the best performing scenario across all timepoints. 

Zooplankton are regularly surveyed in Norwegian waters as they are being considered for a 

potential new fishery (Samuelsen et al. 2009) but have high interannual variability and 

therefore can act as noise in indicators. Only iconic species abundance  fell below the baseline 

level by 2030 for Strict Conservation; this indicator would be unlikely to see any immediate 

response in change to fishing pressure because of time lags with long-lived species. However, 

responses from the other indicators shows that the ecosystem overall responded quickly and 

positively to such a dramatic change in policy, with the indicators largely in agreement that 

this was positive for biodiversity. For the two fishing scenarios to 2030, the IndiSeas indicators 

generally pointed towards halting biodiversity loss being achieved, whereas the fisheries 

ecosystem indicators displayed mixed messages, with large gains in the primary productivity 

indicators and losses in the others (PropPel, PropPred, DemPel).  

From the conservation indicators, the LPI and NNI perform relatively similarly, as both 

indicators respond positively under Strict Conservation and Precautionary Fishing to 2030, 

showing that they respond in a timely and reliable manner to these management changes. A 

positive response under Strict Conservation especially would be expected, as fishing mortality 

is halted. The LPI seems to have greater sensitivity, with a 10% increase under Strict 

Conservation, compared to 3.75% for the NNI, most likely due to the aggregation methods 

constraining the NNI’s sensitivity (see Chapter 4).  
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Table 5-4: Summary of whether indicators show biodiversity loss was halted at three 

time points across three fishing scenarios. Assessment was made by comparing each 

time point to the baseline level in 2015. (Y= Yes, N= No). 

 

 

2030 2050 2068 2030 2050 2068 2030 2050 2068

LPI Y N N Y N N Y N N

NNI N N Y Y N N Y N N

Iconic Abundance N N N N N N N N N

Total Biomass Y Y N Y N Y Y Y N

% Pred Y Y Y Y Y Y Y Y Y

Mean Life Span Y N N Y Y Y Y Y Y

TL Community Y Y Y Y Y Y Y Y Y

Inverse Fishing Pressure N Y Y N Y Y NA NA NA

TL Landings Y Y N Y Y N NA NA NA

PelBioPP Y Y Y Y Y Y Y Y Y

BioPP Y Y N Y Y Y Y Y Y

DemPel N N N N N N Y N N

DemPP Y Y N Y Y Y Y Y Y

PropPel N N N N N N Y Y Y

Prop Pred N Y N Y Y Y Y Y Y

Strict Conservation

Year

Conservation

IndiSeas

Fisheries 

Ecosystem

Scenario Global Sustainability Precautionary Fishing
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Figure 5-3: A) Total surveyed biomass across the model run for three different fishing 

scenarios B) Total surveyed biomass excluding three species of zooplankton 

When looking to 2050, the indicators start to diverge more. Under Strict Conservation, four 

indicators point to biodiversity loss not being halted at 2050, compared to six each for the 

fishing scenarios. While Strict Conservation is still the best performing scenario for almost all 

of the IndiSeas and fisheries ecosystem indicators, it is not the case for the conservation 

indicators. Strict Conservation becomes the worst performing scenario for the NNI in 2050 and 

2068, and middle performing for the LPI and iconic species abundance. The iconic species 

abundance indicator declined across all scenarios and timepoints showing that higher-trophic 

level groups such as cetaceans are much less impacted by the fishing scenarios and are 

exhibiting underlying declines in their biomass due to climate change. Many of the species 

included within the iconic species indicator were also included within the NNI and LPI and 

many declined consistently under all scenarios across the timeseries, further driving negative 

responses of these indicators. From the fisheries ecosystem indicators, those concerned with 
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ratios of primary productivity (PelBioPP, BioPP, DemPP) showed gains under all scenarios, 

although with significantly higher gains under Strict Conservation. Primary productivity drops 

largely under the Strict Conservation management scenario (Figure 5-2), reflecting 

phytoplankton declines due to trophic interactions. 

Conservation indicators show decline under all scenarios (except NNI under Global 

Sustainability) to 2068, whereas many of the fisheries ecosystem and IndiSeas indicators 

respond more as expected, with increasing scores under less fishing pressure. Five of six 

fisheries ecosystem indicators show large gains to 2068 under Strict Conservation. From a 

socio-economic perspective, fish catch indicators performed as expected (Figure 5-4). Catch 

initially dropped as the new management regimes were established but then in general 

steadily rose over time, driven by large catch increases of prawn (Pandalus borealis) and 

saithe (Pollachius virens), whose biomass increased largely over the model run in all 

scenarios, showing they have benefited from climate change. Trends in these two species 

drove pelagic catch (for saithe) and demersal (for prawns) upwards, but the increases were 

less apparent when looking at total fish catch which excluded prawns. Global Sustainability 

provided 17.1% more catch than Precautionary Fishing over the model run, which works out 

as a difference of over $38billion USD over the course of the model run or $1billion per year 

at 2015 prices. Catch data for all commercial species can be found in Appendix 4.  
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Figure 5-4: Fisheries indicator responses to two fishing scenarios generated from the 

NoBa model 

5.4 Discussion 

 

Here I applied three contrasting fisheries management approaches, within the region of the 

Nordic and Barents Seas over a period of 38 years. I did this with two aims; to see if they could 

halt and potentially reverse biodiversity loss in line with international commitments, and to see 

how consistent these predictions were between indicator types. I used a variety of biodiversity 

indicators from across different sectors to see how they compared and if different design 

philosophies underpinning them had an effect on how biodiversity is potentially communicated 

and managed.  
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5.4.1 Halting biodiversity loss 

When analysing across the suite of indicators as a whole, they suggest that Strict 

Conservation offers the best outcomes for biodiversity to 2068 of all three scenarios; By 2068, 

nine out of 13 indicators point to biodiversity loss being halted under Strict Conservation, 

compared to ten and six out of 15 for Precautionary Fishing and Global Sustainability 

respectively. However, not all indicators reflect this, nor do any of the scenarios have 

consensus on whether or not international biodiversity commitments will be met within the 

NoBa area following these approaches alone.  

All conservation indicators, bar the NNI under Global Sustainability, declined below the 2015 

baseline by 2068 under all scenarios. The initial improvements in biodiversity shown by the 

conservation indicators at 2030 was thus not continued in the medium term (the timeframe of 

the strategic vision of the CBD). This pattern can be attributed to the stabilisation of fished 

species that initially showed positive responses from reduced fishing pressure, before density 

dependence limited further growth (e.g. North-east Atlantic Cod) (Andersen et al. 2017). Also, 

trophic effects were responsible for some fished species (e.g. herring) sharply declining 

following initial growth as they were heavily predated.  Other species performed worst under 

Strict Conservation (e.g. small pelagics) as they were outcompeted by other rebounding 

species. The conservation indicators generally considered a much wider array of individual 

species, ranging from invertebrate species right through to seabirds and cetaceans, reflecting 

wider conservation concerns and interests. These were considered as individual species and 

then weighted differently depending on the indicator. From a conservation perspective, Global 

Sustainability led to the most stability over the time series and had the highest indicator values 

by 2068. This is somewhat surprising but shows the strength of underlying ecosystem 

dynamics, which shifted dramatically under management thought to favour biodiversity (Strict 

Conservation) and remained most stable over the scenario which was closest to current and 

historic management (Global Sustainability). In general, the fisheries ecosystem and IndiSeas 

indicators yielded improved scores with lower fishing effort, as would be expected. For some 
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of the fisheries-based indicators (e.g. PelBioPP, % pred), all scenarios led to upwards trends 

over time, meaning in isolation, each scenario would be considered a positive outcome from 

a management perspective. However, by running different scenarios it can be seen that 

alternative options can offer different levels of change (e.g. % predators increased 284% under 

Strict Conservation compared to 78% under Global Sustainability).  

5.4.2 Comparing fisheries and conservation biodiversity indicators 

The conservation and fisheries-based indicators are constructed and used in different ways, 

both of which have advantages and disadvantages (Table 5-5). The development and testing 

of ecosystem indicators for fisheries has focussed on key attributes such as responsiveness 

and reliability for detecting change, primarily in fishing pressure, in order to try and advance 

the operationalisation of Ecosystem Based Fisheries Management (EBFM) (Tam et al. 2017). 

This has been a rather different approach to conservation indicators, which have been 

developed, usually in isolation, to reflect certain aspects of biodiversity that are widely cared 

about, such as extinction risk (Butchart et al. 2005), vertebrate abundance (Collen et al. 2009), 

intactness (Purvis et al. 2018) or ocean health (Halpern et al. 2012). The differences between 

these approaches is reflected in the results of this study, where conservation indicators paint 

a different picture to fisheries ecosystem and IndiSeas indicators.  

Both IndiSeas and fisheries ecosystem indicators favour using several indicators as a suite 

with relatively straight forward construction methods, such as ratios, summations or 

proportions. This differs from the conservation indicators which tend to be aggregated 

indicators with more detailed methods and used in isolation. Conservation tends to be species-

focussed and therefore attempts to collate and aggregate as much species level information 

as possible (Mace et al. 2008). The conservation indicators are predicated on an assumption 

that all species they include should increase in abundance in concert under favourable 

management, which makes their interpretation particularly challenging as species population 

dynamics are typically complex and change based on numerous factors, both natural and 
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anthropogenic (Regan et al. 2002). I have demonstrated here that even when acting with 

biodiversity in mind (Strict Conservation), ecosystems do not respond in a linear fashion, and 

species interactions mean there are winners and losers (Hill et al. 2016). This is a challenge 

for aggregate indicators as they can mask these trade-offs. In the real world, depending on 

which species are captured by indicators, such as the LPI, which use all available data, there 

is potential for misleading or masking of signals (Nicholson et al. 2012). I have shown here, 

however, that by developing an LPI based on targeted data from the ecosystem, that it is a 

useful supplement to fisheries ecosystem indicators. However, indicators such as the NNI 

which seek ecological representation, may face problems in interpretation as they often use 

composite measures with high levels of weighting and perfect compensability, meaning 

negative changes in one part of the index can be offset by positives in the other which 

generally impacts sensitivity (Burgass et al. 2017). By integrating indicators within a modelling 

framework as done here, I have been able to compare responses in biodiversity indicators to 

the ecological changes within the model. This has helped interpret and thus validate the 

responses in conservation indicators, which is rarely considered (Costelloe et al. 2015).  

The IndiSeas and fisheries ecosystem indicators approach differs as they measure different 

aspects of the ecosystem, often at the guild level or above. Results at higher taxonomic levels 

(Figure 5-2) are often more stable than when considered at the species level (Figure 5-1) 

(Olsen et al. 2018), and therefore these higher levels have been a major focus for fisheries 

indicator science (Fulton et al. 2005). However, as we see here, not all the indicators in a suite 

perform uniformly, requiring further interpretation. For instance, total biomass of surveyed 

species was highly variable and revealed little difference between the scenarios (Figure 5-3, 

A). However, when removing zooplankton, the differentiation between scenarios became 

much clearer (Figure 5-3, B), with Strict Conservation the best performing scenario. Likewise, 

there are two indicators that are concerned with measuring predators. % Predators from the 

IndiSeas project looks at the ratio of predatory fish compared with surveyed biomass, whereas 

the fisheries ecosystem indicators look at total predator biomass compared to overall biomass 
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(Prop Pred). Although both indicators increase over Precautionary Fishing and Strict 

Conservation, they exhibit different results under Global Sustainability, with Prop Pred 

declining by 11% by 2068 and % Pred increasing by 78%. In the case of the Prop Pred, the 

total system biomass is increasing at a greater rate than predators, thus causing the indicator 

to decline, despite predator numbers also increasing. Understanding how indicators’ 

construction affects their performance is important, but often overlooked (Moriarty et al. 2018).  

Table 5-5: Pros and cons of fisheries ecosystem and conservation biodiversity 

indicators 

Indicator Type Indicator 
attributes 

Pros Cons 

Fisheries 
Ecosystem 
Indicators 

Multiple 
indicators 
used as a suite 

• Gain information on 
multiple attributes of 
the system 

• Hard to 
synthesise/understand 
if indicator responses 
aren’t the same 

• More complex 
communication 

Conservation 
Indicators 

Single 
indicators 
favoured 

• Used more easily with 
political target setting  

• Easier to 
communicate with 
broad audiences 

• Lacks full system 
understanding for 
decision making 

Fisheries 
Ecosystem 
Indicators 

Subject to 
rigorous 
simulation 
testing 

• Indicators are 
sensitive and perform 
as expected 

• Able to project 
management 
approaches forward 
and communicate 
results using 
indicators 

• Focus on high 
performance may 
exclude parts of the 
system that are 
societally valued e.g. 
certain species groups 

Conservation 
Indicators 

Built around 
aspects that 
are valued i.e. 
species 

• Measure valued parts 
of the system 

• Unclear how 
indicators perform in 
reality, which impacts 
their usefulness 

Fisheries 
Ecosystem 
Indicators 

Favour simple 
ratios of higher 
guilds 

• Based on scientific 
understanding and 
easily interpreted 

• Don’t measure 
species changes 

Conservation 
Indicators 

Favour 
aggregations 

• Can include large 
amounts of data 

• Can hide trade-offs 
and dynamics 

Fisheries 
Ecosystem 
Indicators 

Data targeted 
for indicators 

• Aids understanding of 
indicator 

• Requires potentially 
expensive monitoring 
programmes 

• Narrower focus of 
species 



140 

 

Table 5-5: Pros and cons of fisheries ecosystem and conservation biodiversity 

indicators 

Indicator Type Indicator 
attributes 

Pros Cons 

Conservation 
Indicators 

Data used 
based on 
availability 

• Can integrate and 
include broad data 
sets 

• Cheaper to develop 

• Prone to geographic 
and taxonomic bias as 
well as data 
uncertainties, which 
can cloud signals 

 

5.4.3 Using indicators 

Norway has ambitious commitments to leave areas such as Svalbard ‘virtually untouched’, but 

at the same time to increase revenues from the blue economy, through tourism, fisheries, 

aquaculture and other sectors reliant on different aspects of biodiversity (Norwegian 

Government 2017). It is important that biodiversity indicators are meaningful and easily 

communicable because ultimately there are always trade-offs between fisheries, conservation 

and other aspects of social-ecological systems. In this example, lowering fishing pressure 

comes at a large economic cost and yet does not provide significant benefits for biodiversity 

according to conservation indicators. In such a case further action would be necessary outside 

of, but linked to, fisheries in order to meet biodiversity objectives. Cross-sectoral management 

is necessary to navigate trade-offs and achieve overall targets and this requires integrated 

planning and management. Norway has already initiated this process through its integrated 

management plans for the Barents and Norwegian Seas, but individual sectors continue to 

manage and report on their own objectives (Norwegian Ministry of Climate and Environment 

2016). The NNI was created in order to bring different specialist groups together and assess 

biodiversity in a single metric, but as we have seen here, there is substantial value in reporting 

across a suite of indicators and factoring in multiple objectives. 

One of the key challenges in using indicators is that they are often developed without specific 

management objectives in mind. As such, defining thresholds or trigger points for action has 

proved extremely difficult, even within fisheries science where indicators have been explored 
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at length (Samhouri et al. 2010; Large et al. 2013). The LPI uses a time-based threshold and 

the NNI uses a population threshold, which allows comparison of how far we are from a desired 

state, but indicators do not help understand how to achieve the desired state or if it is even 

possible. Understanding the wider system, making predictions and undertaking adaptive 

management are all critical in actually achieving biodiversity outcomes. When juggling 

competing objectives, participatory methods are often important as value judgements are 

necessary (Punt et al. 2016). Integrating modelling scenarios and participation has proved 

successful for setting meaningful thresholds to trigger management intervention in marine 

systems (Addison et al. 2015). Without undertaking these processes, discussion and 

management will continue to be siloed and indicators remain poorly interpreted, as science 

alone cannot make such trade-offs.  

5.5 Conclusions 

 

Both fisheries and conservation are concerned with the preservation of biodiversity. In Norway, 

fisheries are the dominant sector for managing biodiversity, but the types of indicators used in 

this sector are not necessarily well aligned with conservation priorities. Wider system changes 

of conservation concern were not detected by any of the fisheries ecosystem indicators; in 

essence because they have been designed to be responsive to fishing pressure. This has 

advantages in that many of those indicators were extremely sensitive to change, but there are 

questions about whether they measure ecosystem components which are of particular cultural 

or economic (outside fisheries) importance and reflected more in the conservation indicators 

(Hobday et al. 2015). Indeed, many of the higher trophic level species are purposefully left out 

of these indicators, despite being of high conservation concern and/or interacting with fisheries 

(Davies & Baum 2012). 

Indicators are required, not only to detect changes because of fishing, but all changes in 

marine ecosystems. This increases the complexity of indicators, not only in design but in 
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interpretation. Conservation indicators tend to be aggregated metrics which appear simple 

and intuitive on the surface, but have been criticised for not acknowledging their uncertainties 

(Collen & Nicholson 2014). Fisheries indicator testing and use is highly advanced and the 

methods used could be of great benefit to wider conservation initiatives, particularly at large 

scales. However, it is important to ensure integrative participatory decision-making to 

understand preferences for marine systems. This will help further guide what should be 

measured and what other conservation actions are required. Equally, conservationists could 

benefit from awareness of recent advances in marine fisheries science and the complexities 

of ecosystem dynamics. Highly impacted and dynamic systems may not respond as quickly 

or in the ways conservationists might hope, and modelling tools from fisheries science can 

help to build collaborative understanding of the effects of different scenarios (Tittensor et al. 

2018). Studies such as this can be undertaken at a variety of scales to ensure that indicators 

are not only robust but also contain a full suite of societal preferences, which should make 

conversations around ecosystem-based management and trade-offs clearer.  
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6 KEY CONSIDERATIONS FOR AN EFFECTIVE PATHWAY TOWARDS 
POST-2020 NATURE CONSERVATION 

6.1 Introduction 

 

The Convention on Biological Diversity (CBD) was adopted in 1992 and represented the 

world’s first multi-lateral and binding treaty aiming to address the emerging crisis of biodiversity 

loss. The original aim – to achieve a significant reduction in the state of biodiversity loss by 

2010 – was not met (Butchart et al., 2010). Following this, the Strategic Plan for Biodiversity 

2011-2020 and its associated Aichi targets triggered a notable response in protected area 

policy, climate change agreements, invasive species action and cross-boundary integration. 

Despite this progress, the signatories' ambitions to halt biodiversity loss will likely suffer the 

same fate as the 2010 target (Tittensor et al. 2014). While the Aichi Targets may have been 

intended to be aspirational and different bodies may have different views on their success, the 

causes of the failure to explicitly meet most of the Aichi Targets are multiple and likely vary 

across targets. Causes could include, for example, a lack of understanding of the objectives 

and aspirations of stakeholders (Maxwell et al. 2015), time lags between the implementation 

of actions and their outcomes (Leadley et al. 2013), the complex and ambiguous nature of the 

target text (Butchart et al. 2016), and a lack of development of meaningful indicators with 

which to gauge actual progress made (Hill et al. 2016; Mcowen et al. 2016). 

At the 15th Conference of Parties for the CBD in Beijing 2020, governments will negotiate a 

new biodiversity framework to replace the 2011-2020 Strategic Plan, in alignment with the 

CBD’s 2050 Vision and the 2030 United Nations Sustainable Development Goals (SDGs). A 

comprehensive and participatory process to develop the post-2020 framework is already 

underway and will be refined over the next two years, with indications that the post-2020 

framework will likely be similar in structure to the existing strategic plan, comprising an 

overarching goal, strategic goals, targets, indicators and support for national implementation 

(Convention on Biological Diversity 2019). There are considerable opportunities to translate 
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lessons learnt over the past two decades into meaningful and actionable recommendations 

for the post-2020 framework. For example, at present, on the ground conservation is not well 

linked to international goals (Rands et al. 2010) and national policies rarely consider the 

complex interlinkages and trade-offs governing the relationships between people and 

biodiversity (Nicholson et al. 2012). Nations must interpret and tailor their approach according 

to their ecological priorities, cultural underpinnings and socio-economic situations, in a way 

that is not well supported by the current global biodiversity targets. In particular, as biodiversity 

transcends borders and is unevenly distributed and impacted, conservation action is not 

simply additive by individual countries; concerted effort across scales is required in order to 

reach global-level targets (Arlidge et al. 2018).  

A three-day workshop was held in Oxford in July 2018 bringing together academics and 

conservation practitioners to share lessons learnt and discuss ways forward for international 

biodiversity commitments. Workshop participants identified three core areas that should be 

developed as part of the process for developing a post-2020 framework to improve outcomes 

for biodiversity. They involve 1) Formulating a robust theory of change 2) Integrating modelling 

and 3) Working collaboratively across scales.  These core areas are based on participants' 

experience in implementing the current Strategic Plan as well as research and practice in other 

areas of environmental management and conservation. With reference to each consideration, 

we discuss opportunities for improving the processes around how global targets are set and 

implemented. Timing is critical as we are now in the position to be able to assess progress 

retrospectively, prior to the setting of a future agenda for the protection of Earth’s biodiversity. 

6.2 1: Formulating a robust Theory of Change to link outcomes and actions 

 

Theories of Change (ToC) (Weiss 1997) are crucial conceptual tools to effectively plan and 

evaluate how desired outcomes are achieved through a series of actions and make explicit 

the underlying assumptions and risks to the process. They can include a wide range of 
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relationships, influences and pathways as well as feedback loops. A ToC helps to clearly 

articulate an underlying plan of action which stipulates clear outcomes and the policies 

necessary to achieve them; without a clear plan underpinning a set of targets, there  is a risk 

of calling for actions that may not effectively lead to the desired consequences. ToC are widely 

used in international development for planning and evaluating complex challenges, and have 

seen use in conservation to identify intermediate targets and indicators for monitoring (e.g., 

Game et al. 2018), and to determine whether conditions and administrative structures are in 

place to enable the successful implementation of programs or specific interventions (Biggs et 

al. 2017). Yet none of the headline multilateral biodiversity treaties to date have been explicitly 

underpinned by defined ToCs or similar.  This must be rectified for the post-2020 biodiversity 

agenda, to ensure that all actors are aware of the rationale behind and links between agreed 

actions and positive outcomes for biodiversity and society.  

The Aichi Targets included a mix of both outcome-oriented and response-based targets, with 

links between them only identified post-hoc (Marques et al. 2014). This situation meant that 

there has been confusion about what actions are required towards improving biodiversity. As 

such implementing policy has been sporadic and ad-hoc, with certain targets gaining more 

traction than others, meaning the overall aim of the Strategic Plan has not been met (Tittensor 

et al. 2014; Secretariat of the Convention on Biological Diversity 2016).  Formulating the 

targets within a clear framework, such as by using a ToC, would have helped to increase 

transparency around the assumptions being made for how each of the targets contributed 

towards desired outcomes. This is demonstrated in Figure 6-1, where different targets can be 

linked and shown how they might contribute to the strategic vision of the CBD.   

Outcome-oriented biodiversity targets are specified in terms of desired states (e.g. reduce 

extinction risk of threatened species) rather than action-oriented targets (e.g. improve 

protected area management). They are necessary to a post-2020 framework as to articulate 

what change is actually desired as well as act as a reference to consider to what extent that 



146 

 

change is being achieved (Collen & Nicholson 2014). Some outcome-oriented targets have 

been criticised for being overly complex and/or include redundancies and ambiguities that are 

difficult to operationalize and to ensure consistent interpretation by signatories (Butchart et al. 

2016). This may have resulted in a focus on action-based targets which are clearer, can be 

easier to implement strategies for, and can be measured, such as those regarding protected 

area coverage (Target 11; 17% of terrestrial and 10% of marine area as PAs) (Jenkins & 

Joppa 2009; Lewis et al. 2017). However, while terrestrial and marine protected areas have 

expanded, they do not necessarily cover representative areas of biodiversity, and can still be 

considered as progress towards the Target even if they are placed outside of ecologically or 

biologically significant areas (Devillers et al. 2015; Venter et al. 2018). The action-based 

nature of the target limits its effectiveness and enables countries to claim success while not 

considering the systems and processes underlying biodiversity loss (Barnes et al. 2018; Jones 

et al. 2018; Maron et al. 2018). 

By structuring targets through a ToC framework , both outcome and action-based targets 

(interventions) can be included, but structured in a way that makes clear the causal links about 

how actions contribute to outcomes. Figure 6-1 shows what a ToC might look like for the issue 

of plastic pollution. Pollution is a key driver of biodiversity loss in both marine and terrestrial 

systems and is the focus of many existing multilateral environmental agreements, such as the 

Helsinki Convention and London Convention. Aichi Target 8 reads ‘By 2020, pollution, 

including from excess nutrients, has been brought to levels that are not detrimental to 

ecosystem function and biodiversity.’ In this ToC we show how a target for plastic pollution 

“By 2050 marine waters are free from plastic pollution” could be worked through at the global 

scale. This includes working back from the target to workout what outcomes are necessary to 

achieve the target and finally what interventions might lead to those outcomes. In this case, 

the ToC approach more clearly guides countries into making commitments to not only cutting 

plastic pollution but also cleaning up existing and ongoing plastic pollution. By taking such an 

approach, it becomes much clearer what potential indicators are required to measure various 
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different stages of the system. For example, the outcome target could be measured by plastic 

levels in the marine environment but to ensure that is reached, monitoring and indicators will 

be required to measure previous outcomes and also the interventions required. 

In the case of the widely lauded Paris Agreement of the UN Framework Convention on Climate 

Change (UNFCCC), the desired outcome is a maximum average global warming of 1.5 °C. 

The UNFCCC 1.5°C outcome target has the benefit of clearly defined actions that can help to 

achieve it; established through years of modelling current and projected emissions from across 

the world and their effect on future climate, nations can clearly identify and then aggregate the 

reduction in emissions required to meet this (Rockström et al. 2017). After nearly thirty years 

of attempting to garner widespread political support for decisive action for biodiversity, 

momentum is gathering for a similarly clear goal for biodiversity (Watson and Venter 2017). 

To date, however, biodiversity targets have not been structured with a single overarching 

outcome target such as degrees warming, but rather aim to capture complexity and scale-

dependency through multiple outcome and response targets covering different aspects such 

as extinction risk, ecosystem services and participation (Mace et al. 2018). While the ToC in 

Figure 6-1 is somewhat linear, it could be expanded to demonstrate the direction and strength 

of connections between different actions and outcome targets that would help identify clear 

opportunities for actions that efficiently contribute to multiple outcome targets. For example, 

under the Aichi Targets it has been suggested that integrating Target 12 (prevent the loss of 

threatened species) into spatial conservation planning for Target 11 (protected area coverage) 

could have led to a fivefold increase in threatened vertebrates adequately covered for only 1.5 

times the cost of the cheapest protected area solution (Venter et al. 2014).  

The ToC development process can also greatly assist with explicitly planning for target 

evaluation, something that the Aichi Targets struggled with by relying on evaluation to be 

implemented post-hoc (Mcowen et al. 2016). The Aichi Targets have been criticised for 

containing too many elements and those with less elements have found to have seen more 
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progress (Butchart et al. 2016; Green et al. 2019). A ToC approach would help to keep 

headline targets concise but would allow for additional components to be included. For 

example, Aichi Target 6 is “By 2020 all fish and invertebrate stocks and aquatic plants are 

managed and harvested sustainably, legally and applying ecosystem based approaches, so 

that overfishing is avoided, recovery plans and measures are in place for all depleted species, 

fisheries have no significant adverse impacts on threatened species and vulnerable 

ecosystems and the impacts of fisheries on stocks, species and ecosystems are within safe 

ecological limits.” A headline target might be “By 2050, all fish stocks are within sustainable 

limits” (Figure 6-1). The ToC could then be worked through to include relevant aspects of the 

target that will lead to achievement of the headline outcome target; in this case underpinned 

by an ecosystem approach to management.  

While there is much attention pinned on the wording of targets to gain action on biodiversity, 

we contend that a guiding structure will help proper implementation which signatories are 

currently struggling with (Butchart et al. 2016; Hagerman & Pelai 2016; Sarkki et al. 2016). A 

ToC would not only be useful from a global perspective (Figure 6-1) but could also be utilised 

by Parties who would be provided with a clearer pathway of how to translate overall goals to 

their national context and clearly contribute to the overall vision of the CBD. This would make 

analysis of commitments more transparent and more straightforward, which could be 

beneficial to driving negotiations (Parker & Karlsson 2018).  
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By 2050, marine waters are free from plastic pollution
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healthy planet and delivering benefits essential for all people

Outcome Target
E.g. By 2050, all fish stocks are within 

sustainable limits

Outcome 3

Outcome 2

Outcome 1

Intervention

 

Figure 6-1: Example of how a Theory of Change Model might be created for plastic pollution as part of the CBD Post-2020 Framework. 
Theories of Change work backwards from deciding a desired outcome and what is necessary for achieving it. 
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6.3 2: Underpinned by models to integrate complexity and uncertainty  

 

Models are simplified, abstract representations of processes or systems, and can be powerful 

tools for projecting plausible futures and assisting decision-making at a range of scales 

(Korzukhin et al. 1996; Starfield 1997). Models range from qualitative conceptual models to 

quantitative process-based models of dynamical systems and assist with characterization of 

complex systems and help to constrain and explore uncertainty around future trends. 

Ecological and socio-ecological modelling have made substantial strides (Nicholson et al. 

2019), and underpinning the post-2020 framework with both conceptual and quantitative 

models can greatly benefit future agreements, as seen by the influence of model-based 

projections on policy in the climate sphere. 

Models provide an explicit qualitative or quantitative description of relationships among 

various components of systems and can be used to project how such systems might respond 

to different scenarios.  Ultimately the CBD is concerned with ensuring that future decision-

making ensures sustainability and enables biodiversity to prosper, thrive and continue to 

provide the goods and services that human society relies upon. As we can only evaluate 

plausible futures given large assumptions and specific scenarios, decisions must be robust 

and adaptable to a variety of different futures under social and ecological change. While 

models are already used by the CBD to explore different global pathways for achieving its 

2050 Vision (Convention on Biological Diversity 2017), they have seen much less uptake and 

integration in the CBD’s 2011-2020 Strategy and in national level policy making. Yet 

environmental and resource management have used models of varying scales and complexity 

since the 1970s to inform decision making (Jørgensen 2008). Models have been used to 

inform conservation and management decisions by predicting future trends and status of 

biodiversity (Visconti et al. 2016), setting quantitative targets (Desmet & Cowling 2004), 
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developing relevant indicators (Fulton et al. 2005), predicting the likely outcomes of proposed 

policy or management alternatives (Addison et al. 2013), and to evaluate the effectiveness of 

those that have been implemented (Law et al. 2017). More recently, highly complex models 

of multiple processes have been developed to better inform ecosystem-based management 

approaches (e.g. Fulton et al. 2011).  

By projecting forward scenarios under uncertainty, models can aid with science-based target 

setting, which can help to garner political action. This has been seen for climate change, where 

models have proved valuable in projecting future climate change and gaining significant 

progress for action under the UNFCCC aligned to a specific target (van der Sluijs et al. 2010). 

Model ensembles (e.g. Tittensor et al. 2018) can also provide an exciting and powerful insight 

into better characterising uncertainty around future trajectories.  Advances in model 

ensembles provides an opportunity for the Intergovernmental Science-Policy Platform on 

Biodiversity and Ecosystem Services (IPBES) to play a role akin to the IPCC in generating 

multi-model projections (IPBES 2016).  

 The use of models alone, regardless of their detail or complexity, cannot guarantee effective 

conservation actions or success in achieving desired outcomes. However, they can improve 

the likelihood of success. Where targets have been set outside of a modelling process, models 

can still be used for policy-screening scenarios and developing counterfactuals to assist 

decision making (Nicholson et al. 2019). Quantitative models can be particularly useful when 

combined with qualitative models such as ToC (Point 1). They can assist in validating the 

assumptions underlying the ToC as well as helping uncover unintended consequences in 

dynamic feedbacks; global models could be used to project future plastic emissions, which 

could be used by countries to estimate the necessary capacity increases required in waste 

management infrastructure (Lebreton et al. 2017).   Most importantly models can facilitate 

quantitative evaluations of potential trade-offs among multiple conservation targets (e.g. 

between biodiversity and food (Erb et al. 2012)).  
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While models can help to inform target setting and constrain uncertainty, active and 

responsive management and evaluation will always be required. Social-ecological systems 

are highly complex in space and time and not easily translated into quantifiable targets, 

particularly when stakeholder values are conflicting. Furthermore, even with quantitative 

targets and relevant indicators, merely focussing on simple monitoring is unlikely to reveal the 

reasons as to why targets have not been met and how intervention can be improved in the 

future. The post-2020 framework should ensure that commitments are not only monitored on 

a target/indicator basis but include provisions for proper evaluation and learning from the very 

start, which can subsequently feed back into model development and parameterisation. The 

ever-increasing range of decision science and modelling tools available to scientists and policy 

makers can help to break down ambiguous, vague or data deficient targets into measurable 

and or achievable components, both in terms of goals (short- to long-term), and actions 

(Addison et al. 2013).  While Tittensor et al. (2014) provided an early warning that trajectories 

towards 2020 were not sufficient, it is unclear how this was to be rectified. By including 

monitoring, evaluation and learning from the start, alongside a ToC approach, global 

assessment and management of targets can be more dynamic and responsive.  

By making assumptions explicit through a ToC (Figure 6-2) and having transparent evaluation 

plans, opportunity would be created for adaptive management that is responsive and relevant 

to emerging unforeseen changes. Management strategy evaluation (MSE), for example, is 

successfully used to manage fisheries, and incorporates multi-stakeholder consultation, 

modelling, scenario evaluation, and monitoring to allow for structured, adaptive and defensible 

decision-making (Bunnefeld et al. 2011; Plagányi et al. 2014). Using systems thinking and 

providing practical guidance to embrace uncertainty and complexity could guide management 

and support progress towards biodiversity targets. Such an approach has been demonstrated 

by Stephens et al. (2018), who provide theoretical background and practical tools to consider 

systems thinking for transformative change in gender equality. . This would increase the 
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flexibility and effectiveness of actions taken and thus the likelihood of their being met, as well 

as making them more acceptable to stakeholders than rigid targets in the face of uncertainty.  

 

Figure 6-2: Assumptions associated with plastic pollution theory of change. These 

should be made explicit when undertaking theory of change which helps with planning 

and transparency. 

6.4 3: Transcending scale to inform meaningful devolved and specific local action  

 

Biodiversity, and its benefits to people, are distributed unevenly across the world. For example, 

70% of the world’s wilderness within national borders is contained within just five countries 

(Watson et al. 2018). Reaching the Aichi Targets, however, relies on action by all Parties, and 
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some targets (e.g. Target 11) set blanket aspirations regardless of the ecological and 

economic situation of individual countries (Convention on Biological Diversity 2018b). 

Countries must agree on an overarching framework but conservation interventions must also 

be supported by local people to ensure success (Sodhi et al. 2011). Many international treaties 

have struggled to obtain such buy-in from a grassroots level (Sabatier 1986). Where 

necessary, the post-2020 framework should transcend scale to help direct differentiated 

actions at the country level that are most effective towards the vision of the CBD and ensures 

vulnerable groups are not negatively impacted.  

Many biodiversity issues, such as the illegal wildlife trade, are complex and multifaceted, 

requiring differentiated action from demand reduction at the consumer end, to improved 

detection and knowledge in transhipment countries, and enforcement and community 

empowerment at the source (Milner-Gulland 2018); yet such differentiated action is not well 

supported by current target structure. Other important aspects of biodiversity such as coral 

reefs or tropical forests are not ubiquitous and require direct local intervention to ensure their 

persistence, meaning differentiated action is inherently necessary for different countries.  Aichi 

Target 5 requires countries to halve or bring close to zero the rate of habitat loss, but how best 

to achieve this will depend on the current rate of loss of habitat in different countries, and 

which habitats are under most pressure. Highly biodiverse countries may favour ensuring 

critical areas for biodiversity are maintained (Jantke et al. 2018),  whereas degraded countries 

may implement large-scale restoration (Latawiec et al. 2015; van Katwijk et al. 2016). Whilst 

the CBD does allow flexibility in terms of the opportunity for individual Parties to develop their 

own approaches (e.g. developing National Biodiversity Strategy Action Plans), relying solely 

on national actions to achieve global outcomes without clear pathways or prioritisation risks 

unequal or unjust effort, leading to overall failure to reach global goals (Hagerman & Pelai 

2016). 
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The UNFCCC has been committed to the principle of “common but differentiated 

responsibilities” since as far back as 1992, although operationalising such a commitment has 

proved challenging due to disagreement over responsibility (Althor et al. 2016).  However, it 

has provided the opportunity, through Nationally Determined Intended Contributions (NDICs), 

to identifying gaps between national commitments and the global goal, which is subsequently 

becoming known as the ‘emissions gap’ (UN Environment 2018). The CBD pursued an 

approach relying on national implementation through the National Biodiversity Strategies and 

Action Plans (NBSAPs) but has been unable to garner the required commitments and 

countries have struggled with implementation (Hagerman & Pelai 2016; Sarkki et al. 2016). It 

would be hugely beneficial to the CBD if voluntary actions could be summed up towards 

overarching global goals; yet this is only likely to be possible, due to the complexity of 

monitoring and reporting biodiversity, if such action is guided through an overarching 

framework upfront.  

In determining devolved and differentiated activity, such a process would need to ensure 

equity, which has been challenging for international agreements (Mattoo & Subramanian 

2012), but there are distinct advantages for all countries in addressing equity up front (Steffen 

& Stafford Smith 2013). The UNFCCC Clean Development Mechanism has provided a 

platform for developed countries to assist with clean development in least developed 

countries. For the CBD, the Global Environment Facility provides a mechanism for the fair 

distribution of financial resources to assist countries in implementing the CBD. However, given 

the complexity of the aims of the CBD, such a process must go beyond simply transferring 

capital, and drive positive biodiversity enhancement in the developed world as well, based on 

clear theories of change (Point 1). By blending an overarching ToC with global or regional 

modelling, more effective mechanisms can be put in place to reach global targets. Figure 6-3 

shows a conceptualisation of how the ToC might be operationalised in an equitable manner. 

While modelling helps assist understanding of where clean up efforts should be targeted, 

Country 3 is assisted as it does not meet the assumptions listed in Figure 6-2. 
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While having a shared global perspective is important, top-down approaches commonly ignore 

or inadequately incorporate local perspectives, particularly those of vulnerable groups. This 

can result in both failed biodiversity outcomes and costs to poor people (Franks et al. 2014). 

Global-scale targets often ignore, or even consciously limit, local community participation 

despite this being a critical component for on-ground conservation success (Phelps et al. 

2010). Advancing the current understanding of location, cultural diversity, and scale-

dependent effects of the present biodiversity crisis is a major challenge to carrying out effective 

management actions (Garnett et al. 2018). The CBD has gone substantially further than many 

other international treaties by providing frameworks to engage directly with Indigenous 

Peoples and Local Communities at the level of the Secretariat. However, the CBD is primarily 

implemented through the NBSAPs at the national level, where there has been little meaningful 

engagement and inclusion of these groups (Cooney et al. 2018). In an increasingly 

modernising world, the power of the public should not be understated, as seen in the recent 

action on plastic pollution (Kontrick 2018) and increasing interest in the environmental impact 

of peoples’ diets (Poore & Nemecek 2018). Exploring novel ways of understanding impacts 

and actions and helping people to understand how they can best minimise their impact on 

biodiversity (informed by a global outlook) would help connect people not only to the vision of 

the CBD but potentially improve outcomes for biodiversity through consumer action and 

ultimately political pressure (Dorward et al. 2017).    

Finding a balance between global efforts to advance effective action in the right locations and 

local efforts that allow communities and nations to use the resources needed to develop 

economically is a key challenge. Improved guidance about how actions lead to outcomes 

(Point 1) and addressing issues of equity at the country and local level can allow for better 

alignment of priorities across scales. Informed by scenario modelling where possible (Point 

2), these factors would allow countries to contribute targeted, effective actions towards global 

biodiversity outcomes and ensure biodiversity is not just the responsibility of those countries 

that contain intact or unique biodiversity.  
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Figure 6-3: Conceptualisation of key recommendations in stylised example on plastic 

pollution. This describes three countries and how plastic pollution could be best tackled from 

utilising theory of change, using modelling studies and transcending scale from regional to 

local. 

6.5 Conclusion 

 

Global biodiversity is declining. If we are serious about protecting and restoring biodiversity, 

then actions will need to be wide-reaching in scope and geography – merely formulating new 

targets as updates of the existing targets is unlikely to create meaningful change. It is essential 

that the post-2020 framework focuses not only on what needs to be done but also how it 

should be done, using measurable steps which make sense at the scales at which biodiversity 
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change happens. A Theory of Change model would provide a useful overarching framework 

at the global scale to link outcome and action-based targets in to a transparent format that 

would help Parties implement the overall vision of the CBD. Such a framework could integrate 

recent advances in modelling and decision science to ensure that system links are explored, 

interventions have a sound basis and evaluation is planned up front and in a way that goes 

beyond simple target/indicator relationships. Importantly, a framework would also need to 

support differentiated action at a range of scales to ensure mechanisms are put in place that 

can assess how national contributions scale up to global outcomes, whilst protecting the most 

vulnerable in society.  
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7 DISCUSSION 

7.1 Introduction 

 

The need for and use of indicators at large scales is unlikely to slow. Indeed, as international 

agreements such as the SDGs progress and start to be evaluated, indicators will come under 

increasing scrutiny (Hák et al. 2016b). While the literature is extensive on what constitutes 

good indicator design (Failing & Gregory 2003; Niemeijer & de Groot 2008a; Jones et al. 

2011), there remains little formal evaluation of the context and usefulness of existing indicators 

(Bockstaller & Girardin 2003; Moriarty et al. 2018). As such, when indicators receive criticism 

or fail to make an impact, new indicators are regularly proposed (e.g. Butchart et al. 2005; 

Scholes & Biggs 2005; Collen et al. 2009; Certain et al. 2011; Halpern et al. 2012; Hsu et al. 

2014), often in the hope of finding the overarching ‘Gross Domestic Product’ (GDP) for 

biodiversity (Balmford et al. 2005). This thesis aimed to examine existing large-scale indicators 

and to see how progress can be made around their design and use going forward, rather than 

searching for or promoting the “GDP” indicator for biodiversity. 

While this thesis addresses various elements of indicator design and validation, three core 

overarching themes emerge. The first is an examination of the role of composite indicators; 

what are their strengths and weaknesses, how can they be validated and what is their place 

in the context of large-scale national and international policy processes. The second theme is 

how we can progress model-based testing and development of indicators. Whilst testing 

indicators was seen as a priority for the Convention on Biological Diversity (CBD) it has largely 

not been enacted (Convention on Biological Diversity 2016). The third theme is how indicators 

can be used across different scales. This thesis has contributed to better understanding in 

these three areas, and I discuss each of these in turn here, while also highlighting areas for 

future research. 
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Subsequently, I briefly discuss another fundamental question, which remains open and 

seemingly critical. That is, how do we contextualise, develop and use indicators within large-

scale national and international policy decisions. Even with enhanced testing and validation, 

the structure and context that indicators are selected and used in must be fit for purpose.  

7.2 Overview of thesis 

 

The aim of this thesis was to investigate the challenges related to the use of large-scale 

environmental indicators in marine conservation and explore how these can be addressed. In 

order to achieve this aim, I have explored both a structured approach through composite 

indicators and a systems based approach drawing on modelling techniques developed in the 

Nordic and Barents Seas. In Chapter 2 I review the literature to explore the full suite of 

uncertainties associated with composite indicators throughout their whole life cycle, before 

summarising key methods to address them. Chapter 3 takes the structured approach of the 

Ocean Health Index (OHI) to the Arctic Ocean region, highlighting its value in pulling together 

disparate data and making a high-level assessment of ocean health at the regional scale. 

Drawing on Chapter 2, in Chapter 4 I take a systems based approach to indicator testing. I 

use a social-ecological model to look at responses of two well-known biodiversity indicators 

and find that construction methods can impact indicator performance, by reducing sensitivity 

through aggregation and sub-indicator selection. Chapter 5 then projects fishing scenarios into 

the future with climate change to see how a both fisheries and marine conservation indicators 

respond. They differ in that while fisheries indicators point to improved biodiversity 

performance, conservation indicators report on biodiversity decline. I show how model-based 

projection can help to interpret indicators and aid decision making. Finally in Chapter 6, I look 

at the context in which indicators are used and make recommendations for how the CBD 

approach could benefit from a more transparent framework which integrates models, guides 

action and works across scales. 
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7.3 Core themes across thesis 

 

7.3.1 The role of composite indicators 

Composite indicators have continued to gain popularity in a range of sectors for having the 

ability to display and compare multiple different but related attributes (Paruolo et al. 2013). 

Despite their popularity, they have been criticised for an under-consideration of uncertainty 

and their dynamics not being full explored (Böhringer & Jochem 2007; Jørgensen et al. 2013; 

Giampietro & Saltelli 2014). While there has been significant attention placed on some 

methodological aspects, particularly weighting and aggregation, this thesis has shown that 

careful attention and thought is required throughout all stages of composite indicator 

development (Chapter 2). The attention placed on mathematical considerations in composite 

indicators may be due to the many composite indicators in different fields, such as technology, 

tourism or transport, which purposely measure contrasting components that have little 

interaction (Grupp & Mogee 2004; Famurewa et al. 2014; Mendola & Volo 2017). However, 

composite indicators used within environmental science such as the OHI (Halpern et al. 2012) 

or the Environmental Performance Index (Hsu et al. 2013), tend to measure aspects of 

systems that are highly interrelated. Chapter 2 illustrates that the process behind developing 

the theoretical framework and the dynamics underpinning indicator development are less 

considered, or not easily communicated or understood, which can have a detrimental effect 

on validation. As such I recommended systems modelling as a key method to advance 

consideration of systems dynamics within composite indicator design and use. 

In Chapter 4 I take the ideas of systems modelling in Chapter 2 into a demonstration of how 

composite indicators can be integrated within a systems modelling approach in the specific 

setting of the Barents sea.  By exploring systems dynamics within the model, I show how the 

selection of species and the level of weighting and aggregation actively constrain the 

sensitivity of the Norway Nature Index (NNI). This is somewhat concerning as the 
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management intervention in this example was relatively extreme; it applied heavy fishing 

pressure to an unfished system, where we would expect to see large indicator changes. In 

conditions more akin to real life, in Chapter 5, we see that the NNI shows little variation 

between scenarios, which would make its interpretation more difficult without a modelled 

understanding of the impact of management on the different interacting components of the 

system. Future research here could build on this work to re-think what species are included 

within the NNI and how they are weighted. By modelling the ecosystem interactions, it is clear 

that some species are not well suited to indicator inclusion; for example some species (e.g. 

zooplankton) have extremely high inter-annual variability, which clouded the signal of the 

pelagic NNI and subsequently the overall NNI. The NNI is an index which has purposefully 

been created to measure Norway’s biodiversity performance over time. As such it is important 

that the index has the ability to respond to system change if it is to be useful to decision 

making.  

While systems thinking within composite indicators remains underdeveloped, one of their 

largest assets is in providing a structured framework that can be clearly communicated. 

Chapter 3 showed the value of taking a structured composite indicator approach to a large 

data-poor area, the Arctic. Pan-Arctic studies are limited due to the complexity of compiling 

data across multiple regions which have different monitoring regimes and are often data-

limited due to harsh climatic conditions (Hamilton & Lammers 2011). I provided the first 

attempt at compiling and analysing data on a range of aspects of ocean social-ecological 

systems in the region. The OHI Framework facilitated this compilation. Although the Arctic is 

performing reasonably well in many goals, this is not evenly distributed across countries or 

sectors. Biodiversity-focussed goals performed well showing how improved ecosystem 

management through recovering fisheries and sustainable marine mammal exploitation were 

having a positive effect. Conversely, other goals showed that there was significant room for 

improvement; particularly in sustainable tourism, mariculture, fisheries, and protected places. 

Unified assessments such as this one can support national comparisons, data quality 
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assessments and discussions on the targeting of limited monitoring capabilities at the most 

pressing and urgent transboundary management challenges, which is a priority for achieving 

successful Arctic stewardship. For example, I found that data on marine mammals was 

particularly limited, despite playing a key role for food provision and resources such as ivory 

and pelts, as well as many being globally iconic and regionally and locally culturally important 

(Laidre et al. 2015). Many marine mammals have large ranges and are shared resources 

across the Arctic. Greater understanding of their status across their range, how this might be 

altered under climate change and where and how they are used by people would assist with 

their regional management. The Arctic Council already provides a structure for regional 

decision making by convening the eight Arctic nations and six indigenous peoples’ councils. 

However, it takes a specialist working group and task force approach to individual issues such 

as biodiversity, circumpolar monitoring and pollution, which remain relatively siloed (Koivurova 

2010). By taking a structured overarching approach, such as through an OHI assessment, the 

linkages and complexities across social-ecological systems in the region may be better 

explored at higher policy levels.   

While significant effort has gone into developing multi-dimensional indices such as the OHI for 

potential use with global-scale policy, their future use in this domain appears unlikely. None of 

the 230 indicators used to measure the SDGs are multi-dimensional; even long-standing 

indices such as the Human Development Index have not been included (Rickels et al. 2016). 

Indeed only five of the indicators included are indices; although perhaps interestingly three of 

these are included within SDG 14 and 15 (Red List Index, Mountain Green Cover Index and 

an index of pollution), showing that conservation has a tendency to lean towards aggregations 

of indicators (United Nations Statistical Commission 2017).  However, as I show in Chapter 4, 

there is a disconnect between global and national level indicators. The development of the 

OHI has already proved useful as a way of structuring thinking around ocean health in many 

countries across the world and is likely to continue to do so (Halpern et al. 2013b; Elfes et al. 

2014; Selig et al. 2015; Daigle et al. 2017). The requirements on countries to work towards 
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SDG 14, let alone all of the SDGs, require complex decision making. Composite indicators 

such as the OHI can provide a solid starting point for considering multiple and competing 

aspects around sustainable ocean development. Given the interconnectedness of marine 

systems, the OHI may be most usefully applied in a regional approach as demonstrated here 

(Chapter 3) and in the Antarctic (Longo et al. 2017). Many aspects such as fisheries, which 

require assessment at the stock scale, or pollution, often exceed national EEZ boundaries and 

therefore require regional management. The Baltic Sea has begun its own OHI as a way to 

bring together stakeholders across the region to manage an area that has historically suffered 

the effects of poor transboundary management (Elmgren et al. 2015). The importance of 

taking regional and transboundary approaches to ocean issues is clear, yet is not well 

supported by international processes such as the SDGs or CBD; it is here where the Ocean 

Health Index may find its most appropriate role.  

7.3.2 Systems Modelling and indicators 

In order for indicators to be useful within national and international decision-making for 

biodiversity it is important to understand not only how to ‘bend the curve’ but if the indicators 

themselves will actually respond as predicted (Mace et al. 2018). Testing and developing 

indicators was a priority for measuring progress towards the CBD 2010 target to ensure 

indicators could effectively report progress and communicate trends in biodiversity; however 

40% of indicators were still listed as requiring further testing (Convention on Biological 

Diversity 2006). Despite key studies highlighting the possibility and importance of using 

systems models to test biodiversity indicators (Jones et al. 2011; Nicholson et al. 2012; 

Costelloe et al. 2015), this was likewise not properly enacted for the current CBD Strategic 

Plan to 2020 (Convention on Biological Diversity 2016). Testing may have been downgraded 

as a priority in order to merely find indicators that fit, as three of the 20 Aichi Targets were still 

without indicators entirely in 2016 (Mcowen et al. 2016). In Chapter 2 I explore the basis of 

systems modelling for composite indicator testing and development. I explain that where 

possible, taking a systems-based approach first can be extremely beneficial in guiding 
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indicator selection but also for weighting of indicators and understanding what data gaps are 

present. In Chapter 4 and 5 I then highlight two examples of the benefits of taking a systems 

modelling approach towards indicator validation.  

By using a systems approach in Chapter 4, I was able to look at how the Living Planet Index 

(LPI) and NNI respond to fairly extreme system change. The NNI was constructed in my model 

similarly to its real-life counterpart as many of the species selected for the NNI are present in 

the model. The LPI, however, relies on all available data and therefore contains a wide range 

of different species that are not included within the model. In our case therefore, the test of 

the LPI is of the methods used for its construction, and not of the data underlying the real-life 

LPI. Being unable to exactly reproduce the LPI, however, should not be an argument against 

development of an approach to testing it. If we look at the lessons from Chapter 2, we see that 

there is a great advantage in starting indicator design and selection from a systems based 

approach. If we are truly interested in indicator validation, which has been seen as extremely 

important by the CBD and wider literature (Collen & Nicholson 2014; Moriarty et al. 2018), 

then better linking of indicators and models, as I have done here, should be considered a key 

step forward. Fisheries science has widely embraced these techniques, resulting in the 

discrediting of one of the most widely used indicators, mean trophic level (MTL) from catches. 

This indicator intends to detect shifts from high-trophic-level predators to low-trophic-level 

invertebrates and plankton-feeders, in what has been described as “fishing down food webs” 

(Pauly & Watson 2005). However, through modelling approaches it was found that fisheries 

collapses can occur even when MTL is stable or increasing (Branch et al. 2010). It has since 

been removed from the CBD indicators list (Convention on Biological Diversity 2016).  

The existence of marine models across the world offers a starting point for immediate 

furthering of testing species-based indicators. Testing the Red List Index (RLI) could be an 

important next step, considering its prominence in both the SDGs and Aichi Targets, and its 

potential issues with taxonomic bias and responsiveness (Costelloe et al. 2015). The RLI 
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requires species-level data and therefore is most appropriately tested at the global scale. 

While there is not currently a mechanistic global ocean model, combining different regional 

models may offer a way forward (Olsen et al. 2018). Following the methods laid out in Chapter 

4 and 5, the LPI could be further tested in many modelling frameworks. This would also have 

the advantage of better integrating databases used for modelling within the global LPI, which 

would boost its overall coverage; many of the species present within the NoBa model are not 

present within the global LPI database. If model data and the global datasets were better 

integrated, further research could disaggregate the LPI for species included within models and 

compare these outputs to those obtained when including all species; this would help 

understand how model-based indicators compare to those in the real world which are based 

on a much wider array of data (Fulton et al. 2005; Nicholson et al. 2012). 

Indicators help communicate complex aspects of biodiversity change to wider audiences, such 

as policy makers. The use of models and scenarios largely remains a scientific endeavour, 

with weak uptake by policy makers (Nicholson et al. 2019). Part of this may be the complexity 

of the models themselves and of the communication of their results. If there were greater 

confidence and consensus on indicators through their integration with models, then scenario 

projections could be communicated in a way that would resonate with policy makers and wider 

stakeholders. In Chapter 6 I explain how models and scenarios can underpin global 

biodiversity targets to help understand complexity and constrain uncertainty. While modelling 

approaches are well developed and integrated into climate policy, biodiversity models have 

received much less attention. Climate modelling has allowed the clear articulation of a 

maximum average global warming of 1.5 °C, which is both science-based and clearly 

communicated. If biodiversity is to find a similarly uniting global target, then a single or small 

number of indicators will be required to measure progress and analyse pathways. This will 

require advanced testing and integration with models. 
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 In this thesis I focus on marine conservation, where models have been developed to inform 

fisheries management (Fulton et al. 2011a) and are constantly evolving and improving. Multi-

model comparisons of Atlantis models and other modelling frameworks has been an exciting 

development in exploring and potential future scenarios of change across different systems 

and seeing how they compare (Olsen et al. 2016, 2018), while cross-model comparisons are 

quickly emerging as ways of comparing how different models perform (Tittensor et al. 2018). 

Such projects will significantly increase the quality and power of modelling for marine systems 

going forward. Terrestrial systems are modelled less widely in mechanistic sense, with 

terrestrial modellers favouring statistical approaches (e.g. Newbold et al. 2015); but these 

cannot generally capture or predict non-linear and dynamic responses to perturbations (Evans 

et al. 2013). A reason for this is potentially because terrestrial dynamics are less clear than in 

marine systems and that general rules cannot be abstracted across ecosystems (Purves et 

al. 2013). However, there appears to be a growth in terrestrial modelling, through initiatives 

such as the Madingley model, that can build upon these advances in marine science (Bartlett 

et al. 2016).  

Dynamic models are far from infallible, however, and their weaknesses as well as their 

strengths must be considered. End-to-end models, such as Atlantis which was used in this 

thesis, are highly complex and data intensive. Atlantis models have been developed in 35 

regions around the world, from small estuaries to large ocean regions. A good deal of 

experience, training and guidance is necessary to develop Atlantis models and a single run 

from the NoBa Atlantis model takes around 13 hours to process, so time and resources must 

be carefully considered (Hansen et al. 2019). Many assumptions are made during model 

development about how to represent processes and deal with data gaps; in itself this is not 

inappropriate for theoretical exercises such as those contained within this thesis, but caution 

must be taken if utilising such models for real-world decision making (Fulton 2010). Likewise, 

few models are formally validated to understand how well a model reproduces a true system 

state. Undertaking such a process is known as skill testing and is typically started during model 
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development by hindcast skill assessment to see how well a model is able to replicate 

historical data. However, a model that has high hindcast skill will not necessarily have high 

forecast skill when confronted with data outside of that used for parameter estimation (Francis 

et al. 2011). Forecasting, such as applied in Chapter 5, is important for informing decision-

making. Determining model forecast skill involves using the model to forecast future 

conditions, and then, in the future, evaluate how the model predictions compare with the 

subsequently available observed data(Olsen et al. 2016). We are now in a situation to forecast 

skill test some models and as time goes on, this will become more widely applicable. 

While such limitations may act as a barrier to increased uptake of such complex modelling 

approaches, other less complex models may well have great value for indicator development 

and testing (as discussed in Chapter 2). Given the current lack of testing, even simple 

examples, such as in Costelloe et al. (2015), who do not consider systems dynamics, allow 

for some exploration of indicator performance. Models of intermediate complexity (MICE) and 

minimally realistic models offer interesting potential for more tactical use of models to answer 

specific questions and have in some situations been seen to work better than end-to-end 

models (Plagányi et al. 2014).  MICE estimate parameters through fitting to data, use statistical 

diagnostic tools to evaluate model performance and account for a broad range of 

uncertainties. They are much smaller, faster and more easily interpreted than counterparts 

such as Atlantis, and best deployed in specific contexts. They limit complexity by restricting 

their focus to those components of the ecosystem needed to address the main effects of the 

management question under consideration. MICE could potentially work well with more 

specific indicators or at smaller scales, such as those that measure trends in threatened or 

iconic species at national levels to feed into the successor of Aichi Target 12. MICE have 

already been used to quantify the impacts of whaling for example (Tulloch et al. 2018). 

Likewise in cases where quantitative models are not available, conceptual models can provide 

a basis for understanding linkages within systems and how indicators can best be developed 

and used (Rowland et al. 2018). Such an approach would have been useful to combine with 
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the OHI assessment of the Arctic in Chapter 3.  While the structured framework of the OHI is 

useful for drawing data together and making preliminary assessments, any movement towards 

specific changes in management would need to consider the system as whole and how 

various factors trade-off. This could potentially lead to alteration and iterative improvement of 

the OHI developed for Chapter 3.   

7.3.3 Using indicators across scales 

How actions, information and outcomes differ and change across scales has cut across almost 

all chapters in this thesis. As I highlight in Chapter 6, in order to achieve global biodiversity 

outcomes, the issue of scale requires greater consideration and clarification. While global 

leadership is undoubtedly important and necessary, actual action and change comes from 

nation states, who therefore need to work together to scale up to global outcomes. There is a 

distinct lack of clarity in the current CBD system on how to scale back and forth between 

international commitments and national-level actions, and analyses of progress to date have 

shown nations are not delivering enough conservation action to meet global goals (Tittensor 

et al. 2014; Secretariat of the Convention on Biological Diversity 2016). Part of the problem 

with this ‘biodiversity gap’ is that it is measured post-hoc, rather than forward planned (Chapter 

5 and 6).   

Measuring the ‘biodiversity gap’ post-hoc is not straightforward as indicators and data are not 

connected between the national and global scales. While the CBD does not prescribe what 

indicators should be used for national reporting, it does require its global-level indicators to be 

able to be used at the national scale (Convention on Biological Diversity 2016). In reality, as 

we highlight in Chapter 4, that means data that could be used for indicators is being lost as 

bottom-up data isn’t feeding into global indicators. This is also seen in Chapter 3, where the 

data and models produced for the Arctic OHI are not comparable to the global or other regional 

or national OHIs. While initiatives such as Essential Biodiversity Variables attempt to level the 

playing field in terms of providing detailed data at a range of scales, they do not necessarily 
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link in well with existing indicator efforts, such as the LPI and RLI, which have already 

undergone significant development (Pereira et al. 2013). A key finding of Chapter 5 is how 

indicators attempting to measure similar aspects of system change and using the same data 

can perform differently and tell different stories. This is likewise true across scales, where 

global-scale indicators can hide regional differences (Hill et al. 2016). By testing indicators 

across a range of scales, an effective example of which I show in Chapter 4, confidence in 

indicators can be built and the data required to improve them can be sought. Likewise, a 

demonstrable and understandable link can be made between indicators that are used at 

different scales to inform policy decisions. For example, in Chapter 5 I show that changes in 

fisheries management have a minimal impact on future biodiversity as indicated by fisheries 

ecosystem indicators, but conservation indicators point towards overall downward trends in all 

scenarios because of climate change, which would require additional conservation action 

outside fisheries management. These comparisons are difficult and often masked at higher 

scales and therefore must be exposed at smaller spatial scales, requiring systems modelling 

and indicator testing to be advanced at more local scales such as in Chapters 4 and 5.  

The need for scaling up national actions to global outcomes (Chapter 6), will probably require 

consolidated effort at regional scales. This is particularly apparent for ecosystems which are 

unique or irreplaceable, such as the Arctic. The Arctic is a particularly interesting case as it 

contains globally iconic species and fragile habitats and is highly threatened by global forces 

through climate change (Harris et al. 2017).   In Chapter 3, I find Arctic monitoring and 

management to be disjointed and poorly integrated, which threatens the overall stability of the 

region. While a key highlight of this chapter was demonstrating a framework that can start to 

think about both social and ecological management and trade-offs for this region, 

management actions would need to be fed by an understanding of what would be most 

effective in reaching global goals. In this region, this understanding would probably need to 

be obtained through conceptual modelling (Chapter 2), but quantitative models as shown in 

Chapter 4 and 5, could feed in to the process to help parameterise parts of a conceptual 
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model. Climate and sea ice modelling for the region is particularly advanced and a key driver 

of change; these quantitative models could help advance and parameterise future conceptual 

models around ecosystem and social change by predicting the extent of the main driver of 

change in the region (Crépin et al. 2017). Through bodies such as the Arctic Circle, it could 

then be clearly communicated what external or global action is required to meet regional 

objectives, which could be better integrated into global goals (Chapter 6).  

7.4 The future for indicators 

 

This thesis largely focusses around the methodological aspects of indicator design and use 

from a scientific perspective; highlighting issues with indicators in their current format and 

demonstrating potential methods to constrain uncertainties and integrate complexity. There is 

a huge assumption within the conservation community that more specificity and greater 

quantification of targets will lead to more and better action and thus better outcomes for 

biodiversity (Butchart et al. 2016; Green et al. 2019). This may help in progressing the issues 

related to sufficiency and suitability of indicators to measure targets, assuming that 

quantification of the target can actually be expressed with an indicator (Mcowen et al. 2016), 

but at the same time risks becoming subject to Goodhart’s law, where a measure ceases to 

become a good measure when it becomes a target; for example using the RLI as an indicator 

may drive action solely towards the most threatened species, while overall biodiversity is 

neglected (Newton 2011). It also fails to recognise the many auxiliary functions that diverse 

global biodiversity targets have, such as raising awareness, building partnerships, promoting 

investment and developing tools and knowledge (Doherty et al. 2018). To influence target 

setting, conservation scientists need to be able to propose targets that they are confident will 

lead to better outcomes for biodiversity (Barnes et al. 2018), while being sensitive to trade-

offs with other aspects of social-ecological systems and local requirements, such as food 

provision, livelihoods and poverty (Singh et al. 2018).  
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In Chapter 6 I build on the lessons learnt in the earlier parts of the thesis, to think about 

processes that can help to drive better biodiversity outcomes, rather than the targets 

themselves. The challenges faced around indicators are not merely scientific; indicators are 

closely linked to targets that are politically negotiated, with little consideration of how they 

might be interlinked or measured (Maxwell et al. 2015). Conservationists therefore should be 

more focussed on informing the processes behind which targets are formulated and actioned, 

to ensure that countries can be informed about trade-offs or win-wins for biodiversity. This will 

require more effort by conservationists to use models at a range of scales (as in Chapter 4 

and 5), to test and compare indicators and explore different futures (Wood et al. 2018). While 

models and projections can be used with indicators on a purely scientific basis, such as in 

Visconti et al. (2016), if we are to make progress within international forums, the science 

involved has to be seen not only as credible, but also as salient and legitimate, working within 

the context of these international agreements and with a range of stakeholders (McNie 2007).  

Chapters 4 and 5 in this thesis are purposefully constructed around using existing models and 

indicators to provide salience. Proposing to rewrite decades of progress by requiring new 

models and indicators could be extremely damaging and counterproductive. Legitimacy was 

added to the process through using existing models and indicators in Norway by working with 

both the Norwegian Institute for Nature Research (NINA) who developed the NNI and the 

Institute for Marine Research (IMR) who developed the NoBa model. Chapters 4 and 5 have 

provided a building block for Norway to consider how it uses information to make decisions 

and I am currently talking to the Norwegian Institute for Nature Research (NINA) about 

assisting on a project to further test and develop the NNI.  This work has helped to build a 

bridge between the two organisations with regard to the NNI. Expanding similar work to other 

countries could improve decision-making not only at the national scale but provide countries 

with the knowledge of what is required at the global scale.  
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I hope that the work in this thesis can be used positively towards supporting the CBD, and 

other large-scale national or international policies and agreements, by advancing the 

conversations around indicator design and use, particularly across scales. The findings of this 

thesis suggest that conservationists and modellers need to work more closely together and 

that is possible to do so. By integrating conservation values into modelling processes, better 

decisions can be made that factor in competing and conflicting objectives. 

7.5 Recommendations and lessons learnt for indicators 

 

This thesis included a diverse range of aims exploring the design and use of different 

indicators for use in marine conservation. These included the exploration of uncertainty within 

composite indicators, the use of modelling frameworks for informing indicator validation and 

practical usage, as well as assessing how indicator usage can be improved in future 

international agreements. From undertaking this research, a number of key recommendations 

and lessons learnt have become apparent for both future research and practice in relation to 

indicators:  

• While indicators are often the subject of intense scrutiny and debate, it is important to 

remember that they often serve two quite distinct purposes, which can often be in 

conflict; communication and management. The communication side is often linked to 

simplifying an output so that it is widely understood, particularly by non-specialists. 

Indicators are also used for management and decision making, which often requires 

more detail or information than an indicator can present. Having greater awareness of 

this and the limitations of each option, may assist in helping to consider what the 

indicator is required for and how will it be used and not just what the indicator should 

be. 

• To be truly ‘useful’ indicators must be linked to some form of management and ideally 

should indicate towards some kind of management objective or desired state. In an 
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ideal world, trigger points would be set so that management interventions would 

change when indicators hit certain points of thresholds. In order to do this well, 

indicators should be linked to conceptual systems models and reflect the parameters 

and components within this. Models can then act as the basis for both selecting 

indicators and testing their performance. Theory of Change models can provide a 

powerful and transparent basis for working through management problems and 

selecting meaningful outcome indicators.  

• This thesis dealt in detail with composite indicators and a number of recommendations 

specifically for their design and use can be made: 

o Composite indicators often include a mixture of different types of indicators, for 

example the OHI attempts to indicate both present state and likely future status 

(based on an extrapolation of trend). State and rate are different concepts and 

care should be taken if merging these within a single index. Ideally this should 

be avoided, but if necessary it should be clear how they relate and how they 

are interpreted. For example, increase in the rate of extinction risk could be the 

same for two species, but would be interpreted very differently if one species 

was close to extinction and one was not. 

o Weighting and aggregation of composite indicators should be carefully 

considered to avoid arbitrariness, eliminate redundant or highly correlated 

aspects and to ensure the index is efficient, relevant and easily interpreted. 

Geometric aggregation appears to be a straight forward and key way of helping 

in this regard. 

o Indicators are often scaled around min/max values, which if exceeding the max 

value, the indicator achieves perfect score. Careful consideration is required 

for this approach to ensure the max value is reliable and that the indicator is 

responsive to changes.  
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7.6 Concluding remarks 

 

As 2020 approaches, the CBD renegotiations are coming closer and analysis turns towards 

understanding the factors underpinning progress towards the SDGs. In the next year, 

therefore, the use of indicators will come under increased scrutiny and further debate. This 

thesis contributes to the growing body of literature in this domain by exploring different types 

of indicators, their uncertainties, their usefulness and techniques for their validation and 

testing. Finally, it reflects on the role of indicators within the bigger picture and how structured 

processes can improve how indicators are designed and used. While there is much work to 

be done, further work should be done practically, alongside government and international 

agencies in order to create a better system for designing, monitoring and reporting upon 

environmental management. Scientists cannot change the status quo by merely discussing 

problems, but must now provide solutions in a positive and practical manner, with a wide range 

of stakeholders. 
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9 APPENDIX 1 

Table A1-1 A description of different uncertainties as defined by Regan et al. (2002) 

 

Type of Uncertainty Description 

Epistemic 
Uncertainty 

Measurement Error 
Results from imperfections in measurement 
equipment and observational techniques – 
includes operator and instrument error. 

Systematic Error 

Occurs as a result of bias in the measuring 
equipment or the sampling procedure e.g. 
erroneous calibration of measurement 
equipment or judgement of scientist to 
include/exclude data. 

Natural Variation 
Natural variation in a complex system which 
is difficult to predict. 

Inherent 
Randomness 

This occurs not because of our limited 
understanding of a system but because of its 
inherent randomness.  

Model Uncertainty 

Arises through uncertainties in models we 
use; either because they cannot replicate the 
entire system and inaccuracies in the 
constructs we use to represent processes 
within the system. 

Subjective 
Judgement 

This results from the interpretation of data, 
particularly when it is sparse and error prone. 

Linguistic 
Uncertainty 

Vagueness 

Arises as our language permits borderline 
cases e.g. “endangered” is vague because 
species are not just endangered or not 
endangered; some are borderline. 

Context 
Dependence 

Results from failing to give context to 
understand a term e.g. merely describing a 
population as “small” leaves the reader 
wondering in doubt as to small compared with 
what. 

Ambiguity 
Arises from a word having more than one 
meaning and not being clear about which is 
intended. 

Indeterminacy of 
Theoretical Terms 

Occurs when present theoretical terms have 
potential for future ambiguity as yet unknown. 
Or where there are no accepted definitions to 
theoretical terms. 

Underspecificity 
Occurs when a statement is not specific 
enough to be desired. E.g. a qualitative rather 
than a quantitative answer. 
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Table A1-2 Sources and types of uncertainty found within composite indicators 

Source of Uncertainty 

Epistemic Uncertainty Linguistic Uncertainty 

Measureme
nt Error 

Systemati
c Error 

Natural 
Variation 

Inherent 
Randomnes
s 

Model 
Uncertaint
y 

Subjective 
Judgemen
t 

Vaguenes
s 

Context 
Dependenc
e 

Ambiguit
y 

Indetermi
n-acy in 
theoretical 
terms 

Undersp-
ecificity 

Theoretical 
Framework 

Definition of 
Concept, 
Structure and 
Subgroups 

    ✓ ✓ ✓ ✓ ✓ ✓ ✓ 

Data 

Data Quality ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ 
Missing Data  ✓   ✓ ✓      
Data Selection ± ± ± ± ± ± ± ± ± ± ± 
Sub-indicator 
Construction 

 ✓   ✓ ✓      

Data 
Normalization 

 ✓   ✓ ✓      

Data Structure 
Exploration 

    ± ±      

Index 
Constructio

n 

Aggregation of 
Indicators 

    ✓ ✓      

Weighting of 
Indicators 

± ± ± ± ± ± ± ± ± ± ± 

Statistical 
Coherence / 
Robustness 

Uncertainty / 
Sensitivity 
Analysis 

    %       

Post 
Developme

nt 

Composite 
Indicator 
Communication 

      ± ± ± ± ± 

✓ = Source of uncertainty 
% = Quantification of existing uncertainty 
± = Amplification or reduction of existing uncertainty 
Types of uncertainty as defined by Regan et al. (2002) 
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Table A1-3 A selection of techniques to deal with missing data. Although modern imputation 

techniques may be the most robust, they are not widely used. 

Technique Potential Methods Description 

Discard 

Data 

Complete case 

analysis, pairwise 

deletion. 

Involves discarding data sets which contain gaps. 

Now generally preferred to keep data and work with 

the uncertainties than to simply discard as more 

sophisticated filling techniques are available.  

Single 

Imputation 

Mean imputation, 

regression 

imputation, 

stochastic 

regression 

imputation, hot deck 

imputation. 

Many techniques where the researcher “fills in” 

missing data with generated values. Regression, 

stochastic and hot deck preferred to mean 

imputation, which produces unlikely estimates. 

Standard errors of estimates are often too low 

because of substantial uncertainty about the missing 

values. Choosing a single imputation in essence 

pretends that the true value  is known with certainty 

(Gelman & Hill 2006). 

Modern 

Imputation 

Multiple imputation, 

maximum likelihood 

estimation 

Considered superior to single imputation or discard 

techniques as they retain a full data set (more 

powerful) and produce unbiased estimates. 

Adapted from (Baraldi & Enders 2010) 
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10 APPENDIX 2 

Table A2-1: Arctic Ocean Health Index Regions 

Region EEZ Size 

(km2) 

Country Notes 

Arctic Alaska 493,030 USA Designated fishery control zone 

Nunavut 1,481,161 Canada Arctic territory 

Canadian 

Beaufort Sea 

712,277 Large Ocean Management Area 

Russian Arctic 4,350,002 Russia Land administrative regions not 

relevant at sea – territorial waters 

controlled by central government 

Svalbard 796,484 Norway Separate marine regions and data 

reporting for each Norwegian area Arctic Norway 941,869 

Jan Mayen 291,801 

West 

Greenland 

954,391 Greenland Regions divided by FAO regions, 

which includes southern tip of 

Greenland East Greenland 1,297,894 
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Table A2-2: Pressure Matrix 

go
al 

Element 
name 

Chem
ical 
pollut
ion 

Chem
ical 
pollut
ion 
3nm 

Patho
gen 
Pollut
ion 

Nutri
ent  
pollut
ion 

Nutri
ent 
pollut
ion 
3nm 

Tra
sh 

Invas
ive 
speci
es 

Gene
tic 
esca
pes 

Subtid
al 
softbot
tom 
destruc
tion 

Intertid
al 
destruc
tion 

Comme
rcial 
high 
bycatch 
fishing 

Comme
rical 
low 
bycatch 
fishing 

Artisi
nal 
low 
bycat
ch 
fishin
g 

Targe
ted 
harve
st 

Sea 
surf
ace 
tem
p 

acidific
ation 

Se
a 
Le
vel 
ris
e 

World 
govern
ance 
indicat
or 

AO 
  

1 
  

1 
 

1 
 

1 1 2 1 
 

2 3 
 

2 1 

CP Seaice 
shoreline 

              
3 

 
3 1 

C
W 

  
3 3 

 
3 3 

           
1 

EC
O 

Commerc
ial 
Fishing 

2 
  

1 
  

1 1 2 1 3 1 1 
    

1 

EC
O 

Tourism 3 
 

3 
 

3 3 
        

3 
 

2 1 

EC
O 

Ocean 
Transport 

 
             

1 
 

1 
 

EC
O 

Food 
Processi
ng 

2 
  

3 3 
 

1 
 

2 
     

2 
 

1 
 

FI
S 

 
1 

  
1 

  
1 1 2 1 3 1 1 

 
3 

  
1 

HA
B 

Seaice 
edge 

              
3 

 
1 1 

HA
B 

 
 

2 
  

2 
 

1 
 

3 
 

3 1 1 
    

1 

IC
O 

  
2 

  
1 1 1 

  
1 2 

  
2 3 1 

 
1 

LI
V 

Commerc
ial 
Fishing 

2 
  

1 
  

1 1 2 1 3 1 1 
 

3 
  

1 

LI
V 

Tourism 3 
 

3 
 

3 3 
        

3 
 

2 1 

LI
V 

Transport
ation & 
Shipping 

  
    

1 
         

1 1 

LI
V 

Educatio
n 

              
3 
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LI
V 

Food 
Processi
ng 

2 
  

3 3 
 

1 
 

2 
     

2 
 

1 
 

LS
P 

  
2 

  
2 3 1 

  
3 

    
3 

 
1 1 

M
AR 

 
2 

   
3 

         
3 

 
1 1 

NP 
 

1 
  

2 
  

1 
       

3 1 1 1 

SP
P 

 
2 

  
3 

 
1 1 1 3 2 3 1 1 1 3 1 1 1 

TR 
  

3 3 
 

3 3 
        

3 
 

2 1 

The rank weights used in the pressures matrix were determined by Halpern et al. 2012 (Nature) based on scientific literature and expert opinion (see Supplemental Table S28 
of Halpern et al. 2012). Scores from 1-3 are given to rank the importance of each pressure. Only values of 2 or 3 require that a resilience layer be activated when calculating 
the goal scores. 

Stressors that have no impact are left blank in the matrix rather than being assigned a rank of zero, which would affect the average score.  

Table A2-3: Resilience Matrix 

go
al 

ele
men
t 

po_
wat
er 

hd_mp
a_coas
t 

hd_m
pa_ee
z 

hd_h
abita
t 

sp_alien
_specie
s 

fp_mp
a_coa
st 

fp_mp
a_eez 

fp_h
abita
t 

fp_
mor
a 

fp_mora
_artisan
al 

g_to
uris
m 

g_mari
culture 

g_ms
i_gov 

g_
cite
s 

species_di
versity_3n
m 

species_di
versity_ee
z 

wgi
_al
l 

li_
gc
i 

li_sector_
evenness 

CP Sea 
ice 
shor
elin
e 

 
                  

C
W 

 
x 

               
x 

  

EC
O 

                 
x x 

 

FI
S 

   
x x 

  
x x x x 

     
x x 

  

HA
B 

Sea 
ice 
edg
e 

 
                  

HA
B 

Soft 
bott
om 

x 
 

x x 
  

x x x 
 

x x 
   

x x 
  

IC
O 

 
x 

 
x x 

  
x x x x 

   
x 

 
x x 
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SP
P 

 
x 

 
x x 

  
x x x x x x 

 
x 

  
x 

  

LIV 
                 

x x x 

LS
P 

 
x 

  
x 

            
x 

  

MA
R 

 
x 

          
x x 

   
x 

  

NP 
  

x 
 

x 
 

x 
       

x x 
 

x 
  

TR 
 

x 
               

x 
  

 Resilience is included in OHI as the sum of the ecological factors and social initiatives (policies, laws, etc.) that can positively affect goal scores by reducing or eliminating 
pressures. 

go
al 

eleme
nt 

po_
wate
r 

hd_m
pa_co
ast 

hd_
mpa
_eez 

hd_
habi
tat 

sp_alie
n_spec
ies 

fp_m
pa_c
oast 

fp_m
pa_e
ez 

fp_
hab
itat 

fp_
mor
a 

fp_mor
a_artis
anal 

g_t
ouri
sm 

g_ma
ricult
ure 

g_m
si_g
ov 

g_c
ites 

species_
diversity_
3nm 

species_
diversity
_eez 

wgi
_all 

li_g
ci 

li_secto
r_even
ness 

A
O 

  
x 

 
x 

 
x 

 
x x 

     
x 

 
x 

  

C
P 

seaice_shorel
ine 

                  

C
W 

 
x 

               
x 

  

E
C
O 

                 
x x 

 

FI
S 

   
x x 

  
x x x x 

     
x x 

  

H
A
B 

seaice_edge 
                  

H
A
B 

soft_b
ottom 

x 
 

x x 
  

x x x 
 

x x 
   

x x 
  

IC
O 

 
x 

 
x x 

  
x x x x 

   
x 

 
x x 

  

S
P
P 

 
x 

 
x x 

  
x x x x x x 

 
x 

  
x 

  

LI
V 

                 
x x x 
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L
S
P 

 
x 

  
x 

            
x 

  

M
A
R 

 
x 

          
x x 

   
x 

  

N
P 

  
x 

 
x 

 
x 

       
x x 

 
x 

  

T
R 

 
x 

               
x 
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Table A2-4: Full list of data layers included within AOHI 

Targets layer filename 
fld_valu
e units Description 

Artisanal 
Needs ao_tend 

ao_trend_gl201
6.csv score Trend 

Shoreline sea ice, 
marine mammal 
extinction risk, 
sustainability of 
artisanal fish stocks 
combined trend 

Artisanal 
Needs ao_status 

ao_status_arc2
016.csv Score Score 

Shoreline sea ice, 
marine mammal 
extinction risk, 
sustainability of 
artisanal fish stocks 
combined status 

Clean 
Waters 

cw_chemical_tr
end 

cw_chemical_tr
end_arc2016.cs
v trend 

trend 
score 

Trends in chemical 
pollution 

Clean 
Waters 

cw_nutrient_tre
nd 

cw_nutrient_tre
nd_arc2016.csv trend 

trend 
score 

Trends in fertilizer 
pollution as a proxy for 
nutrient pollution 

Clean 
Waters 

cw_pathogen_tr
end 

cw_pathogen_tr
end_arc2016.cs
v trend 

trend 
score 

Trends in access to 
improved sanitation as 
a proxy for pathogen 
pollution trend 

Clean 
Waters cw_trash_trend 

cw_trash_trend
_arc2016.csv trend 

trend 
score 

Trends in plastic 
pollution 

Fisheries 
fis_b_bmsy_arc
2016 

fis_b_bmsy_arc
2016.csv bbmsy 

B / 
B_msy 

B/Bmsy estimates 
obtained from RAM 
legacy or using the 
catch-MSY method 

Fisheries 
fis_meancatch_
arc2016 

fis_meancatch_
arc2016.csv 

mean_c
atch 

metric 
tons 

Catch data for each 
Taxon/FAO/AOHI 
region averaged 
across years 

Food 
Provision 

fp_wildcaught_
weight 

fp_wildcaught_
weight_arc2016.
csv w_fis 

proportio
n 

Fisheries weighting 
factor 

Habitat / 
Coastal 
Protection hab_extent 

hab_extent_arc
2016.csv km2 km^2 Habitat extent 

Habitat / 
Coastal 
Protection hab_health 

hab_health_arc
2016.csv health 

proportio
n Habitat health 
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Habitat / 
Coastal 
Protection hab_trend 

hab_trend_arc2
016.csv trend 

trend 
score Habitat health trend 

Iconic 
Species 

ico_spp_iucn_st
atus 

ico_spp_iucn_st
atus_arc2016.cs
v category 

IUCN 
risk 
category IUCN risk category 

Livelihoods 
and 
Economies le_gdp 

le_gdp_arc2016
.csv usd 

2010 
USD GDP/sector 

Livelihoods 
and 
Economies 

le_jobs_sector_
year 

le_jobs_sector_
year_arc2016.c
sv value jobs Jobs 

Livelihoods 
and 
Economies 

le_unemployme
nt 

le_unemployme
nt_arc2016.csv percent 

percent 
unemplo
yed Unemployment 

Livelihoods 
and 
Economies 

le_wage_sector
_year 

le_wage_sector
_year_arc2016.
csv usd 

2010 
USD Wages 

Livelihoods 
and 
Economies 

le_workforcesiz
e_adj 

le_workforcesiz
e_adj_arc2016.
csv jobs jobs 

Total size of workforce 
(employed + 
unemployed) 

Livelihoods 
and 
Economies 

le_sector_weigh
t 

le_sector_weigh
t_gl2016.csv weight value Jobs weighting 

Livelihoods 
and 
Economies le_popn 

le_population_a
rc2016.csv count count 

Total population by 
subregion 

Protected 
Places 

lsp_prot_area_o
ffshore3nm 

lsp_prot_area_o
ffshore3nm_arc
2016.csv 

area_km
2 km^2 

Coastal marine 
protected areas 
offshore 3km 

Mariculture 
mar_coastalpop
n_inland25km 

mar_coastalpop
n_inland25km_s
c2014-
raster.csv popsum people 

Coastal population 
inland 25 kilometers 

Mariculture 
mar_harvest_sp
ecies 

mar_harvest_sp
ecies_arc2016.c
sv species 

species 
name 

Mariculture species 
harvested 

Mariculture 
mar_harvest_to
nnes 

mar_harvest_to
nnes_arc2016.c
sv tonnes tons Mariculture harvest 

Mariculture 
mar_sustainabili
ty_score 

mar_sustainabili
ty_score_arc20
16.csv 

sust_coe
ff 

sustaina
bility 

Mariculture 
sustainability score 

Marine 
Mammal 
Harvest np_harvest 

np_harvest_arc
2016.csv score score 

Marine mammal 
harvest score 

pressures cc_acid 
cc_acid_gl2016.
csv 

pressure
_score 

pressure 
score Ocean acidification 

pressures cc_slr 
cc_slr_arc2016.
csv 

pressure
_score 

pressure 
score Sea level rise 
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pressures cc_sst 
cc_sst_arc2016.
csv 

pressure
_score 

pressure 
score 

Sea surface 
temperature (SST) 
anomalies 

pressures cc_uv 
cc_uv_arc2016.
csv 

pressure
_score 

pressure 
score UV radiation 

pressures fp_art_lb 
fp_art_lb_arc20
16.csv 

pressure
_score 

pressure 
score 

Low bycatch caused by 
artisanal fishing 

pressures fp_com_hb 
fp_com_hb_arc
2016.csv 

pressure
_score 

pressure 
score 

High bycatch caused 
by commercial fishing 

pressures fp_com_lb 
fp_com_lb_arc2
016.csv 

pressure
_score 

pressure 
score 

Low bycatch caused by 
commercial fishing 

pressures fp_targetharvest 
fp_targetharvest
_gl2016.csv score 

pressure 
score 

Targeted harvest of 
cetaceans and sea 
turtles 

pressures hd_intertidal 
hd_intertidal_gl2
016.csv 

pressure
_score 

pressure 
score 

Coastal population 
density as a proxy for 
intertidal habitat 
destruction 

pressures hd_subtidal_sb 
hd_subtidal_sb_
arc2016.csv 

pressure
s.score 

pressure 
score 

Demersal destructive 
commercial fishing 
practices relative to 
soft-bottom habitat 
area as a proxy for soft 
bottom habitat 
destruction 

pressures po_chemicals 
po_chemicals_a
rc2016.csv 

pressure
_score 

pressure 
score Chemical pollution 

pressures po_nutrients 
po_nutrients_ar
c2016.csv 

pressure
_score 

pressure 
score 

Fertilizer pollution as a 
proxy for nutrient 
pollution 

pressures sp_alien 
sp_alien_gl2016
.csv 

pressure
s.score 

pressure 
score Alien species 

pressures sp_genetic 
sp_genetic_gl20
16.csv 

pressure
s.score 

pressure 
score 

Introduced species as 
a proxy for genetic 
escapes 

pressures ss_wgi 
ss_wgi_gl2016.
csv score 

pressure 
score 

Weakness of 
governance indicated 
with the WGI 

pressures 
CW 

po_chemicals_3
nm 

po_chemicals_3
nm_arc2016.csv 

pressure
_score 

pressure 
score 

Coastal chemical 
pollution within 3 nm 
offshore 

pressures 
CW 

po_nutrients_3n
m 

po_nutrients_3n
m_arc2016.csv 

pressure
_score 

pressure 
score 

Coastal fertilizer 
pollution as a proxy for 
nutrient pollution within 
3nm offshore 

pressures 
CW po_pathogens 

po_pathogens_
arc2016.csv 

pressure
_score 

pressure 
score 

Access to improved 
sanitation as a proxy 
for pathogen pollution 

pressures 
CW po_trash 

po_trash_arc20
16.csv 

pressure
_score 

pressure 
score Trash pollution 
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pressures 
resilience 

element_wts_cp
_km2_x_protect
ion 

element_wts_cp
_km2_x_protecti
on_arc2016.csv 

extent_r
ank 

extent*ra
nk 

Used to weight 
elements of coastal 
protection goal 

pressures 
resilience 

element_wts_ha
b_pres_abs 

element_wts_ha
b_pres_abs_arc
2016.csv boolean boolean 

Used to weight 
elements of habitat 
goal 

resilience fp_habitat 
fp_habitat_gl20
16.csv 

resilienc
e score 

resilienc
e score CBD survey: habitat 

resilience fp_mora 
fp_mora_gl2016
.csv value 

resilienc
e score CBD survey: fishing 

resilience 
fp_mora_artisan
al 

fp_mora_artisan
al_gl2016.csv value 

resilienc
e score 

CBD survey: artisanal 
fishing 

resilience fp_mpa_coast 
fp_mpa_coast_
arc2016.csv 

resilienc
e.score 

resilienc
e score Protected marine area 

resilience fp_mpa_eez 
fp_mpa_eez_ar
c2016.csv 

resilienc
e.score 

resilienc
e score 

Protected marine area 
in eez 

resilience g_cites 
g_cites_gl2016.
csv 

resilienc
e_score 

resilienc
e score 

Resilience from 
commitment to CITES 

resilience g_mariculture 
g_mariculture_g
l2016.csv 

resilienc
e score 

resilienc
e score 

CBD survey: 
mariculture 

resilience g_msi_gov 
g_msi_gov_gl20
16.csv 

resilienc
e score 

resilienc
e score 

MSI sustainability and 
regulations 

resilience g_tourism 
g_tourism_gl20
16.csv 

resilienc
e score 

resilienc
e score CBD survey: tourism 

resilience hd_habitat 
hd_habitat_gl20
16.csv 

resilienc
e score 

resilienc
e score CBD survey: habitat 

resilience hd_mpa_coast 
hd_mpa_coast_
arc2016.csv 

resilienc
e.score 

resilienc
e score Protected marine area 

resilience hd_mpa_eez 
hd_mpa_eez_ar
c2016.csv 

resilienc
e.score 

resilienc
e score 

Protected marine area 
in eez 

resilience li_gci 
li_gci_gl2016.cs
v score 

resilienc
e score 

GCI: competitiveness 
in achieving sustained 
economic prosperity 

resilience 
li_sector_evenn
ess 

li_sector_evenn
ess_gl2016.csv 

resilienc
e score 

resilienc
e score 

Sector evenness as a 
measure of economic 
diversity 

resilience po_water 
po_water_gl201
6.csv 

resilienc
e score 

resilienc
e score CBD survey: water 

resilience 
sp_alien_specie
s 

sp_alien_specie
s_gl2016.csv 

resilienc
e score 

resilienc
e score 

CBD survey: alien 
species 

resilience 
species_diversit
y_3nm 

species_diversit
y_3nm_arc2016
.csv score 

resilienc
e score 

Coastal ecological 
integrity 

resilience 
species_diversit
y_eez 

species_diversit
y_eez_arc2016.
csv score 

resilienc
e score 

Ocean ecological 
integrity 

resilience wgi_all 
wgi_all_gl2016.
csv score 

resilienc
e score 

Strength of governance 
indicated with the WGI 
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spatial rgn_area 
rgn_area_arc20
16.csv 

area_km
2 km^2 

Region area of total 
EEZ ocean 

spatial 
rgn_area_offsho
re3nm 

rgn_area_offsho
re3nm_arc2016.
csv 

area_km
2 km^2 

Region area offshore 
3nm 

spatial 
rgn_georegion_l
abels 

rgn_georegion_l
abels_arc2016.c
sv label label 

Georegion labels per 
region, at 3 georegion 
levels 

spatial rgn_georegions 
rgn_georegions
_arc2016.csv 

georgn_i
d 

georegio
n id 

Georegion ids per 
region, at 3 georegion 
levels 

spatial rgn_global 
rgn_global_arc2
016.csv label label 

regions used in global 
analysis for Nature 
2012, subset of 
regions_labels by 
type=eez and not 
deleted or disputed 

spatial rgn_labels 
rgn_labels_gl20
16.csv label label 

regions by type (eez, 
subocean, unclaimed) 
and label 

Species spp_status 
spp_status_arc2
016.csv score 

status 
score 

Species lists and IUCN 
threat categories as a 
proxy for iconic species 
status 

Species spp_trend 
spp_trend_arc2
016.csv score 

trend 
score 

Species lists and IUCN 
threat categories as a 
proxy for iconic species 
trend 

Tourism 
tr_jobs_pct_tour
ism 

tr_jobs_pct_tour
ism_arc2016.cs
v pct percent 

Percent direct 
employment in tourism 

Tourism tr_jobs_total 
tr_jobs_total_ar
c2016.csv 

employe
d people Total labor force 

Tourism tr_jobs_tourism 
tr_jobs_tourism
_arc2016.csv jobs jobs 

Direct employment in 
tourism 

Tourism tr_sustainability 
tr_sustainability
_gl2016.csv S_score score Sustainability index 

Tourism 
tr_travelwarning
s 

tr_travelwarning
s_gl2016.csv multiplier score Travel warnings 

Tourism 
tr_unemployme
nt 

tr_unemployme
nt_arc2016.csv percent percent Percent unemployment 

 

Fisheries 

As per the global Fisheries goal, we based the reference point for sustainable yield on an 

estimate of the ratio of the most recent (2014) population biomass (B) to the biomass that can 
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deliver maximum sustainable yield (BMSY) for each taxon (B/BMSY), where B/BMSY=1 is the 

highest score. Each species’ status score (SS) was calculated as: 

                 𝑆𝑆 =  { 𝐵/𝐵𝑀𝑆𝑌                                              𝑖𝑓1                                                           𝑖𝑓𝑚𝑎𝑥{1 − 𝛼(𝐵/𝐵𝑀𝑆𝑌 − 1.05, 𝛽)} 𝑖𝑓      𝐵/𝐵𝑀𝑆𝑌 < 0.95𝐵/𝐵𝑀𝑆𝑌 ≤ 0.95 𝐵/𝐵𝑀𝑆𝑌 ≤ 1.05𝐵/𝐵𝑀𝑆𝑌 > 1.05        
(Eq.S1) 

For species with B/BMSY<0.95 (using a 5% buffer for uncertainty), status declines directly 

proportional to the ratio of B to BMSY. For species in which B/BMSY>1.05, status declines at rate 𝛼, where 𝛼 = 0.5 ensures that underharvested species are penalised for distance from BMSY 

at half the rate of heavily harvested species, to a minimum score of 0.25,   𝛽. The underharvest 

penalty was removed for Arctic Alaska, which is closed to industrial fishing, in a precautionary 

approach. As such it would be unfair to penalize any underharvest which the region has taken 

a strategic decision not to fish in this area. However, removing this penalty has no effect on 

overall scores.  

Annual B/BMSY time series for species fished in FAO regions 18 (Arctic Sea), 21 (Northwest 

Atlantic) and 27 (Northeast Atlantic) from the RAM Legacy database were used when available 

(http://ramlegacy.org, Ricard et al., 2012). For species not assessed in the RAM Legacy 

database we estimated annual B/BMSY scores utilising the data-limited ‘catch-MSY’ model, 

which uses catch data to estimate MSY of fish stocks (Martell & Froese 2013). The model was 

applied to catch time series using the  ‘datalimited’ package in R (Anderson et al., 2017).  For 

stocks where B/BMSY could not be estimated, we assigned the mean B/BMSY of species in 

the same year and FAO region. This was either because the species were identified to a 

coarser taxonomic level (e.g., family or class level) or had inadequate data which caused 

model failure (often because time series were not long enough or catches not high enough).  

http://ramlegacy.org/
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Species status score was then multiplied by a taxonomic penalty, which penalises reporting 

at lower than the species level, with increasing penalty for coarser reporting, which is 

considered a sign of poor management (Table S1). Finally status is calculated as the mean of 

stock status scores weighted by average catch measured throughout the time series for each 

region.   

Table A2-5: Taxonomic Reporting Multipliers 

Reporting Level Penalty 

Species 1 

Genus 0.9 

Family 0.8 

Order 0.6 

Class 0.25 

Other 0.1 

 

Mariculture 

Sustainability scores are calculated for each species in each country based three criteria 

(fishmeal use, waste treatment, and seed and larvae origin criteria) from the Mariculture 

Sustainability Index. These criteria represent the internal mariculture practices with the 

potential to affect the long term sustainability of the mariculture system. The MSI reports data 

for 359 country-species combinations (with 60 countries and 86 species represented) for each 

assessment criterion. Scores for each assessment criterion were aggregated and averaged 

based on the proportion of production that each assessed species contributed to the overall 

production in each country in the current year. Country average scores were then rescaled 

from 0 to 1 using the maximum possible raw MSI score of 10 and minimum of 1, and then 

weighted equally to calculate a composite resilience.  
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Table A2-6: Mariculture sustainability criteria (Trujillo 2008) 

Criteria Description of practice and score scheme 

Fishmeal 

use 

Fish protein and oil inclusion in the diet at any stage of development must 

be considered; herbivore species will score 10, and carnivorous 

(piscivorous) organisms will score closer to 1, depending on the level of 

feed supplied. 

Waste 

treatment 

Water exchange, output destinations, recycling and filtering of open water 

discharge or closed system reuse systems. Systems that are closed score 

high (10), while open systems without waste treatments score low (1) 

Seed and 

larvae origin 

Hatcheries are major providers of larvae, fry and seeds. Broodstock origin 

and strain will also affect the score. Wild seed collection and its importance 

contribute to a low score due to bycatch and other effects on non-target 

species. 

 

Livelihoods and Economies 

Table A2-7: Employment and Wage Data Sources 

Region Link 

Arctic 
Alaska 

http://live.laborstats.alaska.gov/qcew/ 
http://live.laborstats.alaska.gov/labforce/ 

Nunavut http://www.stats.gov.nu.ca/en/Labour%20and%20employment.aspx 
http://www.stats.gov.nu.ca/en/Economic%20income.aspx 

Canadian 
Beaufort 

http://www.statsnwt.ca/labour-income/labour-force- 
http://www.statsnwt.ca/labour-income/income/index.html 

Russian 
Arctic 

http://www.gks.ru/wps/wcm/connect/rosstat_main/rosstat/ru/statistics/regional_statistic
s/ 
http://www.gks.ru/wps/wcm/connect/rosstat_main/rosstat/ru/statistics/wages/labour_co
sts/ 

Svalbard https://www.ssb.no/ 
Arctic 
Norway 

https://www.ssb.no/ 

Greenlan
d 

http://www.stat.gl/dialog/topmain.asp?lang=en&subject=Labour%20Market&sc=AR 
http://www.stat.gl/dialog/topmain.asp?lang=en&subject=Income&sc=IN 
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Table A2-8: Marine Sectors considered for Livelihoods and Economies 

Region 
Marine 
sector 

Arctic 
Alaska 

Tourism 
Transport 

Nunavut  

Fishing 
Tourism 
Transport 

Canadian 
Beaufort 

Tourism 
Transport 

Arctic 
Russia 

Fishing 
Tourism 
Transport 

Svalbard 

Education 
Tourism 
Transport 

Arctic 
Norway 

Fishing 
Seafood 
Tourism 
Transport 

 

Table A2-9: Sources of revenue data for marine sectors 

Region Link 

Arctic 
Alaska 

http://live.laborstats.alaska.gov/qcew/ 

Nunavut http://www.stats.gov.nu.ca/en/Economic%20GDP.aspx 
Canadian 
Beaufort 

http://www.statsnwt.ca/economy/gdp/ 

Russian 
Arctic 

http://www.gks.ru/wps/wcm/connect/rosstat_main/rosstat/ru/statistics/accounts/# 
 

Svalbard https://www.ssb.no/ 
Arctic 
Norway 

https://www.ssb.no/ 

Greenlan
d 

http://www.stat.gl/dialog/topmain.asp?lang=en&subject=National%20Accounts&sc=N
R 

 

Iconic Species 

Table A2-10: Iconic Species for each region 
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Common Name Scientific name Region 

Arctic char Salvelinus alpinus All 
Blue whale Balaenoptera musculus All 
Bowhead whale Balaena mysticetus All 
Common guillemot Uria aalge All 
Common Eider Somateria mollissima All 
Fin whale Balaenoptera physalus All 
Humpback Whale Megaptera novaeangliae All 
Minke whale Balaenoptera acutorostrata All 
Polar bear Ursus maritimus All 
Red knot Calidris canutus All 
Sei whale Balaenoptera borealis All 
Thick-billed guillemot Uria lomvia All 
Bearded seal Erignathus barbatus Arctic Alaska 
Beluga Whale Delphinapterus leucas Arctic Alaska 
Ringed seal Pusa hispida Arctic Alaska 
Spectacled Eider Somateria fischeri Arctic Alaska 
Spotted seal Phoca largha Arctic Alaska 
Steller's Eider Polysticta steller Arctic Alaska 
Walrus Odobenus rosmarus Arctic Alaska 
Beluga Whale Delphinapterus leucas Nunavut 
Harbour Porpoise Phocoena phocoena Nunavut 
Harbour seal Phoca vitulina Nunavut 
Hooded Seal Cystophora cristata Nunavut 
Ivory Gull Pagophila eburnea Nunavut 
Killer Whale Orcinus orca Nunavut 
Narwhal Monodon monoceros Nunavut 
Ringed seal Pusa hispida Nunavut 
Walrus Odobenus rosmarus Nunavut 
Beluga Whale Delphinapterus leucas Canadian Beaufort Sea 
Harbour Porpoise Phocoena phocoena Canadian Beaufort Sea 
Harbour seal Phoca vitulina Canadian Beaufort Sea 
Hooded Seal Cystophora cristata Canadian Beaufort Sea 
Ivory Gull Pagophila eburnea Canadian Beaufort Sea 
Killer Whale Orcinus orca Canadian Beaufort Sea 
Narwhal Monodon monoceros Canadian Beaufort Sea 
Ringed seal Pusa hispida Canadian Beaufort Sea 
Walrus Odobenus rosmarus Canadian Beaufort Sea 
Harbour porpoise Phocoena phocoena Arctic Russia 
Harbour seal Phoca vitulina Arctic Russia 
Narwhale Monodon monoceros Arctic Russia 
North Atlantic right whale Eubalaena glacialis Arctic Russia 
Walrus Odobenus rosmarus Arctic Russia 
White-beaked dolphin  Lagenorhynchus albirostris Arctic Russia 
Arctic skua Stercorarius parasiticus Svalbard 
Arctic tern  Sterna paradisaea Svalbard 
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Bearded seal  Erignathus barbatus Svalbard 
Black guillemot  Cepphus grylle Svalbard 
Fulmar Fulmarus glacialis Svalbard 
Glaucous gull Larus hyperboreus Svalbard 
Harbour seal Phoca vitulina Svalbard 
Hooded seal  Cystophora cristata Svalbard 
Ivory gull  Pagophila eburnea Svalbard 
King eider  Somateria spectabilis Svalbard 
Little auk  Alle alle Svalbard 
Narwhal  Monodon monoceros Svalbard 
Pink-footed Goose Anser brachyrhynchus Svalbard 
Pomarine skua  Stercorarius pomarinus Svalbard 
Purple sandpipers Calidris maritima Svalbard 
Ringed plover Charadrius hiaticula Svalbard 
Ringed seal  Pusa hispida Svalbard 
Sanderling Calidris alba Svalbard 
Walrus Odobenus rosmarus Svalbard 
White-beaked dolphin  Lagenorhynchus albirostris Svalbard 
Arctic skua Stercorarius parasiticus Arctic Norway 
Arctic tern  Sterna paradisaea Arctic Norway 
Bearded seal  Erignathus barbatus Arctic Norway 
Black guillemot  Cepphus grylle Arctic Norway 
Salmon Salmo salar Arctic Norway 
Arctic tern Sterna paradisaea Jan Mayen 
Bearded seal  Erignathus barbatus Jan Mayen 
Arctic skua Stercorarius parasiticus West Greenland 
Arctic tern Sterna paradisaea West Greenland 
Bearded seal Erignathus barbatus West Greenland 
Beluga whale Delphinapterus leucas West Greenland 
Black guillemot Cepphus grylle West Greenland 
Bottlenosed dolphin Tursiops truncatus West Greenland 
Fulmar Fulmarus glacialis West Greenland 
Glaucous gull Larus hyperboreus West Greenland 
Harbour porpoise Phocoena phocoena West Greenland 
Harbour seal Phoca vitulina West Greenland 
Hooded seal Cystophora cristata West Greenland 
Ivory gull Pagophila eburnea West Greenland 
Killer whale Orcinus orca West Greenland 
King Eider Somateria spectabilis West Greenland 
Little auk  Alle alle West Greenland 
Narhwal Monodon monoceros West Greenland 
North Atlantic right whale Eubalaena glacialis West Greenland 
Pink-footed Goose Anser brachyrhynchus West Greenland 
Pomarine Stercorarius pomarinus West Greenland 
Purple sandpiper Calidris maritima West Greenland 
Ringed Plover Charadrius hiaticula West Greenland 
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Ringed seal Pusa hispida West Greenland 
Salmon Salmo salar West Greenland 
Sanderling Calidris alba West Greenland 
White-beaked dolphin  Lagenorhynchus albirostris West Greenland 
Arctic skua Stercorarius parasiticus East Greenland 
Arctic tern Sterna paradisaea East Greenland 
Bearded seal Erignathus barbatus East Greenland 
Beluga whale Delphinapterus leucas East Greenland 
Black guillemot Cepphus grylle East Greenland 
Bottlenosed dolphin Tursiops truncatus East Greenland 
Fulmar Fulmarus glacialis East Greenland 
Glaucous gull Larus hyperboreus East Greenland 
Harbour porpoise Phocoena phocoena East Greenland 
Harbour seal Phoca vitulina East Greenland 
Hooded seal Cystophora cristata East Greenland 
Ivory gull Pagophila eburnea East Greenland 
Killer whale Orcinus orca East Greenland 
King Eider Somateria spectabilis East Greenland 
Little auk  Alle alle East Greenland 
Narhwal Monodon monoceros East Greenland 
North Atlantic right whale Eubalaena glacialis East Greenland 
Pink-footed Goose Anser brachyrhynchus East Greenland 
Pomarine Stercorarius pomarinus East Greenland 
Purple sandpiper Calidris maritima East Greenland 
Ringed Plover Charadrius hiaticula East Greenland 
Ringed seal Pusa hispida East Greenland 

Salmon Salmo salar East Greenland 
Sanderling Calidris alba East Greenland 
White-beaked dolphin  Lagenorhynchus albirostris East Greenland 

 

Table A2-11: Score conversions for species trend 

Species Trend Trend Score 

Increasing 0.025 
Decreasing -0.025 

 

Marine Mammal Harvest 

Table A2-12: Harvested Marine Mammals included for each region 



235 

 

Region Scientific Name Common Name 

Arctic Alaska Odobenus rosmarus Walrus 
Phoca largha Spotted Seal 

Nunavut Monodon monoceros Narwhal 
Arctic Russia Odobenus rosmarus Walrus 

Pagophilus groenlandicu Harp Seal 
Norway Pagophilus groenlandicu Harp Seal 
Jan Mayen Pagophilus groenlandicu Harp Seal 

Cystophora cristata Hooded Seal 
West Greenland Monodon monoceros Narwhal 

Odobenus rosmarus Walrus 
East Greenland Monodon monoceros Narwhal 

Odobenus rosmarus Walrus 
 

Equation S2 below is a representation of Figure 2 in the main text. 

𝑆′ =
{  
  
  2.1 − 𝑆𝑆

1
0.25 + 0.750.90 ∗ 𝑆𝑆

when SS > 1.1 
           when 0.9 ≤ 𝑆𝑆 ≤ 1.1

when SS < 0.9
 

(Eq. S2) 

The 0.25 indicates the lowest value that can be obtained when the catch is lower than the 

catch limit (i.e. under-harvest); this value was used because under-harvesting can be 

beneficial to rebuild populations.  The 0.75/0.90 establishes the slope from the minimum value 

(0.25) to the lower buffer of the ideal score (1.0 – 10% buffer applied to account for 

uncertainty). The 2.1 establishes the slope for over-harvesting from the upper buffer limit 

(1.0+10% buffer applied for uncertainty) so that a score of zero is achieved when Catch is 

twice or more than twice the Catch Limit. 

Habitats 
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Soft Bottomed Habitat: Global catch data from Sea Around Us Project is provided at 0.5 

degree raster scale in units of tonnes/km2 for each species and fishing gear type. We identified 

catch from trawling gear, defined as dredges, hand dredges, bottom trawls, and shrimp trawls 

(mid-water trawls were excluded). We summed the trawled catch data for each AOHI region 

for each year, and converted to catch density by dividing the annual catch by the area of 

trawlable (soft-bottom) habitat. ‘Trawlable habitat’ within a region was defined as shallow 

subtidal (0-60m) and outer shelf (60-200m) soft bottom habitat. We rescaled AOHI regions 

based on the 95th percentile global log transformed value from all year-country possibilities. 

Condition was then calculated as one minus the rescaled catch density in the most recent year 

and further rescaled to the global median condition value across all years, and any value 

greater than the median was set = 1.0. This follows the current Global OHI approach.  

Species 

Table A2-13: Score conversions for IUCN Red List Species 

IUCN Red List Status Status Score 

Least concern/Lower risk (LC) 0 
Near threatened (NT) 0.2 
Vulnerable (VU) 0.4 
Endangered (EN) 0.6 
Critically Endangered 0.8 
Extinct 1 
Data Deficient NA 

 

Tourism and Recreation 

The Travel and Tourism Competitiveness Index is produced by the World Economic Forum 

and measures the factors and policies that make a country an attractive place to invest in the 

travel and tourism sector (WEF 2015, http://reports.weforum.org/travel-and-tourism-

competitiveness-report-2015). The index analyzes 140 countries and scores each based on 

three sub-indices: human, cultural, and natural resources; business environment and 

http://reports.weforum.org/travel-and-tourism-competitiveness-report-2015
http://reports.weforum.org/travel-and-tourism-competitiveness-report-2015
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infrastructure; and regulatory framework. These three sub-indices are in turn composed of 14 

“pillars” of Travel & Tourism Competitiveness that are informed by a multitude of individual 

indicators based on the World Economic Forum’s annual Executive Opinion Survey and data 

from publically available sources: human, cultural, and natural resources (human resources, 

affinity for travel and tourism, natural resources, and cultural resources); business 

environment and infrastructure (air transport infrastructure, ground transport infrastructure, 

tourism infrastructure, ICT infrastructure, and price competitiveness in the industry); and 

regulatory framework (policy rules and regulations, environmental sustainability, safety and 

security, health and hygiene, and prioritization of travel and tourism). Because these indicators 

are meant to represent the overall quality and future potential of the tourism sector within a 

country, we assume they are representative of the long term sustainability of the tourism sector 

within each country. Values range from 1-6. 
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Figure A2-1: Maps of Arctic Ocean Health Index scores for each assessment region. 

Scores range from 0 (bad) to 100 (excellent). Grey areas indicate that particular goal was not 

relevant to that region and thus not assessed. 

 

Table A2-14: Arctic Data portals 

Region Portal Web address Notes 
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Circumpol
ar 

Circumpolar 
Arctic 
Coastal 
Communities 
Observatory 
Network 
(CACCON) 

http://caccon.or
g/ 

 

Initiative aiming to build knowledge hubs 
to support, sustain and share adaptation 
for coastal communities. CACCON 
creates knowledge to support evidence-
based decision making to adapt to 
climatic and socioeconomic changes 

ArcticData http://arcticdata.i
s/ 

ArcticData provides access to data 
collected and developed through the 
activities of CAFF and PAME. 

Arctic Portal http://arcticporta
l.org/ 

The Arctic Portal is a network of 
information and data sharing and serves 
as host to many web sites in a 
circumpolar context, supporting co-
operation and outreach in science, 
education, and policy making. Includes an 
interactive mapping system, standardized 
permafrost monitoring data and the Arctic 
Transportation Database (log of ports and 
airports). 
 

ArcticStat http://www.arctic
stat.org/ 

ArcticStat is a permanent, public and 
independent statistical database dealing 
with the countries, regions and 
populations of the Circumpolar Arctic. 

Armap 
(Arctic 
Research 
Mapping 
Application) 

http://armap.org/ 
 

ARMAP encompasses scientific research 
projects across the Arctic, funded or 
coordinated by multiple agencies and 
organizations. ARMAP uses best 
practices with information and mapping 
technologies to provide a comprehensive 
perspective in support of Arctic science. 

Arctic Data 
Explorer 

http://nsidc.org/
acadis/ 
search/ 

Links to a selection of repositories 

Advanced 
Cooperative 
Arctic Data 
and 
Information 
Service 
(ACADIS) 

https://www.aon
cadis.org 
 

Joint effort by the National Snow and Ice 
Data Center (NSIDC), the University 
Corporation for Atmospheric Research 
(UCAR), UNIDATA, and the National 
Center for Atmospheric Research (NCAR) 
to provide data archival, preservation and 
access for all projects funded by NSF's 
Arctic Science Program (ARC). ACADIS 
builds on the CADIS project that 
supported the Arctic Observing Network 
(AON). This portal will continue to be a 
gateway for AON data and is being 
expanded to include all NSF ARC data. 

Atlas of 
Community-
Based 
Monitoring 

http://www.arctic
cbm.org 
 

Provides a map of CBM projects in the 
Arctic and information about them 
including links to PIs or websites. It is 
intended to serve as an inventory of 
initiatives that will assist with network 
building and identification of best 

http://caccon.org/
http://caccon.org/
http://arcticdata.is/
http://arcticdata.is/
http://arcticportal.org/
http://arcticportal.org/
http://www.arcticstat.org/
http://www.arcticstat.org/
http://armap.org/
https://www.aoncadis.org/
https://www.aoncadis.org/
http://www.arcticcbm.org/
http://www.arcticcbm.org/
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practices and challenges for the field. A 
secondary phase of the project will draw 
on CBM initiatives inventoried by the 
atlas, as well as a literature review, and 
interviews and input from practitioners, to 
draft a review of the state of CBM in the 
Arctic. 

 
Arctic 
Biodiversity 
Data Service 
(ABDS) 

http://www.abds
.is/ 

The ABDS is the data-management 
framework for managing data generated 
via CAFF and its Circumpolar Biodiversity 
Monitoring Programme (CBMP). It is an 
online, interoperable data management 
system which will serve as a focal point 
and common platform for all CAFF 
programs and projects as well as be a 
dynamic source for up-to-date circumpolar 
Arctic biodiversity information and 
emerging trends. 

Arctic 
Environment
al Atlas 

http://maps.grid
a.no/arctic/ 

Interactive atlas of the Arctic. Produced by 
the GRID-Arendal Centre, a centre 
collaborating with the United Nations 
Environment Programme (UNEP). 

Canada Nodicana D http://www.cen.
ulaval.ca/ 
nordicanad 

Environmental data from monitoring sites 
all over Canada. 

Arctic 
Science and 
Technology 
Information 
System 
(ASTIS) 

http://www.aina.
ucalgary.ca/ 
astis/ 

The Arctic Science and Technology 
Information System (ASTIS) database 
contains 81,000 records describing 
publications and research projects about 
northern Canada. 

Norway Nordregio http://www.nordr
egio.se/en/ 

Nordregio's main areas of research 
include regional development - urban and 
rural, city regional planning, demography, 
governance and gender, innovation and 
green growth, and sustainable 
development in the Arctic. Research 
competencies include the production of 
high-quality maps, the web-mapping tool 
NordMap and the development of state of 
the art statistical databases. 

ArcticWeb http://www.arctic
web.com/ 

ArcticWeb exists to simplify access to 
public data sources in the Arctic Region. 
The information (via search and map 
interfaces) is used by oil and service 
companies for the purpose of exploration, 
early field development, environmental 
risk analysis, emergency preparedness, 
safety assessments and more. ArcticWeb 
covers the entire Norwegian Continental 
Shelf with data from a wide-range of 
Norwegian key data owners. 

http://www.abds.is/
http://www.abds.is/
http://www.caff.is/monitoring
http://www.caff.is/monitoring
http://maps.grida.no/arctic/
http://maps.grida.no/arctic/
http://www.cen.ulaval.ca/
http://www.cen.ulaval.ca/
http://www.aina.ucalgary.ca/astis/
http://www.aina.ucalgary.ca/astis/
http://www.aina.ucalgary.ca/astis/
http://www.aina.ucalgary.ca/astis/
http://www.aina.ucalgary.ca/astis/
http://www.aina.ucalgary.ca/astis/
http://www.aina.ucalgary.ca/
http://www.aina.ucalgary.ca/
http://www.nordregio.se/en/
http://www.nordregio.se/en/
http://www.nordregio.se/en/Maps--Graphs/
http://www.nordmap.se/
http://www.arcticweb.com/
http://www.arcticweb.com/
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11 APPENDIX 3 

Table A3-1: Components of the NoBa Atlantis Model 

Full name Species Included 

Polar bear  
Killer whale  
Sperm whale  
Humpback whale  
Minke whale  
Fin whale  
Bearded seal  
Harp seal  
Hooded seal  
Ringed seal  
Arctic sea birds2  
Boreal sea birds  
Sharks, other Picked dogish, Porbeagle, Tope shark 
Demersals, other Ling, Tusk 
Pelagic large Atlantic salmon 
Pelagic small Lumpfish, Norway pout 
Redfish, other Golden redfish 
Demersal, large Monkfish, Atlantic halibut, Atlantic wolfish, northern 

wolfish, spotted wolfish 
Flatfish, other European plaice, common dab, winter flounder 
Long rough dab  
Skates and rays Arctic skate, starry ray, sailray, longnosed skate, 

thornback ray, round skate, spinytail skate 
Mesopelagic fish Silvery lightfish, glacier lantern fish 
Greenland halibut  
Mackerel  
Haddock  
Saithe  
Redfish  
Blue whiting  
Norwegian spring spawning 
herring 

 

Northeast arctic cod  
Polar cod  
Capelin  
Prawn Pandalus borealis 
Cephalopods Gonatus fabricii 
Red king crab  
Snow crab  
Gelatineous zooplankton Aurelia aurita, cyanea capilate 
Large zooplankton Thysanoessa inermis 
Medium zooplankton Parameterized as Calanus finmarchicus 
Small zooplankton Small copepods, oncaea, pseudocalanus, (Oithona 

similis) 
Dinoflagellates  
Small phytoplankton Flagellates 
Large phytoplankton Diatoms 
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Predatory benthos Echinoderms, sea urchins, annelids and anemones 
Detrivore benthos Selected annelids, echinoderms 
Benthic filter feeders Selected molluscs, barnacles, moss animals, anemones 

(Tridonta borealis) 
Sponges Geodia baretti 
Corals Lophelia pertusa 
Pelagic bacteria  
Benthic bacteria  
Refractory detritus  
Carrion  
Labile detritus  
1 Migratory species move outside of the model domain in parts of the year. All mobile 
components are able to move within boxes, either due to density-dependent movement, or 
seasonal migrations, or a mix between these.   
2 The arctic seabirds are parameterized as Brünnich’s Guillemot, but represent all seabirds 
which stay in the northern areas also during wintertime. So the total biomass is much larger 
than for the guillemots alone. 

 
 

 

Figure A3-1: Biomass changes for each functional group over three fishing scenarios 
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12 APPENDIX 4 

Table A4-1: Detailed indicator responses at three time points for three fishing 

scenarios. Figures denote percentage change at each time point compared to the 2015 

baseline for each indicator; negative responses indicate biodiversity loss. Dark Red more than 

10% reduction, Light Red 0 to -5% reduction, Yellow 0 to 10% gain, Light Green 10% to 50% 

gain, Dark Green over 50% gain in indicator values. 

 

2030 2050 2068 2030 2050 2068 2030 2050 2068

LPI 0.38 -6.21 -3.41 4.07 -3.89 -13.30 10.00 -9.30 -10.41

NNI -0.59 -0.82 4.45 1.89 -0.57 -1.19 3.75 -3.24 -2.96

Iconic Abundance -5.69 -10.64 -14.30 -5.75 -12.43 -16.76 -5.47 -11.63 -15.17

Total Biomass 7.73 2.82 -4.42 0.71 -0.52 0.50 3.13 1.00 -3.58

% Pred 4.87 53.89 78.29 34.22 112.72 120.33 85.95 240.82 284.49

Mean Life Span 2.60 -1.58 -2.43 8.58 3.18 3.84 19.82 20.65 22.11

TL Community 4.82 6.07 5.67 6.32 15.02 24.10 9.42 25.09 35.90

Inverse Fishing Pressure -38.96 2.31 9.08 -15.30 28.00 37.59 NA NA NA

TL Landings 3.04 0.91 -0.09 2.11 0.27 -1.38 NA NA NA

PelBioPP 35.76 58.45 31.66 61.14 178.42 229.67 109.81 412.13 545.95

BioPP 37.45 34.65 -0.73 50.70 115.50 146.19 76.81 230.03 281.24

DemPel -13.85 -26.56 -28.18 -7.21 -22.81 -27.94 2.44 -23.35 -28.74

DemPP 16.88 16.45 -5.75 49.59 114.87 137.37 114.40 293.98 361.00

PropPel -8.18 -12.76 -23.12 -4.94 -0.30 -5.85 8.25 24.86 19.71

Prop Pred -4.86 1.53 -10.66 10.53 37.01 26.98 47.88 117.61 111.37

Strict Conservation

Year

Conservation

Fisheries 

Ecosystem

IndiSeas

Scenario Global Sustainability Precautionary Fishing
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Figure A4-1: Living Planet Index under three fishing scenarios 2015-2068 

Figure A4-2: Norway Nature Index under three fishing scenarios 2015-2068 



245 

 

Figure A4-3: Iconic Species Abundance under three fishing scenarios 2015-2068 
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Figure A4-4: IndiSeas biomass based indicators under three fishing scenarios 2015-

2068 
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Figure A4-5: IndiSeas catch based indicators under three fishing scenarios 2015-2068 

 

 

Figure A4-6: Fisheries ecosystem indicators under three fishing scenarios 2015-2068 
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Figure A4-7: Catches for commercial species from 2015-2068 across two fishing 

scenarios 

 


